1
|
van Mierlo G, Veenstra GJC, Vermeulen M, Marks H. The Complexity of PRC2 Subcomplexes. Trends Cell Biol 2019; 29:660-671. [PMID: 31178244 DOI: 10.1016/j.tcb.2019.05.004] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/26/2019] [Accepted: 05/03/2019] [Indexed: 12/12/2022]
Abstract
Polycomb repressive complex 2 (PRC2) is a multisubunit protein complex essential for the development of multicellular organisms. Recruitment of PRC2 to target genes, followed by deposition and propagation of its catalytic product histone H3 lysine 27 trimethylation (H3K27me3), are key to the spatiotemporal control of developmental gene expression. Recent breakthrough studies have uncovered unexpected roles for substoichiometric PRC2 subunits in these processes. Here, we elaborate on how the facultative PRC2 subunits regulate catalytic activity, locus-specific PRC2 binding, and propagation of H3K27me3, and how this affects chromatin structure, gene expression, and cell fate.
Collapse
|
Review |
6 |
166 |
2
|
Perino M, van Mierlo G, Karemaker ID, van Genesen S, Vermeulen M, Marks H, van Heeringen SJ, Veenstra GJC. MTF2 recruits Polycomb Repressive Complex 2 by helical-shape-selective DNA binding. Nat Genet 2018; 50:1002-1010. [DOI: 10.1038/s41588-018-0134-8] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 04/06/2018] [Indexed: 01/09/2023]
|
|
7 |
135 |
3
|
Marks H, Kerstens HHD, Barakat TS, Splinter E, Dirks RAM, van Mierlo G, Joshi O, Wang SY, Babak T, Albers CA, Kalkan T, Smith A, Jouneau A, de Laat W, Gribnau J, Stunnenberg HG. Dynamics of gene silencing during X inactivation using allele-specific RNA-seq. Genome Biol 2015; 16:149. [PMID: 26235224 PMCID: PMC4546214 DOI: 10.1186/s13059-015-0698-x] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 06/18/2015] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND During early embryonic development, one of the two X chromosomes in mammalian female cells is inactivated to compensate for a potential imbalance in transcript levels with male cells, which contain a single X chromosome. Here, we use mouse female embryonic stem cells (ESCs) with non-random X chromosome inactivation (XCI) and polymorphic X chromosomes to study the dynamics of gene silencing over the inactive X chromosome by high-resolution allele-specific RNA-seq. RESULTS Induction of XCI by differentiation of female ESCs shows that genes proximal to the X-inactivation center are silenced earlier than distal genes, while lowly expressed genes show faster XCI dynamics than highly expressed genes. The active X chromosome shows a minor but significant increase in gene activity during differentiation, resulting in complete dosage compensation in differentiated cell types. Genes escaping XCI show little or no silencing during early propagation of XCI. Allele-specific RNA-seq of neural progenitor cells generated from the female ESCs identifies three regions distal to the X-inactivation center that escape XCI. These regions, which stably escape during propagation and maintenance of XCI, coincide with topologically associating domains (TADs) as present in the female ESCs. Also, the previously characterized gene clusters escaping XCI in human fibroblasts correlate with TADs. CONCLUSIONS The gene silencing observed during XCI provides further insight in the establishment of the repressive complex formed by the inactive X chromosome. The association of escape regions with TADs, in mouse and human, suggests that TADs are the primary targets during propagation of XCI over the X chromosome.
Collapse
|
research-article |
10 |
93 |
4
|
Neagu A, van Genderen E, Escudero I, Verwegen L, Kurek D, Lehmann J, Stel J, Dirks RAM, van Mierlo G, Maas A, Eleveld C, Ge Y, den Dekker AT, Brouwer RWW, van IJcken WFJ, Modic M, Drukker M, Jansen JH, Rivron NC, Baart EB, Marks H, ten Berge D. In vitro capture and characterization of embryonic rosette-stage pluripotency between naive and primed states. Nat Cell Biol 2020; 22:534-545. [DOI: 10.1038/s41556-020-0508-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 03/20/2020] [Indexed: 12/13/2022]
|
|
5 |
65 |
5
|
van Mierlo G, Jansen JRG, Wang J, Poser I, van Heeringen SJ, Vermeulen M. Predicting protein condensate formation using machine learning. Cell Rep 2021; 34:108705. [PMID: 33535034 DOI: 10.1016/j.celrep.2021.108705] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/19/2020] [Accepted: 01/08/2021] [Indexed: 01/01/2023] Open
Abstract
Membraneless organelles are liquid condensates, which form through liquid-liquid phase separation. Recent advances show that phase separation is essential for cellular homeostasis by regulating basic cellular processes, including transcription and signal transduction. The reported number of proteins with the capacity to mediate protein phase separation (PPS) is continuously growing. While computational tools for predicting PPS have been developed, obtaining a proteome-wide overview of PPS probabilities has remained challenging. Here, we present a phase separation analysis and prediction (PSAP) machine-learning classifier that, based solely on the amino acid content of a training set of known PPS proteins, can determine the phase separation likelihood for each protein in a given proteome. Through comparison with PPS databases, existing predictors, and experimental evidence, we demonstrate the validity and advantages of the PSAP classifier. We anticipate that the PSAP predictor provides a useful tool for future research aimed at identifying phase separating proteins in health and disease.
