1
|
Hays GC, Ferreira LC, Sequeira AMM, Meekan MG, Duarte CM, Bailey H, Bailleul F, Bowen WD, Caley MJ, Costa DP, Eguíluz VM, Fossette S, Friedlaender AS, Gales N, Gleiss AC, Gunn J, Harcourt R, Hazen EL, Heithaus MR, Heupel M, Holland K, Horning M, Jonsen I, Kooyman GL, Lowe CG, Madsen PT, Marsh H, Phillips RA, Righton D, Ropert-Coudert Y, Sato K, Shaffer SA, Simpfendorfer CA, Sims DW, Skomal G, Takahashi A, Trathan PN, Wikelski M, Womble JN, Thums M. Key Questions in Marine Megafauna Movement Ecology. Trends Ecol Evol 2016; 31:463-475. [PMID: 26979550 DOI: 10.1016/j.tree.2016.02.015] [Citation(s) in RCA: 197] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 02/16/2016] [Accepted: 02/17/2016] [Indexed: 02/03/2023]
Abstract
It is a golden age for animal movement studies and so an opportune time to assess priorities for future work. We assembled 40 experts to identify key questions in this field, focussing on marine megafauna, which include a broad range of birds, mammals, reptiles, and fish. Research on these taxa has both underpinned many of the recent technical developments and led to fundamental discoveries in the field. We show that the questions have broad applicability to other taxa, including terrestrial animals, flying insects, and swimming invertebrates, and, as such, this exercise provides a useful roadmap for targeted deployments and data syntheses that should advance the field of movement ecology.
Collapse
|
Journal Article |
9 |
197 |
2
|
Skomal GB, Mandelman JW. The physiological response to anthropogenic stressors in marine elasmobranch fishes: a review with a focus on the secondary response. Comp Biochem Physiol A Mol Integr Physiol 2011; 162:146-55. [PMID: 22008842 DOI: 10.1016/j.cbpa.2011.10.002] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 10/04/2011] [Accepted: 10/06/2011] [Indexed: 11/29/2022]
Abstract
Elasmobranchs (sharks, rays, and skates) are currently facing substantial anthropogenic threats, which expose them to acute and chronic stressors that may exceed in severity and/or duration those typically imposed by natural events. To date, the number of directed studies on the response of elasmobranch fishes to acute and chronic stress are greatly exceeded by those related to teleosts. Of the limited number of studies conducted to date, most have centered on sharks; batoids are poorly represented. Like teleosts, sharks exhibit primary and secondary responses to stress that are manifested in their blood biochemistry. The former is characterized by immediate and profound increases in circulating catecholamines and corticosteroids, which are thought to mobilize energy reserves and maintain oxygen supply and osmotic balance. Mediated by these primary responses, the secondary effects of stress in elasmobranchs include hyperglycemia, acidemia resulting from metabolic and respiratory acidoses, and profound disturbances to ionic, osmotic, and fluid volume homeostasis. The nature and magnitude of these secondary effects are species-specific and may be tightly linked to metabolic scope and thermal physiology as well as the type and duration of the stressor. In fishes, acute and chronic stressors can incite a tertiary response, which involves physiological changes at the organismal level, thereby impacting growth rates, reproductive outputs or investments, and disease resistance. Virtually no studies to date have been conducted on the tertiary stress response in elasmobranchs. Given the diversity of elasmobranchs, additional studies that characterize the nature, magnitude, and consequences of physiological stress over a broad spectrum of stressors are essential for the development of conservation measures. Additional studies on the primary, secondary, and tertiary stress response in elasmobranchs are warranted, with particular emphasis on expanding the range of species and stressors examined. Future studies should move beyond simply studying the effects of known stressors and focus on the underlying physiological mechanisms. Such studies should include the coupling of stress indicators with quantifiable aspects of the stressor, which will allow researchers to test hypotheses on survivorship and, ultimately, derive models that effectively link physiology to mortality. Studies of this nature are essential for decision-making that will result in the effective management and conservation of these species.
