1
|
Mele L, Bidault G, Mena P, Crozier A, Brighenti F, Vidal-Puig A, Del Rio D. Dietary (Poly)phenols, Brown Adipose Tissue Activation, and Energy Expenditure: A Narrative Review. Adv Nutr 2017; 8:694-704. [PMID: 28916570 PMCID: PMC5593103 DOI: 10.3945/an.117.015792] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The incidence of overweight and obesity has reached epidemic proportions, making the control of body weight and its complications a primary health problem. Diet has long played a first-line role in preventing and managing obesity. However, beyond the obvious strategy of restricting caloric intake, growing evidence supports the specific antiobesity effects of some food-derived components, particularly (poly)phenolic compounds. The relatively new rediscovery of active brown adipose tissue in adult humans has generated interest in this tissue as a novel and viable target for stimulating energy expenditure and controlling body weight by promoting energy dissipation. This review critically discusses the evidence supporting the concept that the antiobesity effects ascribed to (poly)phenols might be dependent on their capacity to promote energy dissipation by activating brown adipose tissue. Although discrepancies exist in the literature, most in vivo studies with rodents strongly support the role of some (poly)phenol classes, particularly flavan-3-ols and resveratrol, in promoting energy expenditure. Some human data currently are available and most are consistent with studies in rodents. Further investigation of effects in humans is warranted.
Collapse
|
review-article |
8 |
60 |
2
|
Bidault G, Garcia M, Vantyghem MC, Ducluzeau PH, Morichon R, Thiyagarajah K, Moritz S, Capeau J, Vigouroux C, Béréziat V. Lipodystrophy-linked LMNA p.R482W mutation induces clinical early atherosclerosis and in vitro endothelial dysfunction. Arterioscler Thromb Vasc Biol 2013; 33:2162-71. [PMID: 23846499 DOI: 10.1161/atvbaha.113.301933] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Some mutations in LMNA, encoding A-type lamins, are responsible for Dunnigan-type-familial partial lipodystrophy (FPLD2), with altered fat distribution and metabolism. The high prevalence of early and severe cardiovascular outcomes in these patients suggests that, in addition to metabolic risk factors, FPLD2-associated LMNA mutations could have a direct role on the vascular wall cells. APPROACH AND RESULTS We analyzed the cardiovascular phenotype of 19 FPLD2 patients aged >30 years with LMNA p.R482 heterozygous substitutions, and the effects of p.R482W-prelamin-A overexpression in human coronary artery endothelial cells. In 68% of FPLD2 patients, early atherosclerosis was attested by clinical cardiovascular events, occurring before the age of 45 in most cases. In transduced endothelial cells, exogenous wild-type-prelamin-A was correctly processed and localized, whereas p.R482W-prelamin-A accumulated abnormally at the nuclear envelope. Patients' fibroblasts also showed a predominant nuclear envelope distribution with a decreased rate of prelamin-A maturation. Only p.R482W-prelamin-A induced endothelial dysfunction, with decreased production of NO, increased endothelial adhesion of peripheral blood mononuclear cells, and cellular senescence. p.R482W-prelamin-A also induced oxidative stress, DNA damages, and inflammation. These alterations were prevented by treatment of endothelial cells with pravastatin, which inhibits prelamin-A farnesylation, or with antioxidants. In addition, pravastatin allowed the correct relocalization of p.R482W-prelamin-A within the endothelial cell nucleus. These data suggest that farnesylated p.R482W-prelamin-A accumulation at the nuclear envelope is a toxic event, leading to cellular oxidative stress and endothelial dysfunction. CONCLUSIONS LMNA p.R482 mutations, responsible for FPLD2, exert a direct proatherogenic effect in endothelial cells, which could contribute to patients' early atherosclerosis.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
60 |
3
|
Bidault G, Virtue S, Petkevicius K, Jolin HE, Dugourd A, Guénantin AC, Leggat J, Mahler-Araujo B, Lam BYH, Ma MK, Dale M, Carobbio S, Kaser A, Fallon PG, Saez-Rodriguez J, McKenzie ANJ, Vidal-Puig A. SREBP1-induced fatty acid synthesis depletes macrophages antioxidant defences to promote their alternative activation. Nat Metab 2021; 3:1150-1162. [PMID: 34531575 PMCID: PMC7611716 DOI: 10.1038/s42255-021-00440-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 07/22/2021] [Indexed: 02/07/2023]
Abstract
Macrophages exhibit a spectrum of activation states ranging from classical to alternative activation1. Alternatively, activated macrophages are involved in diverse pathophysiological processes such as confining tissue parasites2, improving insulin sensitivity3 or promoting an immune-tolerant microenvironment that facilitates tumour growth and metastasis4. Recently, the metabolic regulation of macrophage function has come into focus as both the classical and alternative activation programmes require specific regulated metabolic reprogramming5. While most of the studies regarding immunometabolism have focussed on the catabolic pathways activated to provide energy, little is known about the anabolic pathways mediating macrophage alternative activation. In this study, we show that the anabolic transcription factor sterol regulatory element binding protein 1 (SREBP1) is activated in response to the canonical T helper 2 cell cytokine interleukin-4 to trigger the de novo lipogenesis (DNL) programme, as a necessary step for macrophage alternative activation. Mechanistically, DNL consumes NADPH, partitioning it away from cellular antioxidant defences and raising reactive oxygen species levels. Reactive oxygen species serves as a second messenger, signalling sufficient DNL, and promoting macrophage alternative activation. The pathophysiological relevance of this mechanism is validated by showing that SREBP1/DNL is essential for macrophage alternative activation in vivo in a helminth infection model.
