1
|
Helbok A, Rangger C, von Guggenberg E, Saba-Lepek M, Radolf T, Thurner G, Andreae F, Prassl R, Decristoforo C. Targeting properties of peptide-modified radiolabeled liposomal nanoparticles. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2011; 8:112-8. [PMID: 21645641 DOI: 10.1016/j.nano.2011.04.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 02/25/2011] [Accepted: 04/23/2011] [Indexed: 01/29/2023]
Abstract
UNLABELLED Radiolabeled PEGylated liposomal nanoparticles (NPs) open new possibilities for a variety of applications including diagnosis, drug delivery, targeted therapy, and monitoring treatment effects. Here we describe the characterization of liposomal NPs (liposomes and micelles) derivatized with the somatostatin analogue tyrosine-3-octreotide as a proof of concept for tumor targeting. NPs were radiolabeled with indium-111, and targeting properties were evaluated in vitro on rat pancreatic tumor cells (AR42J), demonstrating specific binding and IC(50) values in the low nanomolar range. Biodistribution studies were performed in Lewis rats and compared to single-photon emission computed tomography images. Moderate tumor uptake was found in xenografted nude mice (<2.5% ID/g tissue) as compared to control. Micelles and liposomes revealed comparable pharmacokinetics and targeting properties. This study provides insight into tumor-targeting characteristics of peptide-derivatized liposomal NPs and can serve as a basis for further improvement of these constructs. FROM THE CLINICAL EDITOR The authors investigated tumor-targeting characteristics of peptide-derivatized liposomal NPs. Similar radiolabeled PEGylated liposomal NPs open new possibilities for a variety of applications including diagnosis, drug delivery, targeted therapy, and treatment monitoring.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
28 |
2
|
Rangger C, Helbok A, von Guggenberg E, Sosabowski J, Radolf T, Prassl R, Andreae F, Thurner GC, Haubner R, Decristoforo C. Influence of PEGylation and RGD loading on the targeting properties of radiolabeled liposomal nanoparticles. Int J Nanomedicine 2012; 7:5889-900. [PMID: 23226020 PMCID: PMC3512544 DOI: 10.2147/ijn.s36847] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Purpose Liposomes have been proposed to be a means of selectively targeting cancer sites for diagnostic and therapeutic applications. The focus of this work was the evaluation of radiolabeled PEGylated liposomes derivatized with varying amounts of a cyclic arginyl–glycyl–aspartic acid (RGD) peptide. RGD peptides are known to bind to αvβ3 integrin receptors overexpressed during tumor-induced angiogenesis. Methods Several liposomal nanoparticles carrying the RGD peptide targeting sequence (RLPs) were synthesized using a combination of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, cholesterol, diethylenetriaminepentaacetic acid-derivatized lipids for radiolabeling, a polyethylene glycol (PEG) building block, and a lipid-based RGD building block. Relative amounts of RGD and PEG building blocks were varied. In vitro binding affinities were determined using isolated αvβ3 integrin receptors incubated with different concentrations of RLPs in competition with iodine-125-labeled cyclo-(-RGDyV-). Binding of the indium-111-labeled RLPs was also evaluated. Biodistribution and micro single photon emission computed tomography/computed tomography imaging studies were performed in nude mice using different tumor xenograft models. Results RLPs were labeled with indium-111 with high radiochemical yields. In vitro binding studies of RLPs with different RGD/PEG loading revealed good binding to isolated receptors, which was dependent on the extent of RGD and PEG loading. Binding increased with higher RGD loading, whereas reduced binding was found with higher PEG loading. Biodistribution showed increased circulating time for PEGylated RLPs, but no dependence on RGD loading. Both biodistribution and micro single photon emission computed tomography/computed tomography imaging studies revealed low, nonspecific tumor uptake values. Conclusion In this study, RLPs for targeting angiogenesis were described. Even though good binding to αvβ3 integrin receptors was found in vitro, the balance between PEGylation and RGD loading clearly requires optimization to achieve targeting in vivo. These data form the basis for future development and provide a platform for the investigation of multimodal approaches.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