Collapse
|
Research Support, Non-U.S. Gov't |
4 |
57 |
6
|
van Muijlwijk GH, van Mierlo G, Jansen PW, Vermeulen M, Bleumink-Pluym NM, Palm NW, van Putten JP, de Zoete MR. Identification of Allobaculum mucolyticum as a novel human intestinal mucin degrader. Gut Microbes 2021; 13:1966278. [PMID: 34455931 PMCID: PMC8409761 DOI: 10.1080/19490976.2021.1966278] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 02/04/2023] Open
Abstract
The human gut microbiota plays a central role in intestinal health and disease. Yet, many of its bacterial constituents are functionally still largely unexplored. A crucial prerequisite for bacterial survival and proliferation is the creation and/or exploitation of an own niche. For many bacterial species that are linked to human disease, the inner mucus layer was found to be an important niche. Allobaculum mucolyticum is a newly identified, IBD-associated species that is thought be closely associated with the host epithelium. To explore how this bacterium is able to effectively colonize this niche, we screened its genome for factors that may contribute to mucosal colonization. Up to 60 genes encoding putative Carbohydrate Active Enzymes (CAZymes) were identified in the genome of A. mucolyticum. Mass spectrometry revealed 49 CAZymes of which 26 were significantly enriched in its secretome. Functional assays demonstrated the presence of CAZyme activity in A. mucolyticum conditioned medium, degradation of human mucin O-glycans, and utilization of liberated non-terminal monosaccharides for bacterial growth. The results support a model in which sialidases and fucosidases remove terminal O-glycan sugars enabling subsequent degradation and utilization of carbohydrates for A. mucolyticum growth. A. mucolyticum CAZyme secretion may thus facilitate bacterial colonization and degradation of the mucus layer and may pose an interesting target for future therapeutic intervention.
Collapse
|
research-article |
4 |
57 |
7
|
Santos-Barriopedro I, van Mierlo G, Vermeulen M. Off-the-shelf proximity biotinylation for interaction proteomics. Nat Commun 2021; 12:5015. [PMID: 34408139 PMCID: PMC8373943 DOI: 10.1038/s41467-021-25338-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/27/2021] [Indexed: 12/15/2022] Open
Abstract
Proximity biotinylation workflows typically require CRISPR-based genetic manipulation of target cells. To overcome this bottleneck, we fused the TurboID proximity biotinylation enzyme to Protein A. Upon target cell permeabilization, the ProtA-Turbo enzyme can be targeted to proteins or post-translational modifications of interest using bait-specific antibodies. Addition of biotin then triggers bait-proximal protein biotinylation. Biotinylated proteins can subsequently be enriched from crude lysates and identified by mass spectrometry. We demonstrate this workflow by targeting Emerin, H3K9me3 and BRG1. Amongst the main findings, our experiments reveal that the essential protein FLYWCH1 interacts with a subset of H3K9me3-marked (peri)centromeres in human cells. The ProtA-Turbo enzyme represents an off-the-shelf proximity biotinylation enzyme that facilitates proximity biotinylation experiments in primary cells and can be used to understand how proteins cooperate in vivo and how this contributes to cellular homeostasis and disease.