Collapse
|
Review |
14 |
90 |
3
|
Estrada JA, Rice AN, Natanson LJ, Skomal GB. Use of isotopic analysis of vertebrae in reconstructing ontogenetic feeding ecology in white sharks. Ecology 2006; 87:829-34. [PMID: 16676526 DOI: 10.1890/0012-9658(2006)87[829:uoiaov]2.0.co;2] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We conducted stable 13C and 15N analysis on white shark vertebrae and demonstrated that incremental analysis of isotopes along the radius of a vertebral centrum produces a chronological record of dietary information, allowing for reconstruction of an individual's trophic history. Isotopic data showed significant enrichments in 15N with increasing sampling distance from the centrum center, indicating a correlation between body size and trophic level. Additionally, isotopic values verified two distinct ontogenetic trophic shifts in the white shark: one following parturition, marking a dietary switch from yolk to fish; and one at a total length of >341 cm, representing a known diet shift from fish to marine mammals. Retrospective trophic-level reconstruction using vertebral tissue will have broad applications in future studies on the ecology of threatened, endangered, or extinct species to determine life-long feeding patterns, which would be impossible through other methods.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
84 |
4
|
Skomal GB, Zeeman SI, Chisholm JH, Summers EL, Walsh HJ, McMahon KW, Thorrold SR. Transequatorial migrations by basking sharks in the western Atlantic Ocean. Curr Biol 2009; 19:1019-22. [PMID: 19427211 DOI: 10.1016/j.cub.2009.04.019] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 04/08/2009] [Accepted: 04/09/2009] [Indexed: 10/20/2022]
Abstract
The world's second largest fish, the basking shark (Cetorhinus maximus), is broadly distributed in boreal to warm temperate latitudes of the Atlantic and Pacific oceans from shallow coastal waters to the open ocean. Previous satellite archival tagging in the North Atlantic has shown that basking sharks move seasonally, are often associated with productive frontal zones, and may make occasional dives to mesopelagic depths. However, basking sharks are thought to be restricted to temperate latitudes, and the extent to which they exploit deeper-water habitat remains enigmatic. Via satellite archival tags and a novel geolocation technique, we demonstrate here that basking sharks are seasonal migrants to mesopelagic tropical waters. Tagged sharks moved from temperate feeding areas off the coast of southern New England to the Bahamas, the Caribbean Sea, and onward to the coast of South America and into the Southern Hemisphere. When in these areas, basking sharks descended to mesopelagic depths and in some cases remained there for weeks to months at a time. Our results demonstrate that tropical waters are not a barrier to migratory connectivity for basking shark populations and highlight the need for global conservation efforts throughout the species range.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
16 |
79 |
5
|
Curtis TH, McCandless CT, Carlson JK, Skomal GB, Kohler NE, Natanson LJ, Burgess GH, Hoey JJ, Pratt HL. Seasonal distribution and historic trends in abundance of white sharks, Carcharodon carcharias, in the western North Atlantic Ocean. PLoS One 2014; 9:e99240. [PMID: 24918579 PMCID: PMC4053410 DOI: 10.1371/journal.pone.0099240] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 05/12/2014] [Indexed: 11/18/2022] Open
Abstract
Despite recent advances in field research on white sharks (Carcharodon carcharias) in several regions around the world, opportunistic capture and sighting records remain the primary source of information on this species in the northwest Atlantic Ocean (NWA). Previous studies using limited datasets have suggested a precipitous decline in the abundance of white sharks from this region, but considerable uncertainty in these studies warrants additional investigation. This study builds upon previously published data combined with recent unpublished records and presents a synthesis of 649 confirmed white shark records from the NWA compiled over a 210-year period (1800-2010), resulting in the largest white shark dataset yet compiled from this region. These comprehensive records were used to update our understanding of their seasonal distribution, relative abundance trends, habitat use, and fisheries interactions. All life stages were present in continental shelf waters year-round, but median latitude of white shark occurrence varied seasonally. White sharks primarily occurred between Massachusetts and New Jersey during summer and off Florida during winter, with broad distribution along the coast during spring and fall. The majority of fishing gear interactions occurred with rod and reel, longline, and gillnet gears. Historic abundance trends from multiple sources support a significant decline in white shark abundance in the 1970s and 1980s, but there have been apparent increases in abundance since the 1990s when a variety of conservation measures were implemented. Though the white shark's inherent vulnerability to exploitation warrants continued protections, our results suggest a more optimistic outlook for the recovery of this iconic predator in the Atlantic.
Collapse
|
Journal Article |
11 |
59 |
6
|
Brooks EJ, Mandelman JW, Sloman KA, Liss S, Danylchuk AJ, Cooke SJ, Skomal GB, Philipp DP, Sims DW, Suski CD. The physiological response of the Caribbean reef shark (Carcharhinus perezi) to longline capture. Comp Biochem Physiol A Mol Integr Physiol 2011; 162:94-100. [PMID: 21601646 DOI: 10.1016/j.cbpa.2011.04.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 04/21/2011] [Accepted: 04/25/2011] [Indexed: 10/18/2022]
Abstract
Longline fishing is the most common elasmobranch capture method around the world, yet the physiological consequences of this technique are poorly understood. To quantify the sub-lethal effects of longline capture in the commonly exploited Caribbean reef shark (Carcharhinus perezi), 37 individuals were captured using standard, mid-water longlines. Hook timers provided hooking duration to the nearest minute. Once sharks were landed, blood samples were taken and used to measure a suite of physiological parameters. Control data were obtained by sampling an additional three unrestrained Caribbean reef sharks underwater at an established shark feeding site. The greatest level of physiological disruption occurred after 120-180min of hooking, whereas sharks exposed to minimal and maximal hook durations exhibited the least disturbed blood chemistry. Significant relationships were established between hooking duration and blood pH, pCO(2), lactate, glucose, plasma calcium and plasma potassium. Longline capture appears more benign than other methods assessed to date, causing a shift in the stress response from acute at the onset of capture to a sub-acute regime as the capture event progresses, apparently facilitating a degree of physiological recovery. Continued investigation into the physiological response of elasmobranchs to longline capture is vital for the effective management of such fisheries.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
51 |
7
|
MacNeil MA, McMeans BC, Hussey NE, Vecsei P, Svavarsson J, Kovacs KM, Lydersen C, Treble MA, Skomal GB, Ramsey M, Fisk AT. Biology of the Greenland shark Somniosus microcephalus. JOURNAL OF FISH BIOLOGY 2012; 80:991-1018. [PMID: 22497371 DOI: 10.1111/j.1095-8649.2012.03257.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Greenland shark Somniosus microcephalus is a potentially important yet poorly studied cold-water species inhabiting the North Atlantic and Arctic Oceans. Broad-scale changes in the Arctic ecosystem as a consequence of climate change have led to increased attention on trophic dynamics and the role of potential apex predators such as S. microcephalus in the structure of Arctic marine food webs. Although Nordic and Inuit populations have caught S. microcephalus for centuries, the species is of limited commercial interest among modern industrial fisheries. Here, the limited historical information available on S. microcephalus occurrence and ecology is reviewed and new catch, biological and life-history information from the Arctic and North Atlantic Ocean region is provided. Given the considerable by-catch rates in high North Atlantic Ocean latitudes it is suggested that S. microcephalus is an abundant predator that plays an important, yet unrecognized, role in Arctic marine ecosystems. Slow growth and large pup sizes, however, may make S. microcephalus vulnerable to increased fishing pressure in a warming Arctic environment.