26 |
3
|
Arnold CR, Abdelmoez A, Thurner G, Debbage P, Lukas P, Skvortsov S, Skvortsova II. Rac1 as a multifunctional therapeutic target to prevent and combat cancer metastasis. Oncoscience 2014; 1:513-521. [PMID: 25594058 PMCID: PMC4278326 DOI: 10.18632/oncoscience.74] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 08/20/2014] [Indexed: 12/25/2022] Open
Abstract
Metastatic progression of malignant tumors resistant to conventional therapeutic approaches is an ultimate challenge in clinical oncology. Despite the efforts of basic and clinical researchers, there is still no effective treatment schedule to prevent or combat metastatic spread of malignant tumors. This report presents recent findings that could help in the development of targeted therapeutics directed against the most aggressive and treatment-resistant carcinoma cells. It was demonstrated that HNSCC carcinoma cell lines with acquired treatment resistance possessed increased number of cells with carcinoma stem cell (CSC) properties. Furthermore, resistant cells were characterized by increased expression of Rac1, enhanced cell migration, and accelerated release of proangio- and vasculogenic factors (VEGF-A) and influence on endothelial cell (HMEC-1) migration. Inhibition of Rac1 signaling in the treatment-resistant carcinoma cells can interrupt metastatic process due to anoikis restoration and decrease of cell migration. It is also suggested that carcinoma cells with repressed survival capacities will be characterized by reduced release of proangiogenic factors, resulting in the decrease of endothelial cell migration. Therefore targeting of Rac1-related pathways may be considered as a promising therapeutic approach to prevent or combat metastatic lesions.
Collapse
|
Journal Article |
11 |
19 |
4
|
Stollenwerk MM, Pashkunova-Martic I, Kremser C, Talasz H, Thurner GC, Abdelmoez AA, Wallnöfer EA, Helbok A, Neuhauser E, Klammsteiner N, Klimaschewski L, von Guggenberg E, Fröhlich E, Keppler B, Jaschke W, Debbage P. Albumin-based nanoparticles as magnetic resonance contrast agents: I. Concept, first syntheses and characterisation. Histochem Cell Biol 2010; 133:375-404. [PMID: 20174817 DOI: 10.1007/s00418-010-0676-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2010] [Indexed: 11/25/2022]
Abstract
To develop a platform for molecular magnetic resonance imaging, we prepared gadolinium-bearing albumin-polylactic acid nanoparticles in the size range 20-40 nm diameter. Iterative cycles of design and testing upscaled the synthesis procedures to gram amounts for physicochemical characterisation and for pharmacokinetic testing. Morphological analyses showed that the nanoparticles were spheroidal with rough surfaces. Particle sizes were measured by direct transmission electron microscopical measurements from negatively contrasted preparations, and by use of photon correlation spectroscopy; the two methods each documented nanoparticle sizes less than 100 nm and generally 10-40 nm diameter, though with significant intrabatch and interbatch variability. The particles' charge sufficed to hold them in suspension. HSA retained its tertiary structure in the particles. The nanoparticles were stable against turbulent flow conditions and against heat, though not against detergents. MRI imaging of liquid columns was possible at nanoparticle concentrations below 10 mg/ml. The particles were non-cytotoxic, non-thrombogenic and non-immunogenic in a range of assay systems developed for toxicity testing of nanoparticles. They were micellar prior to lyophilisation, but loosely structured aggregated masses after lyophilisation and subsequent resuspension. These nanoparticles provide a platform for further development, based on non-toxic materials of low immunogenicity already in clinical use, not expensive, and synthesized using methods which can be upscaled for industrial production.