Collapse
|
Evaluation Study |
4 |
30 |
8
|
Valverde JM, Dubra G, Phillips M, Haider A, Elena-Real C, Fournet A, Alghoul E, Chahar D, Andrés-Sanchez N, Paloni M, Bernadó P, van Mierlo G, Vermeulen M, van den Toorn H, Heck AJR, Constantinou A, Barducci A, Ghosh K, Sibille N, Knipscheer P, Krasinska L, Fisher D, Altelaar M. A cyclin-dependent kinase-mediated phosphorylation switch of disordered protein condensation. Nat Commun 2023; 14:6316. [PMID: 37813838 PMCID: PMC10562473 DOI: 10.1038/s41467-023-42049-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/28/2023] [Indexed: 10/11/2023] Open
Abstract
Cell cycle transitions result from global changes in protein phosphorylation states triggered by cyclin-dependent kinases (CDKs). To understand how this complexity produces an ordered and rapid cellular reorganisation, we generated a high-resolution map of changing phosphosites throughout unperturbed early cell cycles in single Xenopus embryos, derived the emergent principles through systems biology analysis, and tested them by biophysical modelling and biochemical experiments. We found that most dynamic phosphosites share two key characteristics: they occur on highly disordered proteins that localise to membraneless organelles, and are CDK targets. Furthermore, CDK-mediated multisite phosphorylation can switch homotypic interactions of such proteins between favourable and inhibitory modes for biomolecular condensate formation. These results provide insight into the molecular mechanisms and kinetics of mitotic cellular reorganisation.
Collapse
|
Research Support, N.I.H., Extramural |
2 |
15 |
9
|
Perino M, van Mierlo G, Loh C, Wardle SMT, Zijlmans DW, Marks H, Veenstra GJC. Two Functional Axes of Feedback-Enforced PRC2 Recruitment in Mouse Embryonic Stem Cells. Stem Cell Reports 2020; 15:1287-1300. [PMID: 32763159 PMCID: PMC7724473 DOI: 10.1016/j.stemcr.2020.07.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/22/2022] Open
Abstract
Polycomb Repressive Complex 2 (PRC2) plays an essential role in gene repression during development, catalyzing H3 lysine 27 trimethylation (H3K27me3). MTF2 in the PRC2.1 sub-complex, and JARID2 in PRC2.2, are central in core PRC2 recruitment to target genes in mouse embryonic stem cells (mESCs). To investigate how PRC2.1 and PRC2.2 cooperate, we combined Polycomb mutant mESCs with chemical inhibition of binding to H3K27me3. We find that PRC2.1 and PRC2.2 mediate two distinct paths for recruitment, which are mutually reinforced. Whereas PRC2.1 recruitment is mediated by MTF2 binding to DNA, JARID2-containing PRC2.2 recruitment is more dependent on PRC1. Both recruitment axes are supported by core subunit EED binding to H3K27me3, but EED inhibition exhibits a more pronounced effect in Jarid2 null cells. Finally, we show that PRC1 and PRC2 enhance reciprocal binding. Together, these data disentangle the interdependent interactions that are important for PRC2 recruitment.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
14 |
10
|
van Mierlo G, Wester RA, Marks H. A Mass Spectrometry Survey of Chromatin-Associated Proteins in Pluripotency and Early Lineage Commitment. Proteomics 2019; 19:e1900047. [PMID: 31219242 DOI: 10.1002/pmic.201900047] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 06/07/2019] [Indexed: 12/12/2022]
Abstract
Pluripotency can be captured in vitro in the form of Embryonic Stem Cells (ESCs). These ESCs can be either maintained in the unrestricted "naïve" state of pluripotency, adapted to developmentally more constrained "primed" pluripotency or differentiated towards each of the three germ layers. Epigenetic protein complexes and transcription factors have been shown to specify and instruct transitions from ESCs to distinct cell states. In this study, proteomic profiling of the chromatin landscape by chromatin enrichment for proteomics (ChEP) is used in mouse naive pluripotent ESCs, primed pluripotent Epiblast stem cells (EpiSCs), and cells in early stages of differentiation. A comprehensive overview of epigenetic protein complexes associated with the chromatin is provided and proteins associated with the maintenance and loss of pluripotency are identified. The data reveal major compositional alterations of epigenetic complexes during priming and differentiation of naïve pluripotent ESCs. These results contribute to the understanding of ESC differentiation and provide a framework for future studies of lineage commitment of ESCs.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
13 |
11
|