Collapse
|
Review |
13 |
47 |
8
|
Berumen ML, Braun CD, Cochran JEM, Skomal GB, Thorrold SR. Movement patterns of juvenile whale sharks tagged at an aggregation site in the Red Sea. PLoS One 2014; 9:e103536. [PMID: 25076407 PMCID: PMC4116204 DOI: 10.1371/journal.pone.0103536] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 07/01/2014] [Indexed: 11/18/2022] Open
Abstract
Conservation efforts aimed at the whale shark, Rhincodon typus, remain limited by a lack of basic information on most aspects of its ecology, including global population structure, population sizes and movement patterns. Here we report on the movements of 47 Red Sea whale sharks fitted with three types of satellite transmitting tags from 2009-2011. Most of these sharks were tagged at a single aggregation site near Al-Lith, on the central coast of the Saudi Arabian Red Sea. Individuals encountered at this site were all juveniles based on size estimates ranging from 2.5-7 m total length with a sex ratio of approximately 1∶1. All other known aggregation sites for juvenile whale sharks are dominated by males. Results from tagging efforts showed that most individuals remained in the southern Red Sea and that some sharks returned to the same location in subsequent years. Diving data were recorded by 37 tags, revealing frequent deep dives to at least 500 m and as deep as 1360 m. The unique temperature-depth profiles of the Red Sea confirmed that several whale sharks moved out of the Red Sea while tagged. The wide-ranging horizontal movements of these individuals highlight the need for multinational, cooperative efforts to conserve R. typus populations in the Red Sea and Indian Ocean.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
11 |
47 |
9
|
Thorrold SR, Afonso P, Fontes J, Braun CD, Santos RS, Skomal GB, Berumen ML. Extreme diving behaviour in devil rays links surface waters and the deep ocean. Nat Commun 2014; 5:4274. [PMID: 24983949 PMCID: PMC4102113 DOI: 10.1038/ncomms5274] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 06/02/2014] [Indexed: 11/26/2022] Open
Abstract
Ecological connections between surface waters and the deep ocean remain poorly studied despite the high biomass of fishes and squids residing at depths beyond the euphotic zone. These animals likely support pelagic food webs containing a suite of predators that include commercially important fishes and marine mammals. Here we deploy pop-up satellite archival transmitting tags on 15 Chilean devil rays (Mobula tarapacana) in the central North Atlantic Ocean, which provide movement patterns of individuals for up to 9 months. Devil rays were considered surface dwellers but our data reveal individuals descending at speeds up to 6.0 m s(-1) to depths of almost 2,000 m and water temperatures <4 °C. The shape of the dive profiles suggests that the rays are foraging at these depths in deep scattering layers. Our results provide evidence of an important link between predators in the surface ocean and forage species occupying pelagic habitats below the euphotic zone in ocean ecosystems.
Collapse
|
research-article |
11 |
45 |
10
|
Marshall H, Field L, Afiadata A, Sepulveda C, Skomal G, Bernal D. Hematological indicators of stress in longline-captured sharks. Comp Biochem Physiol A Mol Integr Physiol 2012; 162:121-9. [PMID: 22353217 DOI: 10.1016/j.cbpa.2012.02.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2011] [Revised: 02/02/2012] [Accepted: 02/07/2012] [Indexed: 11/15/2022]
Abstract
For many shark species, little information exists about the stress response to capture and release in commercial longline fisheries. Recent studies have used hematological profiling to assess the secondary stress response, but little is known about how, and to what degree, these indicators vary interspecifically. Moreover, there is little understanding of the extent to which the level of relative swimming activity (e.g., sluggish vs. active) or the general ecological classification (e.g., coastal vs. pelagic) correlates to the magnitude of the exercise-induced (capture-related) stress response. This study compared plasma electrolytes (Na(+), Cl(-), Mg(2+), Ca(2+), and K(+)), metabolites (glucose and lactate), blood hematocrit, and heat shock protein (Hsp70) levels between 11 species of longline-captured sharks (n=164). Statistical comparison of hematological parameters revealed species-specific differences in response to longline capture, as well as differences by ecological classification. Taken together, the blood properties of longline-captured sharks appear to be useful indicators of interspecific variation in the secondary stress response to capture, and may prove useful in the future for predicting survivorship of longline-captured sharks where new technologies (i.e., pop-up satellite tags) can verify post-release mortality.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
44 |
11
|
Braun CD, Skomal GB, Thorrold SR, Berumen ML. Diving behavior of the reef manta ray links coral reefs with adjacent deep pelagic habitats. PLoS One 2014; 9:e88170. [PMID: 24516605 PMCID: PMC3916408 DOI: 10.1371/journal.pone.0088170] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 01/05/2014] [Indexed: 11/18/2022] Open
Abstract