Collapse
|
|
15 |
15 |
5
|
Abdelmoez A, Coraça-Huber DC, Thurner GC, Debbage P, Lukas P, Skvortsov S, Skvortsova II. Screening and identification of molecular targets for cancer therapy. Cancer Lett 2017; 387:3-9. [DOI: 10.1016/j.canlet.2016.03.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 03/02/2016] [Accepted: 03/02/2016] [Indexed: 12/18/2022]
|
|
8 |
13 |
6
|
Thurner GC, Debbage P. Molecular imaging with nanoparticles: the dwarf actors revisited 10 years later. Histochem Cell Biol 2018; 150:733-794. [PMID: 30443735 PMCID: PMC6267421 DOI: 10.1007/s00418-018-1753-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2018] [Indexed: 11/14/2022]
Abstract
We explore present-day trends and challenges in nanomedicine. Creativity in the laboratories continues: the published literature on novel nanoparticles is now vast. Nanoagents are discussed here which are composed entirely of strongly photoluminescent materials, tunable to desired optical properties and of inherently low toxicity. We focus on "quantum nanoparticles" prepared from allotropes of carbon. The principles behind strong, tunable photoluminescence are quantum mechanical: we present them in simple outline. The major industries racing to develop these materials can offer significant technical guidance to nanomedicine, which could help to custom-design strongly signalling nanoagents specifically for stated clinical applications. Since such agents are small, they can be targeted easily, making active targeting possible. We consider it timely now to study the interactions nanoparticles undergo with tissue components in living animals and to learn to understand and overcome the numerous barriers the organism interposes between the blood and targets in or on parenchymal cells. As the near infra-red spectrum opens up, detection of glowing nanoparticles several centimeters deep in a living human subject becomes calculable and we present a simple way to do this. Finally, we discuss the slow-fuse and resource-inefficient entry of nanoparticles into clinical application. A first possible reason is failure to target across the body's barriers, see above. Second, in the sparse translational landscape funding and support gaps yawn widely between academic research and subsequent development. We consider the agendas of the numerous "stakeholders" participating in this sad landscape and point to some faint glimmers of hope for the future.
Collapse
|
Review |
7 |
10 |
7
|
Abdelmoez AA, Thurner GC, Wallnöfer EA, Klammsteiner N, Kremser C, Talasz H, Mrakovcic M, Fröhlich E, Jaschke W, Debbage P. Albumin-based nanoparticles as magnetic resonance contrast agents: II. Physicochemical characterisation of purified and standardised nanoparticles. Histochem Cell Biol 2010; 134:171-96. [PMID: 20628754 DOI: 10.1007/s00418-010-0726-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2010] [Indexed: 01/25/2023]
Abstract
We are developing a nanoparticulate histochemical reagent designed for histochemistry in living animals (molecular imaging), which should finally be useful in clinical imaging applications. The iterative development procedure employed involves conceptual design of the reagent, synthesis and testing of the reagent, then redesign based on data from the testing; each cycle of testing and development generates a new generation of nanoparticles, and this report describes the synthesis and testing of the third generation. The nanoparticles are based on human serum albumin and the imaging modality selected is magnetic resonance imaging (MRI). Testing the second particle generation with newly introduced techniques revealed the presence of impurities in the final product, therefore we replaced dialysis with diafiltration. We introduced further testing methods including thin layer chromatography, arsenazo III as chromogenic assay for gadolinium, and several versions of polyacrylamide gel electrophoresis, for physicochemical characterisation of the nanoparticles and intermediate synthesis compounds. The high grade of chemical purity achieved by combined application of these methodologies allowed standardised particle sizes to be achieved (low dispersities), and accurate measurement of critical physicochemical parameters influencing particle size and imaging properties. Regression plots confirmed the high purity and standardisation. The good degree of quantitative physicochemical characterisation aided our understanding of the nanoparticles and allowed a conceptual model of them to be prepared. Toxicological screening demonstrated the extremely low toxicity of the particles. The high magnetic resonance relaxivities and enhanced mechanical stability of the particles make them an excellent platform for the further development of MRI molecular imaging.