Weiss L, Weiden J, Dölen Y, Grad EM, van Dinther EAW, Schluck M, Eggermont LJ, van Mierlo G, Gileadi U, Bartoló-Ibars A, Raavé R, Gorris MAJ, Maassen L, Verrijp K, Valente M, Deplancke B, Verdoes M, Benitez-Ribas D, Heskamp S, van Spriel AB, Figdor CG, Hammink R. Direct In Vivo Activation of T Cells with Nanosized Immunofilaments Inhibits Tumor Growth and Metastasis. ACS NANO 2023. [PMID: 37338806 DOI: 10.1021/acsnano.2c11884] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Adoptive T cell therapy has successfully been implemented for the treatment of cancer. Nevertheless, ex vivo expansion of T cells by artificial antigen-presenting cells (aAPCs) remains cumbersome and can compromise T cell functionality, thereby limiting their therapeutic potential. We propose a radically different approach aimed at direct expansion of T cells in vivo, thereby omitting the need for large-scale ex vivo T cell production. We engineered nanosized immunofilaments (IFs), with a soluble semiflexible polyisocyanopeptide backbone that presents peptide-loaded major histocompatibility complexes and costimulatory molecules multivalently. IFs readily activated and expanded antigen-specific T cells like natural APCs, as evidenced by transcriptomic analyses of T cells. Upon intravenous injection, IFs reach the spleen and lymph nodes and induce antigen-specific T cell responses in vivo. Moreover, IFs display strong antitumor efficacy resulting in inhibition of the formation of melanoma metastases and reduction of primary tumor growth in synergy with immune checkpoint blockade. In conclusion, nanosized IFs represent a powerful modular platform for direct activation and expansion of antigen-specific T cells in vivo, which can greatly contribute to cancer immunotherapy.
Collapse
|
|
2 |
10 |
12
|
Dirks RAM, van Mierlo G, Kerstens HHD, Bernardo AS, Kobolák J, Bock I, Maruotti J, Pedersen RA, Dinnyés A, Huynen MA, Jouneau A, Marks H. Allele-specific RNA-seq expression profiling of imprinted genes in mouse isogenic pluripotent states. Epigenetics Chromatin 2019; 12:14. [PMID: 30767785 PMCID: PMC6376749 DOI: 10.1186/s13072-019-0259-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 02/05/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Genomic imprinting, resulting in parent-of-origin specific gene expression, plays a critical role in mammalian development. Here, we apply allele-specific RNA-seq on isogenic B6D2F1 mice to assay imprinted genes in tissues from early embryonic tissues between E3.5 and E7.25 and in pluripotent cell lines to evaluate maintenance of imprinted gene expression. For the cell lines, we include embryonic stem cells (ESCs) and epiblast stem cells (EpiSCs) derived from fertilized embryos and from embryos obtained after nuclear transfer (NT) or parthenogenetic activation (PGA). RESULTS As homozygous genomic regions of PGA-derived cells are not compatible with allele-specific RNA-seq, we developed an RNA-seq-based genotyping strategy allowing identification of informative heterozygous regions. Global analysis shows that proper imprinted gene expression as observed in embryonic tissues is largely lost in the ESC lines included in this study, which mainly consisted of female ESCs. Differentiation of ESC lines to embryoid bodies or NPCs does not restore monoallelic expression of imprinted genes, neither did reprogramming of the serum-cultured ESCs to the pluripotent ground state by the use of 2 kinase inhibitors. Fertilized EpiSC and EpiSC-NT lines largely maintain imprinted gene expression, as did EpiSC-PGA lines that show known paternally expressed genes being silent and known maternally expressed genes consistently showing doubled expression. Notably, two EpiSC-NT lines show aberrant silencing of Rian and Meg3, two critically imprinted genes in mouse iPSCs. With respect to female EpiSC, most of the lines displayed completely skewed X inactivation suggesting a (near) clonal origin. CONCLUSIONS Altogether, our analysis provides a comprehensive overview of imprinted gene expression in pluripotency and provides a benchmark to allow identification of cell lines that faithfully maintain imprinted gene expression and therefore retain full developmental potential.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
8 |
13
|
van Mierlo G, Vermeulen M. Chromatin Proteomics to Study Epigenetics - Challenges and Opportunities. Mol Cell Proteomics 2021; 20:100056. [PMID: 33556626 PMCID: PMC7973309 DOI: 10.1074/mcp.r120.002208] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Regulation of gene expression is essential for the functioning of all eukaryotic organisms. Understanding gene expression regulation requires determining which proteins interact with regulatory elements in chromatin. MS-based analysis of chromatin has emerged as a powerful tool to identify proteins associated with gene regulation, as it allows studying protein function and protein complex formation in their in vivo chromatin-bound context. Total chromatin isolated from cells can be directly analyzed using MS or further fractionated into transcriptionally active and inactive chromatin prior to MS-based analysis. Newly formed chromatin that is assembled during DNA replication can also be specifically isolated and analyzed. Furthermore, capturing specific chromatin domains facilitates the identification of previously unknown transcription factors interacting with these domains. Finally, in recent years, advances have been made toward identifying proteins that interact with a single genomic locus of interest. In this review, we highlight the power of chromatin proteomics approaches and how these provide complementary alternatives compared with conventional affinity purification methods. Furthermore, we discuss the biochemical challenges that should be addressed to consolidate and expand the role of chromatin proteomics as a key technology in the context of gene expression regulation and epigenetics research in health and disease.