Recent successful efforts to increase protection for manta rays has highlighted the lack of basic ecological information, including vertical and horizontal movement patterns, available for these species. We deployed pop-up satellite archival transmitting tags on nine reef manta rays, Manta alfredi, to determine diving behaviors and vertical habitat use. Transmitted and archived data were obtained from seven tagged mantas over deployment periods of 102–188 days, including three recovered tags containing 2.6 million depth, temperature, and light level data points collected every 10 or 15 seconds. Mantas frequented the upper 10 m during daylight hours and tended to occupy deeper water throughout the night. Six of the seven individuals performed a cumulative 76 deep dives (>150 m) with one individual reaching 432 m, extending the known depth range of this coastal, reef-oriented species and confirming its role as an ecological link between epipelagic and mesopelagic habitats. Mean vertical velocities calculated from high-resolution dive data (62 dives >150 m) from three individuals suggested that mantas may use gliding behavior during travel and that this behavior may prove more efficient than continuous horizontal swimming. The behaviors in this study indicate manta rays provide a previously unknown link between the epi- and mesopelagic layers of an extremely oligotrophic marine environment and provide evidence of a third marine species that utilizes gliding to maximize movement efficiency.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
11 |
33 |
12
|
Haulsee DE, Fox DA, Breece MW, Brown LM, Kneebone J, Skomal GB, Oliver MJ. Social Network Analysis Reveals Potential Fission-Fusion Behavior in a Shark. Sci Rep 2016; 6:34087. [PMID: 27686155 PMCID: PMC5043177 DOI: 10.1038/srep34087] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 09/05/2016] [Indexed: 11/09/2022] Open
Abstract
Complex social networks and behaviors are difficult to observe for free-living marine species, especially those that move great distances. Using implanted acoustic transceivers to study the inter- and intraspecific interactions of sand tiger sharks Carcharias taurus, we observed group behavior that has historically been associated with higher order mammals. We found evidence strongly suggestive of fission-fusion behavior, or changes in group size and composition of sand tigers, related to five behavioral modes (summering, south migration, community bottleneck, dispersal, north migration). Our study shows sexually dimorphic behavior during migration, in addition to presenting evidence of a potential solitary phase for these typically gregarious sharks. Sand tigers spent up to 95 consecutive and 335 cumulative hours together, with the strongest relationships occurring between males. Species that exhibit fission-fusion group dynamics pose a particularly challenging issue for conservation and management because changes in group size and composition affect population estimates and amplify anthropogenic impacts.
Collapse
|
Journal Article |
9 |
20 |
13
|
Cochran JEM, Hardenstine RS, Braun CD, Skomal GB, Thorrold SR, Xu K, Genton MG, Berumen ML. Population structure of a whale shark Rhincodon typus aggregation in the Red Sea. JOURNAL OF FISH BIOLOGY 2016; 89:1570-1582. [PMID: 27401632 DOI: 10.1111/jfb.13054] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 04/28/2016] [Indexed: 06/06/2023]
Abstract
The presence of whale sharks Rhincodon typus were recorded around Shib Habil, a small, coastal reef off the Red Sea coast of Saudi Arabia, from 2010 to 2015. A total of 267 suitable photographs resulting in the identification of 136 individuals, were documented from 305 encounters. Sharks were divided evenly between the sexes with no evidence of temporal or spatial segregation. All individuals were immature based on size estimates and, for males, juvenile clasper morphology. Scars were reported for 57% of R. typus with 15% showing evidence of propeller trauma. Estimates of population size and patterns of residency were calculated by modelling the lagged identification rate. Multiple models were run simultaneously and compared using the Akaike information criterion. An open population model was found to best represent the data and estimates a daily abundance between 15 and 34 R. typus during the aggregation season, with local residence times ranging from 4 to 44 days. Residence times away from Shib Habil range from 15 to 156 days with a permanent emigration-death rate between 0·07 and 0·58 individuals year(-1) . These results are broadly similar to those from other aggregations of R. typus, although the observed sexual parity and integration found at this site is unique for the species and needs further study.
Collapse
|
|
9 |
14 |
14
|
Cochran JEM, Braun CD, Cagua EF, Campbell MF, Hardenstine RS, Kattan A, Priest MA, Sinclair-Taylor TH, Skomal GB, Sultan S, Sun L, Thorrold SR, Berumen ML. Multi-method assessment of whale shark (Rhincodon typus) residency, distribution, and dispersal behavior at an aggregation site in the Red Sea. PLoS One 2019; 14:e0222285. [PMID: 31498848 PMCID: PMC6733483 DOI: 10.1371/journal.pone.0222285] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 08/25/2019] [Indexed: 11/29/2022] Open