Collapse
|
Evaluation Study |
15 |
5 |
8
|
Thurner GC, Haybaeck J, Debbage P. Targeting Drug Delivery in the Elderly: Are Nanoparticles an Option for Treating Osteoporosis? Int J Mol Sci 2021; 22:8932. [PMID: 34445639 PMCID: PMC8396227 DOI: 10.3390/ijms22168932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 12/12/2022] Open
Abstract
Nanoparticles bearing specific targeting groups can, in principle, accumulate exclusively at lesion sites bearing target molecules, and release therapeutic agents there. However, practical application of targeted nanoparticles in the living organism presents challenges. In particular, intravasally applied nanoparticles encounter physical and physiological barriers located in blood vessel walls, blocking passage from the blood into tissue compartments. Whereas small molecules can pass out of the blood, nanoparticles are too large and need to utilize physiological carriers enabling passage across endothelial walls. The issues associated with crossing blood-tissue barriers have limited the usefulness of nanoparticles in clinical applications. However, nanoparticles do not encounter blood-tissue barriers if their targets are directly accessible from the blood. This review focuses on osteoporosis, a disabling and common disease for which therapeutic strategies are limited. The target sites for therapeutic agents in osteoporosis are located in bone resorption pits, and these are in immediate contact with the blood. There are specific targetable biomarkers within bone resorption pits. These present nanomedicine with the opportunity to treat a major disease by use of simple nanoparticles loaded with any of several available effective therapeutics that, at present, cannot be used due to their associated side effects.
Collapse
|
Review |
4 |
2 |
9
|
Legal H, Ruder H, Thurner G, Warmbein I. [Skeletal data of the healthy human hip joint. Mean values, fluctuations, relations]. ZEITSCHRIFT FUR ORTHOPADIE UND IHRE GRENZGEBIETE 1988; 126:589-95. [PMID: 3239181 DOI: 10.1055/s-2008-1044489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In order to perform a biomechanical analysis of the human hip joint and to delimit pathologic findings the skeletal data of the normal hip joint must be known. The individual values for characteristic geometric variables determined in 443 normal hip joints were statistically analyzed and graphically represented; the mean and standard deviation were also calculated. A correlation analysis of the individual characteristic geometric variables, and in particular also of loading and pressure, shows that the human hip joint must not be considered on the basis of isolated individual characteristic variables, but must be assessed as a function system comprising various parameters. This leads to all-important conclusions for routine practice as regards indications for surgery.
Collapse
|
English Abstract |
37 |
2 |
10
|
Wallnöfer EA, Thurner GC, Kremser C, Talasz H, Stollenwerk MM, Helbok A, Klammsteiner N, Albrecht-Schgoer K, Dietrich H, Jaschke W, Debbage P. Albumin-based nanoparticles as contrast medium for MRI: vascular imaging, tissue and cell interactions, and pharmacokinetics of second-generation nanoparticles. Histochem Cell Biol 2020; 155:19-73. [PMID: 33040183 DOI: 10.1007/s00418-020-01919-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2020] [Indexed: 12/14/2022]
Abstract
This multidisciplinary study examined the pharmacokinetics of nanoparticles based on albumin-DTPA-gadolinium chelates, testing the hypothesis that these nanoparticles create a stronger vessel signal than conventional gadolinium-based contrast agents and exploring if they are safe for clinical use. Nanoparticles based on human serum albumin, bearing gadolinium and designed for use in magnetic resonance imaging, were used to generate magnet resonance images (MRI) of the vascular system in rats ("blood pool imaging"). At the low nanoparticle doses used for radionuclide imaging, nanoparticle-associated metals were cleared from the blood into the liver during the first 4 h after nanoparticle application. At the higher doses required for MRI, the liver became saturated and kidney and spleen acted as additional sinks for the metals, and accounted for most processing of the nanoparticles. The multiple components of the nanoparticles were cleared independently of one another. Albumin was detected in liver, spleen, and kidneys for up to 2 days after intravenous injection. Gadolinium was retained in the liver, kidneys, and spleen in significant concentrations for much longer. Gadolinium was present as significant fractions of initial dose for longer than 2 weeks after application, and gadolinium clearance was only complete after 6 weeks. Our analysis could not account quantitatively for the full dose of gadolinium that was applied, but numerous organs were found to contain gadolinium in the collagen of their connective tissues. Multiple lines of evidence indicated intracellular processing opening the DTPA chelates and leading to gadolinium long-term storage, in particular inside lysosomes. Turnover of the stored gadolinium was found to occur in soluble form in the kidneys, the liver, and the colon for up to 3 weeks after application. Gadolinium overload poses a significant hazard due to the high toxicity of free gadolinium ions. We discuss the relevance of our findings to gadolinium-deposition diseases.