An overview of proteomics methods to study chromatin and gene regulation. Strength and limitations of the different approaches are highlighted. An outlook on the outstanding challenges for chromatin proteomics. Future directions for chromatin proteomics are discussed.
Collapse
|
Review |
4 |
8 |
14
|
van Mierlo G, Wester RA, Marks H. Quantitative subcellular proteomics using SILAC reveals enhanced metabolic buffering in the pluripotent ground state. Stem Cell Res 2018; 33:135-145. [PMID: 30352361 DOI: 10.1016/j.scr.2018.09.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 08/13/2018] [Accepted: 09/17/2018] [Indexed: 11/26/2022] Open
Abstract
The ground state of pluripotency is defined as a minimal unrestricted epigenetic state as present in the Inner Cell Mass. Mouse embryonic stem cells (ESCs) grown in a defined serum-free medium with two kinase inhibitors ("2i ESCs") have been postulated to reflect ground-state pluripotency, whereas ESCs grown in the presence of serum ("serum ESCs") share more similarities with post-implantation epiblast cells. Pluripotency results from an intricate interplay between cytoplasmic, nuclear and chromatin-associated proteins. Here, we perform quantitative subcellular proteomics to gain insight in the molecular mechanisms sustaining the pluripotent states reflected by 2i and serum ESCs. We describe a full SILAC workflow and quality controls for proteomic comparison of 2i and serum ESCs, allowing subcellular proteomics of the cytoplasm, nucleoplasm and chromatin. The obtained quantitative information revealed increased levels of naïve pluripotency factors on the chromatin of 2i ESCs. Surprisingly, the cytoplasmic proteome suggests that 2i and serum ESCs utilize distinct metabolic programs, which include upregulation of free radical buffering by the glutathione pathway in 2i ESCs. Through induction of intracellular radicals, we show that the altered metabolic environment renders 2i ESCs less sensitive to oxidative stress. Altogether, this work provides novel insights into the proteomic landscape underlying ground state pluripotency.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
6 |
15
|
Marks H, Kerstens HHD, Barakat TS, Splinter E, Dirks RAM, van Mierlo G, Joshi O, Wang SY, Babak T, Albers CA, Kalkan T, Smith A, Jouneau A, de Laat W, Gribnau J, Stunnenberg HG. Erratum to: Dynamics of gene silencing during X inactivation using allele-specific RNA-seq. Genome Biol 2016; 17:22. [PMID: 26850229 PMCID: PMC4743200 DOI: 10.1186/s13059-016-0885-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 01/25/2016] [Indexed: 02/02/2023] Open
|
correction |
9 |
2 |
16
|
Pezoldt J, Wiechers C, Zou M, Litovchenko M, Biocanin M, Beckstette M, Sitnik K, Palatella M, van Mierlo G, Chen W, Gardeux V, Floess S, Ebel M, Russeil J, Arampatzi P, Vafardanejad E, Saliba AE, Deplancke B, Huehn J. Postnatal expansion of mesenteric lymph node stromal cells towards reticular and CD34 + stromal cell subsets. Nat Commun 2022; 13:7227. [PMID: 36433946 PMCID: PMC9700677 DOI: 10.1038/s41467-022-34868-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 11/09/2022] [Indexed: 11/26/2022] Open
Abstract
Gut-draining mesenteric lymph nodes (LN) provide the framework to shape intestinal adaptive immune responses. Based on the transcriptional signatures established by our previous work, the composition and immunomodulatory function of LN stromal cells (SC) vary according to location. Here, we describe the single-cell composition and development of the SC compartment within mesenteric LNs derived from postnatal to aged mice. We identify CD34+ SC and fibroblastic reticular stromal cell (FRC) progenitors as putative progenitors, both supplying the typical rapid postnatal mesenteric LN expansion. We further establish the location-specific chromatin accessibility and DNA methylation landscape of non-endothelial SCs and identify a microbiota-independent core epigenomic signature, showing characteristic differences between SCs from mesenteric and skin-draining peripheral LNs. The epigenomic landscape of SCs points to dynamic expression of Irf3 along the differentiation trajectories of FRCs. Accordingly, a mesenchymal stem cell line acquires a Cxcl9+ FRC molecular phenotype upon lentiviral overexpression of Irf3, and the relevance of Irf3 for SC biology is further underscored by the diminished proportion of Ccl19+ and Cxcl9+ FRCs in LNs of Irf3-/- mice. Together, our data constitute a comprehensive transcriptional and epigenomic map of mesenteric LNSC development in early life and dissect location-specific, microbiota-independent properties of non-endothelial SCs.