Abstract
Whale sharks (Rhincodon typus) are typically dispersed throughout their circumtropical range, but the species is also known to aggregate in specific coastal areas. Accurate site descriptions associated with these aggregations are essential for the conservation of R. typus, an Endangered species. Although aggregations have become valuable hubs for research, most site descriptions rely heavily on sightings data. In the present study, visual census, passive acoustic monitoring, and long range satellite telemetry were combined to track the movements of R. typus from Shib Habil, a reef-associated aggregation site in the Red Sea. An array of 63 receiver stations was used to record the presence of 84 acoustically tagged sharks (35 females, 37 males, 12 undetermined) from April 2010 to May 2016. Over the same period, identification photos were taken for 76 of these tagged individuals and 38 were fitted with satellite transmitters. In total of 37,461 acoustic detections, 210 visual encounters, and 33 satellite tracks were analyzed to describe the sharks’ movement ecology. The results demonstrate that the aggregation is seasonal, mostly concentrated on the exposed side of Shib Habil, and seems to attract sharks of both sexes in roughly equal numbers. The combined methodologies also tracked 15 interannual homing-migrations, demonstrating that many sharks leave the area before returning in later years. When compared to acoustic studies from other aggregations, these results demonstrate that R. typus exhibits diverse, site-specific ecologies across its range. Sightings-independent data from acoustic telemetry and other sources are an effective means of validating more common visual surveys.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
6 |
14 |
15
|
Andrzejaczek S, Lucas TC, Goodman MC, Hussey NE, Armstrong AJ, Carlisle A, Coffey DM, Gleiss AC, Huveneers C, Jacoby DMP, Meekan MG, Mourier J, Peel LR, Abrantes K, Afonso AS, Ajemian MJ, Anderson BN, Anderson SD, Araujo G, Armstrong AO, Bach P, Barnett A, Bennett MB, Bezerra NA, Bonfil R, Boustany AM, Bowlby HD, Branco I, Braun CD, Brooks EJ, Brown J, Burke PJ, Butcher P, Castleton M, Chapple TK, Chateau O, Clarke M, Coelho R, Cortes E, Couturier LIE, Cowley PD, Croll DA, Cuevas JM, Curtis TH, Dagorn L, Dale JJ, Daly R, Dewar H, Doherty PD, Domingo A, Dove ADM, Drew M, Dudgeon CL, Duffy CAJ, Elliott RG, Ellis JR, Erdmann MV, Farrugia TJ, Ferreira LC, Ferretti F, Filmalter JD, Finucci B, Fischer C, Fitzpatrick R, Forget F, Forsberg K, Francis MP, Franks BR, Gallagher AJ, Galvan-Magana F, García ML, Gaston TF, Gillanders BM, Gollock MJ, Green JR, Green S, Griffiths CA, Hammerschlag N, Hasan A, Hawkes LA, Hazin F, Heard M, Hearn A, Hedges KJ, Henderson SM, Holdsworth J, Holland KN, Howey LA, Hueter RE, Humphries NE, Hutchinson M, Jaine FRA, Jorgensen SJ, Kanive PE, Labaja J, Lana FO, Lassauce H, Lipscombe RS, Llewellyn F, Macena BCL, et alAndrzejaczek S, Lucas TC, Goodman MC, Hussey NE, Armstrong AJ, Carlisle A, Coffey DM, Gleiss AC, Huveneers C, Jacoby DMP, Meekan MG, Mourier J, Peel LR, Abrantes K, Afonso AS, Ajemian MJ, Anderson BN, Anderson SD, Araujo G, Armstrong AO, Bach P, Barnett A, Bennett MB, Bezerra NA, Bonfil R, Boustany AM, Bowlby HD, Branco I, Braun CD, Brooks EJ, Brown J, Burke PJ, Butcher P, Castleton M, Chapple TK, Chateau O, Clarke M, Coelho R, Cortes E, Couturier LIE, Cowley PD, Croll DA, Cuevas JM, Curtis TH, Dagorn L, Dale JJ, Daly R, Dewar H, Doherty PD, Domingo A, Dove ADM, Drew M, Dudgeon CL, Duffy CAJ, Elliott RG, Ellis JR, Erdmann MV, Farrugia TJ, Ferreira LC, Ferretti F, Filmalter JD, Finucci B, Fischer C, Fitzpatrick R, Forget F, Forsberg K, Francis MP, Franks BR, Gallagher AJ, Galvan-Magana F, García ML, Gaston TF, Gillanders BM, Gollock MJ, Green JR, Green S, Griffiths CA, Hammerschlag N, Hasan A, Hawkes LA, Hazin F, Heard M, Hearn A, Hedges KJ, Henderson SM, Holdsworth J, Holland KN, Howey LA, Hueter RE, Humphries NE, Hutchinson M, Jaine FRA, Jorgensen SJ, Kanive PE, Labaja J, Lana FO, Lassauce H, Lipscombe RS, Llewellyn F, Macena BCL, Mambrasar R, McAllister JD, McCully Phillips SR, McGregor F, McMillan MN, McNaughton LM, Mendonça SA, Meyer CG, Meyers M, Mohan JA, Montgomery JC, Mucientes G, Musyl MK, Nasby-Lucas N, Natanson LJ, O’Sullivan JB, Oliveira P, Papastamtiou YP, Patterson TA, Pierce SJ, Queiroz N, Radford CA, Richardson AJ, Richardson AJ, Righton D, Rohner CA, Royer MA, Saunders RA, Schaber M, Schallert RJ, Scholl MC, Seitz AC, Semmens JM, Setyawan E, Shea BD, Shidqi RA, Shillinger GL, Shipley ON, Shivji MS, Sianipar AB, Silva JF, Sims DW, Skomal GB, Sousa LL, Southall EJ, Spaet JLY, Stehfest KM, Stevens G, Stewart JD, Sulikowski JA, Syakurachman I, Thorrold SR, Thums M, Tickler D, Tolloti MT, Townsend KA, Travassos P, Tyminski JP, Vaudo JJ, Veras D, Wantiez L, Weber SB, Wells RD, Weng KC, Wetherbee BM, Williamson JE, Witt MJ, Wright S, Zilliacus K, Block BA, Curnick DJ. Diving into the vertical dimension of elasmobranch movement ecology. SCIENCE ADVANCES 2022; 8:eabo1754. [PMID: 35984887 PMCID: PMC9390984 DOI: 10.1126/sciadv.abo1754] [Show More Authors] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements.