Collapse
|
Letter |
4 |
45 |
4
|
Petkevicius K, Virtue S, Bidault G, Jenkins B, Çubuk C, Morgantini C, Aouadi M, Dopazo J, Serlie MJ, Koulman A, Vidal-Puig A. Accelerated phosphatidylcholine turnover in macrophages promotes adipose tissue inflammation in obesity. eLife 2019; 8:e47990. [PMID: 31418690 PMCID: PMC6748830 DOI: 10.7554/elife.47990] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 08/15/2019] [Indexed: 12/28/2022] Open
Abstract
White adipose tissue (WAT) inflammation contributes to the development of insulin resistance in obesity. While the role of adipose tissue macrophage (ATM) pro-inflammatory signalling in the development of insulin resistance has been established, it is less clear how WAT inflammation is initiated. Here, we show that ATMs isolated from obese mice and humans exhibit markers of increased rate of de novo phosphatidylcholine (PC) biosynthesis. Macrophage-specific knockout of phosphocholine cytidylyltransferase A (CCTα), the rate-limiting enzyme of de novo PC biosynthesis pathway, alleviated obesity-induced WAT inflammation and insulin resistance. Mechanistically, CCTα-deficient macrophages showed reduced ER stress and inflammation in response to palmitate. Surprisingly, this was not due to lower exogenous palmitate incorporation into cellular PCs. Instead, CCTα-null macrophages had lower membrane PC turnover, leading to elevated membrane polyunsaturated fatty acid levels that negated the pro-inflammatory effects of palmitate. Our results reveal a causal link between obesity-associated increase in de novo PC synthesis, accelerated PC turnover and pro-inflammatory activation of ATMs.
Collapse
|
research-article |
6 |
42 |
5
|
Mele L, Carobbio S, Brindani N, Curti C, Rodriguez-Cuenca S, Bidault G, Mena P, Zanotti I, Vacca M, Vidal-Puig A, Del Rio D. Phenyl-γ-valerolactones, flavan-3-ol colonic metabolites, protect brown adipocytes from oxidative stress without affecting their differentiation or function. Mol Nutr Food Res 2017; 61. [PMID: 28276197 DOI: 10.1002/mnfr.201700074] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 03/04/2017] [Accepted: 03/06/2017] [Indexed: 01/09/2023]
Abstract
SCOPE Consumption of products rich in flavan-3-ols, such as tea and cocoa, has been associated with decreased obesity, partially dependent on their capacity to enhance energy expenditure. Despite these phenolics having been reported to increase the thermogenic program in brown and white adipose tissue, flavan-3-ols are vastly metabolised in vivo to phenyl-γ-valerolactones. Therefore, we hypothesize that phenyl-γ-valerolactones may directly stimulate the differentiation and the activation of brown adipocytes. METHODS AND RESULTS Immortalized brown pre-adipocytes were differentiated in presence of (R)-5-(3',4'-dihydroxyphenyl)-γ-valerolactone (VL1), (R)-5-(3´-hydroxyphenyl)-γ-valerolactone-4'-O-sulphate (VL2), (R)-5-phenyl-γ-valerolactone-3´,4´-di-O-sulphate (VL3), at concentrations of 2 or 10μM, whereas fully differentiated brown adipocyte were treated acutely (6-24h). None of the treatments regulated the expression levels of the uncouple protein 1, nor of the main transcription factors involved in brown adipogenesis. Similarly, mitochondrial content was unchanged after treatments. Moreover these compounds did not display peroxisome proliferator-activated receptor γ-agonist activity, as evaluated by luciferase assay, and did not enhance norepinephrine-stimulated lipolysis in mature adipocytes. However, both VL1 and VL2 prevented oxidative stress caused by H2 O2 . CONCLUSION Phenyl-γ-valerolactones and their sulphated forms do not influence brown adipocyte development or function at physiological or supraphysiological doses in vitro, but they are active protecting brown adipocytes from increased reactive oxygen species production.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
32 |
6
|