Collapse
|
research-article |
3 |
2 |
17
|
Gralak AJ, Faltejskova K, Yang AW, Steiner C, Russeil J, Grenningloh N, Inukai S, Demir M, Dainese R, Owen C, Pankevich E, Hughes TR, Kulakovskiy IV, Kribelbauer-Swietek JF, van Mierlo G, Deplancke B. Identification of methylation-sensitive human transcription factors using meSMiLE-seq. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.11.619598. [PMID: 39605503 PMCID: PMC11601298 DOI: 10.1101/2024.11.11.619598] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Transcription factors (TFs) are key players in eukaryotic gene regulation, but the DNA binding specificity of many TFs remains unknown. Here, we assayed 284 mostly poorly characterized, putative human TFs using selective microfluidics-based ligand enrichment followed by sequencing (SMiLE-seq), revealing 72 new DNA binding motifs. To investigate whether some of the 158 TFs for which we did not find motifs preferably bind epigenetically modified DNA (i.e. methylated CG dinucleotides), we developed methylation-sensitive SMiLE-seq (meSMiLE-seq). This microfluidic assay simultaneously probes the affinity of a protein to methylated and unmethylated DNA, augmenting the capabilities of the original method to infer methylation-aware binding sites. We assayed 114 TFs with meSMiLE-seq and identified DNA-binding models for 48 proteins, including the known methylation-sensitive binding modes for POU5F1 and RFX5. For 11 TFs, binding to methylated DNA was preferred or resulted in the discovery of alternative, methylation-dependent motifs (e.g. PRDM13), while aversion towards methylated sequences was found for 13 TFs (e.g. USF3). Finally, we uncovered a potential role for ZHX2 as a putative binder of Z-DNA, a left-handed helical DNA structure which is adopted more frequently upon CpG methylation. Altogether, our study significantly expands the human TF codebook by identifying DNA binding motifs for 98 TFs, while providing a versatile platform to quantitatively assay the impact of DNA modifications on TF binding.
Collapse
|
Preprint |
1 |
1 |
18
|
Pushkarev O, van Mierlo G, Kribelbauer JF, Saelens W, Gardeux V, Deplancke B. Non-coding variants impact cis-regulatory coordination in a cell type-specific manner. Genome Biol 2024; 25:190. [PMID: 39026229 PMCID: PMC11256678 DOI: 10.1186/s13059-024-03333-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 07/09/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Interactions among cis-regulatory elements (CREs) play a crucial role in gene regulation. Various approaches have been developed to map these interactions genome-wide, including those relying on interindividual epigenomic variation to identify groups of covariable regulatory elements, referred to as chromatin modules (CMs). While CM mapping allows to investigate the relationship between chromatin modularity and gene expression, the computational principles used for CM identification vary in their application and outcomes. RESULTS We comprehensively evaluate and streamline existing CM mapping tools and present guidelines for optimal utilization of epigenome data from a diverse population of individuals to assess regulatory coordination across the human genome. We showcase the effectiveness of our recommended practices by analyzing distinct cell types and demonstrate cell type specificity of CRE interactions in CMs and their relevance for gene expression. Integration of genotype information revealed that many non-coding disease-associated variants affect the activity of CMs in a cell type-specific manner by affecting the binding of cell type-specific transcription factors. We provide example cases that illustrate in detail how CMs can be used to deconstruct GWAS loci, assess variable expression of cell surface receptors in immune cells, and reveal how genetic variation can impact the expression of prognostic markers in chronic lymphocytic leukemia. CONCLUSIONS Our study presents an optimal strategy for CM mapping and reveals how CMs capture the coordination of CREs and its impact on gene expression. Non-coding genetic variants can disrupt this coordination, and we highlight how this may lead to disease predisposition in a cell type-specific manner.