Collapse
|
research-article |
3 |
12 |
16
|
Skomal GB, Hoyos-Padilla EM, Kukulya A, Stokey R. Subsurface observations of white shark Carcharodon carcharias predatory behaviour using an autonomous underwater vehicle. JOURNAL OF FISH BIOLOGY 2015; 87:1293-1312. [PMID: 26709209 DOI: 10.1111/jfb.12828] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 09/30/2015] [Indexed: 06/05/2023]
Abstract
In this study, an autonomous underwater vehicle (AUV) was used to test this technology as a viable tool for directly observing the behaviour of marine animals and to investigate the behaviour, habitat use and feeding ecology of white sharks Carcharodon carcharias near Guadalupe Island off the coast of Mexico. During the period 31 October to 7 November 2013, six AUV missions were conducted to track one male and three female C. carcharias, ranging in estimated total length (LT ) from 3·9 to 5·7 m, off the north-east coast of Guadalupe Island. In doing so, the AUV generated over 13 h of behavioural data for C. carcharias at depths down to 90 m. The sharks remained in the area for the duration of each mission and moved through broad depth and temperature ranges from the surface to 163·8 m depth (mean ± S.D. = 112·5 ± 40·3 m) and 7·9-27·1° C (mean ± S.D. = 12·7 ± 2·9° C), respectively. Video footage and AUV sensor data revealed that two of the C. carcharias being tracked and eight other C. carcharias in the area approached (n = 17), bumped (n = 4) and bit (n = 9) the AUV during these tracks. This study demonstrated that an AUV can be used to effectively track and observe the behaviour of a large pelagic animal, C. carcharias. In doing so, the first observations of subsurface predatory behaviour were generated for this species. At its current state of development, this technology clearly offers a new and innovative tool for tracking the fine-scale behaviour of marine animals.
Collapse
|
|
10 |
10 |
17
|
Griffin LP, Casselberry GA, Lowerre-Barbieri SK, Acosta A, Adams AJ, Cooke SJ, Filous A, Friess C, Guttridge TL, Hammerschlag N, Heim V, Morley D, Rider MJ, Skomal GB, Smukall MJ, Danylchuk AJ, Brownscombe JW. Predator-prey landscapes of large sharks and game fishes in the Florida Keys. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e2584. [PMID: 35333436 DOI: 10.1002/eap.2584] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 06/24/2021] [Indexed: 06/14/2023]
Abstract
Interspecific interactions can play an essential role in shaping wildlife populations and communities. To date, assessments of interspecific interactions, and more specifically predator-prey dynamics, in aquatic systems over broad spatial and temporal scales (i.e., hundreds of kilometers and multiple years) are rare due to constraints on our abilities to measure effectively at those scales. We applied new methods to identify space-use overlap and potential predation risk to Atlantic tarpon (Megalops atlanticus) and permit (Trachinotus falcatus) from two known predators, great hammerhead (Sphyrna mokarran) and bull (Carcharhinus leucas) sharks, over a 3-year period using acoustic telemetry in the coastal region of the Florida Keys (USA). By examining spatiotemporal overlap, as well as the timing and order of arrival at specific locations compared to random chance, we show that potential predation risk from great hammerhead and bull sharks to Atlantic tarpon and permit are heterogeneous across the Florida Keys. Additionally, we find that predator encounter rates with these game fishes are elevated at specific locations and times, including a prespawning aggregation site in the case of Atlantic tarpon. Further, using machine learning algorithms, we identify environmental variability in overlap between predators and their potential prey, including location, habitat, time of year, lunar cycle, depth, and water temperature. These predator-prey landscapes provide insights into fundamental ecosystem function and biological conservation, especially in the context of emerging fishery-related depredation issues in coastal marine ecosystems.
Collapse
|
|
3 |
5 |
18
|
Winton MV, Sulikowski J, Skomal GB. Fine-scale vertical habitat use of white sharks at an emerging aggregation site and implications for public safety. WILDLIFE RESEARCH 2021. [DOI: 10.1071/wr20029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Abstract
ContextOver the past decade, the coastal waters off Cape Cod, Massachusetts, have emerged as the only known aggregation site for the white shark (Carcharodon carcharias) in the western North Atlantic. During periods of seasonal residency, white sharks patrol the shoreline in search of pinniped prey, bringing them in close proximity to popular beaches where people recreate.
AimTo examine whether white sharks off Cape Cod are more likely to occupy shallow depths (and consequently more likely to overlap with recreational water users) under certain conditions.
MethodsWe deployed short-term, pop-up satellite archival transmitting (PSAT) tags and acoustic transmitters on 14 subadult and adult white sharks off the coast of Cape Cod during the summer and fall of 2017. PSAT tags provided fine-scale depth and temperature data, which were combined with high-resolution location data obtained from an acoustic telemetry array, to identify the depth and temperature preferences of white sharks when resident in the area.
Key resultsSharks spent the majority (95%) of tracked time at depths of 0–31m and at temperatures from 8.9°C to 20.7°C. During resident periods along Cape Cod, individuals spent almost half (47%) of their time at depths of less than 4.5m, but made frequent excursions to mid-shelf depths, alternating between the surf zone and deeper offshore waters. Sharks were slightly more likely to occupy shallow depths at night during the new moon. The relationship between shark depth and lunar phase varied over the course of the day, suggesting the mechanism underlying lunar effects differs among diel periods.
ConclusionsAlthough the overall risk posed to humans by white sharks is low, there is a high potential for overlap between white sharks and recreational water users off Cape Cod. The risk of interaction may be slightly higher during periods when local environmental conditions favour the species’ predatory stealth by influencing prey behaviour or detectability.
ImplicationsThis study provides the first glimpse into the fine-scale vertical habitat use of white sharks off Cape Cod, which can be used to better understand the risk to recreational water users and to inform public safety practices.