Collapse
|
Journal Article |
5 |
1 |
11
|
Thurner GC, Abdelmoez AA, Wallnoefer EA, Rohr I, Klammsteiner N, Talasz H, Kremser C, Jaschke W, Debbage P. MRI Molecular imaging with albumin nanoparticles: achievements and challenges. Int J Clin Pharmacol Ther 2011; 49:65-66. [PMID: 21176731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023] Open
|
|
14 |
|
12
|
Troger F, Kremser C, Pamminger M, Reinstadler SJ, Thurner GC, Henninger B, Klug G, Metzler B, Mayr A. Functional aortic valve area differs significantly between sexes: A phase-contrast cardiac MRI study in patients with severe aortic stenosis. IJC HEART & VASCULATURE 2024; 51:101357. [PMID: 38356930 PMCID: PMC10863308 DOI: 10.1016/j.ijcha.2024.101357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/16/2024]
Abstract
Background Aortic stenosis (AS) is one of the most prevalent valvular heart-diseases in Europe. Currently, diagnosis and classification are not sex-sensitive; however, due to a distinctly different natural history of AS, further investigations of sex-differences in AS-patients are needed. Thus, this study aimed to detect sex-differences in severe AS, especially concerning flow-patterns, via phase-contrast cardiac magnetic resonance imaging (PC-CMR). Methods Forty-four severe AS-patients (20 women, 45 % vs. 24 men, 55 %) with a median age of 72 years underwent transthoracic echocardiography (TTE), cardiac catheterization (CC) and CMR. Aortic valve area (AVA) and stroke volume (SV) were determined in all modalities, with CMR yielding geometrical AVA via cine-planimetry and functional AVA via PC-CMR, the latter being also used to examine flow-properties. Results Geometrical AVA showed no sex-differences (0.91 cm2, IQR: 0.61-1.14 vs. 0.94 cm2, IQR: 0.77-1.22, p = 0.322). However, functional AVA differed significantly between sexes in all three modalities (TTE: p = 0.044; CC/PC-CMR: p < 0.001). In men, no significant intermethodical biases in functional AVA-measurements between modalities were found (p = 0.278); yet, in women the particular measurements differed significantly (p < 0.001). Momentary flowrate showed sex-differences depending on momentary opening-degree (at 50 %, 75 % and 90 % of peak-AVA, all p < 0.001), with men showing higher flowrates with increasing opening-area. In women, flowrate did not differ between 75 % and 90 % of peak-AVA (p = 0.191). Conclusions In severe AS-patients, functional AVA showed marked sex-differences in all modalities, whilst geometrical AVA did not differ. Inter-methodical biases were negligible in men, but not in women. Lastly, significant sex-differences in flow-patterns fit in with the different pathogenesis of AS.
Collapse
|
research-article |
1 |
|
13
|
Wallnöfer EA, Thurner GC, Abdelmoez AA, Rohr I, Klammsteiner N, Talasz H, Kremser C, Jaschke W, Debbage P. MRI molecular imaging with nanoparticles: a technical platform for early diagnosis of cancer. Int J Clin Pharmacol Ther 2011; 49:73-74. [PMID: 21176735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023] Open
|
|
14 |
|