Collapse
|
research-article |
1 |
|
19
|
Lambert CLG, van Mierlo G, Bues JJ, Guillaume-Gentil OJ, Deplancke B. The evolution of DNA sequencing with microfluidics. Nat Rev Genet 2025; 26:1-2. [PMID: 39333241 DOI: 10.1038/s41576-024-00783-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2024]
|
|
1 |
|
20
|
Kribelbauer-Swietek JF, Pushkarev O, Gardeux V, Faltejskova K, Russeil J, van Mierlo G, Deplancke B. Context transcription factors establish cooperative environments and mediate enhancer communication. Nat Genet 2024; 56:2199-2212. [PMID: 39363017 PMCID: PMC11525195 DOI: 10.1038/s41588-024-01892-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/01/2024] [Indexed: 10/05/2024]
Abstract
Many enhancers control gene expression by assembling regulatory factor clusters, also referred to as condensates. This process is vital for facilitating enhancer communication and establishing cellular identity. However, how DNA sequence and transcription factor (TF) binding instruct the formation of high regulatory factor environments remains poorly understood. Here we developed a new approach leveraging enhancer-centric chromatin accessibility quantitative trait loci (caQTLs) to nominate regulatory factor clusters genome-wide. By analyzing TF-binding signatures within the context of caQTLs and comparing episomal versus endogenous enhancer activities, we discovered a class of regulators, 'context-only' TFs, that amplify the activity of cell type-specific caQTL-binding TFs, that is, 'context-initiator' TFs. Similar to super-enhancers, enhancers enriched for context-only TF-binding sites display high coactivator binding and sensitivity to bromodomain-inhibiting molecules. We further show that binding sites for context-only and context-initiator TFs underlie enhancer coordination, providing a mechanistic rationale for how a loose TF syntax confers regulatory specificity.
Collapse
|
research-article |
1 |
|
21
|
den Braanker DJW, Maas RJH, van Mierlo G, Parr NMJ, Bakker-van Bebber M, Deegens JKJ, Jansen PWTC, Gloerich J, Willemsen B, Dijkman HB, van Gool AJ, Wetzels JFM, Rinschen MM, Vermeulen M, Nijenhuis T, van der Vlag J. Primary Focal Segmental Glomerulosclerosis Plasmas Increase Lipid Droplet Formation and Perilipin-2 Expression in Human Podocytes. Int J Mol Sci 2022; 24:ijms24010194. [PMID: 36613637 PMCID: PMC9820489 DOI: 10.3390/ijms24010194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/13/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Many patients with primary focal segmental glomerulosclerosis (FSGS) develop recurrence of proteinuria after kidney transplantation. Several circulating permeability factors (CPFs) responsible for recurrence have been suggested, but were never validated. We aimed to find proteins involved in the mechanism of action of CPF(s) and/or potential biomarkers for the presence of CPF(s). Cultured human podocytes were exposed to plasma from patients with FSGS with presumed CPF(s) or healthy and disease controls. Podocyte proteomes were analyzed by LC-MS. Results were validated using flow cytometry, RT-PCR, and immunofluorescence. Podocyte granularity was examined using flow cytometry, electron microscopy imaging, and BODIPY staining. Perilipin-2 protein expression was increased in podocytes exposed to presumed CPF-containing plasmas, and correlated with the capacity of plasma to induce podocyte granularity, identified as lipid droplet accumulation. Elevated podocyte perilipin-2 was confirmed at protein and mRNA level and was also detected in glomeruli of FSGS patients whose active disease plasmas induced podocyte perilipin-2 and lipid droplets. Our study demonstrates that presumably, CPF-containing plasmas from FSGS patients induce podocyte lipid droplet accumulation and perilipin-2 expression, identifying perilipin-2 as a potential biomarker. Future research should address the mechanism underlying CPF-induced alterations in podocyte lipid metabolism, which ultimately may result in novel leads for treatment.