Collapse
|
|
4 |
3 |
19
|
Hardenstine RS, He S, Cochran JEM, Braun CD, Cagua EF, Pierce SJ, Prebble CEM, Rohner CA, Saenz‐Angudelo P, Sinclair‐Taylor TH, Skomal GB, Thorrold SR, Watts AM, Zakroff CJ, Berumen ML. Pieces in a global puzzle: Population genetics at two whale shark aggregations in the western Indian Ocean. Ecol Evol 2022; 12:e8492. [PMID: 35127024 PMCID: PMC8796955 DOI: 10.1002/ece3.8492] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 10/30/2021] [Accepted: 11/10/2021] [Indexed: 02/01/2023] Open
Abstract
The whale shark Rhincodon typus is found throughout the world's tropical and warm-temperate ocean basins. Despite their broad physical distribution, research on the species has been concentrated at a few aggregation sites. Comparing DNA sequences from sharks at different sites can provide a demographically neutral understanding of the whale shark's global ecology. Here, we created genetic profiles for 84 whale sharks from the Saudi Arabian Red Sea and 72 individuals from the coast of Tanzania using a combination of microsatellite and mitochondrial sequences. These two sites, separated by approximately 4500 km (shortest over-water distance), exhibit markedly different population demographics and behavioral ecologies. Eleven microsatellite DNA markers revealed that the two aggregation sites have similar levels of allelic richness and appear to be derived from the same source population. We sequenced the mitochondrial control region to produce multiple global haplotype networks (based on different alignment methodologies) that were broadly similar to each other in terms of population structure but suggested different demographic histories. Data from both microsatellite and mitochondrial markers demonstrated the stability of genetic diversity within the Saudi Arabian aggregation site throughout the sampling period. These results contrast previously measured declines in diversity at Ningaloo Reef, Western Australia. Mapping the geographic distribution of whale shark lineages provides insight into the species' connectivity and can be used to direct management efforts at both local and global scales. Similarly, understanding historical fluctuations in whale shark abundance provides a baseline by which to assess current trends. Continued development of new sequencing methods and the incorporation of genomic data could lead to considerable advances in the scientific understanding of whale shark population ecology and corresponding improvements to conservation policy.
Collapse
|
research-article |
3 |
3 |
20
|
Verkamp HJ, Skomal G, Winton M, Sulikowski JA. Using reproductive hormone concentrations from the muscle of white sharks Carcharodon carcharias to evaluate reproductive status in the Northwest Atlantic Ocean. ENDANGER SPECIES RES 2021. [DOI: 10.3354/esr01109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Novel, non-lethal approaches are needed to improve our current understanding of the reproductive biology and ecology of the white shark Carcharodon carcharias. Previous studies have demonstrated that concentrations of reproductive hormones in muscle tissue can be used as reliable indicators of reproductive status for many vertebrate species, including elasmobranchs. Here, we applied this method to assess the concentrations of testosterone (T) and estradiol (E2) in muscle biopsies from free-swimming white sharks at a known aggregation site off the coast of Cape Cod, Massachusetts (USA), in the Northwest Atlantic Ocean, to determine whether this technique could be used to evaluate the reproductive status of this species. A total of 14 muscle samples from 13 white sharks (7 males [1 sampled twice], 6 females), ranging in size from 3.3 to 4.2 m total length, were analyzed for this study. T and E2 were present in sufficient amounts to be quantified in 7 of the 8 (87.5%) male and 1 of the 6 (16.7%) female samples, respectively. As expected, most samples collected from immature individuals were below minimum detection thresholds. Hormone concentrations in males presumed to be adults were also generally low, suggesting these individuals were not actively producing sperm at the time of sample collection. Overall, the results herein are similar to those found in other species and indicate that concentrations of hormones in the skeletal muscle of subadult and adult white sharks can provide information on the reproductive status of individuals. This technique could have wide-ranging applications for the study of white shark reproduction in the future.
Collapse
|
|
4 |
1 |
21
|
Braun CD, Della Penna A, Arostegui MC, Afonso P, Berumen ML, Block BA, Brown CA, Fontes J, Furtado M, Gallagher AJ, Gaube P, Golet WJ, Kneebone J, Macena BCL, Mucientes G, Orbesen ES, Queiroz N, Shea BD, Schratwieser J, Sims DW, Skomal GB, Snodgrass D, Thorrold SR. Linking vertical movements of large pelagic predators with distribution patterns of biomass in the open ocean. Proc Natl Acad Sci U S A 2023; 120:e2306357120. [PMID: 38150462 PMCID: PMC10666118 DOI: 10.1073/pnas.2306357120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 09/23/2023] [Indexed: 12/29/2023] Open
Abstract
Many predator species make regular excursions from near-surface waters to the twilight (200 to 1,000 m) and midnight (1,000 to 3,000 m) zones of the deep pelagic ocean. While the occurrence of significant vertical movements into the deep ocean has evolved independently across taxonomic groups, the functional role(s) and ecological significance of these movements remain poorly understood. Here, we integrate results from satellite tagging efforts with model predictions of deep prey layers in the North Atlantic Ocean to determine whether prey distributions are correlated with vertical habitat use across 12 species of predators. Using 3D movement data for 344 individuals who traversed nearly 1.5 million km of pelagic ocean in [Formula: see text]42,000 d, we found that nearly every tagged predator frequented the twilight zone and many made regular trips to the midnight zone. Using a predictive model, we found clear alignment of predator depth use with the expected location of deep pelagic prey for at least half of the predator species. We compared high-resolution predator data with shipboard acoustics and selected representative matches that highlight the opportunities and challenges in the analysis and synthesis of these data. While not all observed behavior was consistent with estimated prey availability at depth, our results suggest that deep pelagic biomass likely has high ecological value for a suite of commercially important predators in the open ocean. Careful consideration of the disruption to ecosystem services provided by pelagic food webs is needed before the potential costs and benefits of proceeding with extractive activities in the deep ocean can be evaluated.