Collapse
|
research-article |
3 |
|
22
|
van Mierlo G, Pushkarev O, Kribelbauer JF, Deplancke B. Chromatin modules and their implication in genomic organization and gene regulation. Trends Genet 2023; 39:140-153. [PMID: 36549923 DOI: 10.1016/j.tig.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 11/04/2022] [Accepted: 11/27/2022] [Indexed: 12/24/2022]
Abstract
Regulation of gene expression is a complex but highly guided process. While genomic technologies and computational approaches have allowed high-throughput mapping of cis-regulatory elements (CREs) and their interactions in 3D, their precise role in regulating gene expression remains obscure. Recent complementary observations revealed that interactions between CREs frequently result in the formation of small-scale functional modules within topologically associating domains. Such chromatin modules likely emerge from a complex interplay between regulatory machineries assembled at CREs, including site-specific binding of transcription factors. Here, we review the methods that allow identifying chromatin modules, summarize possible mechanisms that steer CRE interactions within these modules, and discuss outstanding challenges to uncover how chromatin modules fit in our current understanding of the functional 3D genome.
Collapse
|
Review |
2 |
|
23
|
Zijlmans DW, Stelloo S, Bax D, Yordanov Y, Toebosch P, Raas MWD, Verhelst S, Lamers LA, Baltissen MPA, Jansen PWTC, van Mierlo G, Dhaenens M, Marks H, Vermeulen M. PRC1 and PRC2 proximal interactome in mouse embryonic stem cells. Cell Rep 2025; 44:115362. [PMID: 40053453 DOI: 10.1016/j.celrep.2025.115362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 12/13/2024] [Accepted: 02/06/2025] [Indexed: 03/09/2025] Open
Abstract
Polycomb repressive complexes PRC1 and PRC2 control lineage-specific gene silencing during early embryogenesis. To better understand Polycomb biology, we profile the proximal interactome (proxeome) of multiple PRC1 and PRC2 subunits in mouse embryonic stem cells (mESCs). This analysis identifies >100 proteins proximal to PRC1 and PRC2, including transcription factors and RNA-binding proteins. Notably, approximately half of the PRC2 interactors overlap with PRC1. Pluripotency-associated factors, including NANOG, colocalize with PRC2 at specific genomic sites. Following PRC2 disruption, NANOG relocalizes to other genomic regions. Interestingly, we identify PRC1 members in PRC2 proxeomes but not reciprocally. This suggests that PRC1 and PRC2 may have independent functions in addition to their cooperative roles in establishing H3K27me3-marked chromatin domains. Finally, we compare PRC2 proxeomes across different cellular contexts, including ground-state mESCs, serum-cultured mESCs, and embryoid bodies. These analyses provide a comprehensive resource, enhancing our understanding of Polycomb biology and its dynamic role across developmental states.
Collapse
|
|
1 |
|
24
|
Ferrero R, Rainer PY, Rumpler M, Russeil J, Zachara M, Pezoldt J, van Mierlo G, Gardeux V, Saelens W, Alpern D, Favre L, Vionnet N, Mantziari S, Zingg T, Pitteloud N, Suter M, Matter M, Schlaudraff KU, Canto C, Deplancke B. A human omentum-specific mesothelial-like stromal population inhibits adipogenesis through IGFBP2 secretion. Cell Metab 2024; 36:1566-1585.e9. [PMID: 38729152 DOI: 10.1016/j.cmet.2024.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 12/22/2023] [Accepted: 04/19/2024] [Indexed: 05/12/2024]
Abstract
Adipose tissue plasticity is orchestrated by molecularly and functionally diverse cells within the stromal vascular fraction (SVF). Although several mouse and human adipose SVF cellular subpopulations have by now been identified, we still lack an understanding of the cellular and functional variability of adipose stem and progenitor cell (ASPC) populations across human fat depots. To address this, we performed single-cell and bulk RNA sequencing (RNA-seq) analyses of >30 SVF/Lin- samples across four human adipose depots, revealing two ubiquitous human ASPC (hASPC) subpopulations with distinct proliferative and adipogenic properties but also depot- and BMI-dependent proportions. Furthermore, we identified an omental-specific, high IGFBP2-expressing stromal population that transitions between mesothelial and mesenchymal cell states and inhibits hASPC adipogenesis through IGFBP2 secretion. Our analyses highlight the molecular and cellular uniqueness of different adipose niches, while our discovery of an anti-adipogenic IGFBP2+ omental-specific population provides a new rationale for the biomedically relevant, limited adipogenic capacity of omental hASPCs.
Collapse
|
|
1 |
|