Collapse
|
research-article |
2 |
1 |
22
|
Williams LH, Anstett A, Bach Muñoz V, Chisholm J, Fallows C, Green JR, Higuera Rivas JE, Skomal G, Winton M, Hammerschlag N. Sharks as exfoliators: widespread chafing between marine organisms suggests an unexplored ecological role. Ecology 2021; 103:e03570. [PMID: 34709650 DOI: 10.1002/ecy.3570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/22/2021] [Accepted: 07/09/2021] [Indexed: 11/10/2022]
|
|
4 |
1 |
23
|
Braun CD, Arostegui MC, Farchadi N, Alexander M, Afonso P, Allyn A, Bograd SJ, Brodie S, Crear DP, Culhane EF, Curtis TH, Hazen EL, Kerney A, Lezama-Ochoa N, Mills KE, Pugh D, Queiroz N, Scott JD, Skomal GB, Sims DW, Thorrold SR, Welch H, Young-Morse R, Lewison RL. Building use-inspired species distribution models: Using multiple data types to examine and improve model performance. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2023; 33:e2893. [PMID: 37285072 DOI: 10.1002/eap.2893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/22/2023] [Indexed: 06/08/2023]
Abstract
Species distribution models (SDMs) are becoming an important tool for marine conservation and management. Yet while there is an increasing diversity and volume of marine biodiversity data for training SDMs, little practical guidance is available on how to leverage distinct data types to build robust models. We explored the effect of different data types on the fit, performance and predictive ability of SDMs by comparing models trained with four data types for a heavily exploited pelagic fish, the blue shark (Prionace glauca), in the Northwest Atlantic: two fishery dependent (conventional mark-recapture tags, fisheries observer records) and two fishery independent (satellite-linked electronic tags, pop-up archival tags). We found that all four data types can result in robust models, but differences among spatial predictions highlighted the need to consider ecological realism in model selection and interpretation regardless of data type. Differences among models were primarily attributed to biases in how each data type, and the associated representation of absences, sampled the environment and summarized the resulting species distributions. Outputs from model ensembles and a model trained on all pooled data both proved effective for combining inferences across data types and provided more ecologically realistic predictions than individual models. Our results provide valuable guidance for practitioners developing SDMs. With increasing access to diverse data sources, future work should further develop truly integrative modeling approaches that can explicitly leverage the strengths of individual data types while statistically accounting for limitations, such as sampling biases.
Collapse
|
|
2 |
|
24
|
Mandelman JW, Skomal GB. The physiological stress response in elasmobranch fishes: Selected papers from a symposium at the 26th annual meeting of the American Elasmobranch Society. Comp Biochem Physiol A Mol Integr Physiol 2012; 162:71-2. [DOI: 10.1016/j.cbpa.2012.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
|
13 |
|
25
|
Moore MJ, Lanagan TM, Wells RS, Kapit J, Barleycorn AA, Allen JB, Baird RW, Braun CD, Skomal GB, Thorrold SR. Development of single-pin, un-barbed, pole-tagging of free-swimming dolphins and sharks with satellite-linked transmitters. ANIMAL BIOTELEMETRY 2024; 12:6. [DOI: 10.1186/s40317-024-00364-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 04/02/2024] [Indexed: 01/05/2025]
Abstract
Abstract
Background
To tag large marine vertebrates, without the need to catch them, avoiding using barbs for tag retention, and precisely controlling tag location, the remote Tag Attachment Device on a pole (TADpole) was developed. This allows single-pin tags (Finmount, Wildlife Computers) to be attached to the dorsal fins of free-swimming large marine vertebrates.
Results
TADpole comprises a pole-mounted holster that carries a tag. It uses compressed air, and a micro-controller, to rapidly insert a stainless-steel pin through a corrodible metal retaining ring in the first tag attachment wing, the animal’s dorsal fin, and then a press fit Delrin retaining ring in the tag wing on the other side of the fin. Tagging only occurs when the trailing edge of the dorsal fin touches a trigger bar in the holster, ensuring optimal pin placement. It was developed using fins from cadavers, then trialed on briefly restrained coastal dolphins that could be followed in successive days and weeks, and then on free-swimming animals in the field. The latter showed very short touch/response intervals and highlighted the need for several iterative revisions of the pneumatic system. This resulted in reducing the total time from triggering to tag application to ~ 20 ms. Subsequent efforts expanded the TADpole’s applicability to sharks. One free-swimming Atlantic spotted dolphin, two white sharks, and one whale shark were then tagged using the TADpole.
Conclusions
Being able to tag free-swimming dolphins and sharks remotely and precisely with satellite-linked telemetry devices may contribute to solving conservation challenges. Sharks were easier to tag than dolphins. Dolphin touch-to-response times were 28 ms or less. Delphinid skin has unique polymodal axon bundles that project into the epidermis, perhaps a factor in their uniquely fast response, which is 10 × faster than humans. Their primary reaction to tagging is to abduct the flippers and roll the fin out of the TADpole holster. This device has the potential to deliver high-quality tag data from large vertebrates with dorsal fins without the stress and logistics associated with catch-and-release, and without the trauma of tags that use barbs for retention. It also collects a dorsal fin biopsy core.
Collapse
|
|
1 |
|