Vigouroux C, Guénantin AC, Vatier C, Capel E, Le Dour C, Afonso P, Bidault G, Béréziat V, Lascols O, Capeau J, Briand N, Jéru I. Lipodystrophic syndromes due to LMNA mutations: recent developments on biomolecular aspects, pathophysiological hypotheses and therapeutic perspectives. Nucleus 2019; 9:235-248. [PMID: 29578370 PMCID: PMC5973242 DOI: 10.1080/19491034.2018.1456217] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Mutations in LMNA, encoding A-type lamins, are responsible for laminopathies including muscular dystrophies, lipodystrophies, and premature ageing syndromes. LMNA mutations have been shown to alter nuclear structure and stiffness, binding to partners at the nuclear envelope or within the nucleoplasm, gene expression and/or prelamin A maturation. LMNA-associated lipodystrophic features, combining generalized or partial fat atrophy and metabolic alterations associated with insulin resistance, could result from altered adipocyte differentiation or from altered fat structure. Recent studies shed some light on how pathogenic A-type lamin variants could trigger lipodystrophy, metabolic complications, and precocious cardiovascular events. Alterations in adipose tissue extracellular matrix and TGF-beta signaling could initiate metabolic inflexibility. Premature senescence of vascular cells could contribute to cardiovascular complications. In affected families, metabolic alterations occur at an earlier age across generations, which could result from epigenetic deregulation induced by LMNA mutations. Novel cellular models recapitulating adipogenic developmental pathways provide scalable tools for disease modeling and therapeutic screening.
Collapse
|
Review |
6 |
25 |
7
|
Azzu V, Vacca M, Kamzolas I, Hall Z, Leslie J, Carobbio S, Virtue S, Davies SE, Lukasik A, Dale M, Bohlooly-Y M, Acharjee A, Lindén D, Bidault G, Petsalaki E, Griffin JL, Oakley F, Allison MED, Vidal-Puig A. Suppression of insulin-induced gene 1 (INSIG1) function promotes hepatic lipid remodelling and restrains NASH progression. Mol Metab 2021; 48:101210. [PMID: 33722690 PMCID: PMC8094910 DOI: 10.1016/j.molmet.2021.101210] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/19/2021] [Accepted: 03/06/2021] [Indexed: 01/22/2023] Open
Abstract
Objective Non-alcoholic fatty liver disease (NAFLD) is a silent pandemic associated with obesity and the metabolic syndrome, and also increases cardiovascular- and cirrhosis-related morbidity and mortality. A complete understanding of adaptive compensatory metabolic programmes that modulate non-alcoholic steatohepatitis (NASH) progression is lacking. Methods and results Transcriptomic analysis of liver biopsies in patients with NASH revealed that NASH progression is associated with rewiring of metabolic pathways, including upregulation of de novo lipid/cholesterol synthesis and fatty acid remodelling. The modulation of these metabolic programmes was achieved by activating sterol regulatory element-binding protein (SREBP) transcriptional networks; however, it is still debated whether, in the context of NASH, activation of SREBPs acts as a pathogenic driver of lipotoxicity, or rather promotes the biosynthesis of protective lipids that buffer excessive lipid accumulation, preventing inflammation and fibrosis. To elucidate the pathophysiological role of SCAP/SREBP in NASH and wound-healing response, we used an Insig1 deficient (with hyper-efficient SREBPs) murine model challenged with a NASH-inducing diet. Despite enhanced lipid and cholesterol biosynthesis, Insig1 KO mice had similar systemic metabolism and insulin sensitivity to Het/WT littermates. Moreover, activating SREBPs resulted in remodelling the lipidome, decreased hepatocellular damage, and improved wound-healing responses. Conclusions Our study provides actionable knowledge about the pathways and mechanisms involved in NAFLD pathogenesis, which may prove useful for developing new therapeutic strategies. Our results also suggest that the SCAP/SREBP/INSIG1 trio governs transcriptional programmes aimed at protecting the liver from lipotoxic insults in NASH.
Human NASH biopsies’ transcriptomics analysis features metabolic pathway rewiring. SCAP/SREBP/INSIG1 modulation promotes lipid/cholesterol synthesis/remodelling in NASH. Loss of Insig1 promotes lipid remodelling, preventing hepatic lipotoxicity in NASH. Loss of Insig1 improves liver damage and wound healing and restrains NASH progression.
Collapse
|
Research Support, Non-U.S. Gov't |
4 |
21 |
8
|
Vatier C, Bidault G, Briand N, Guénantin AC, Teyssières L, Lascols O, Capeau J, Vigouroux C. What the genetics of lipodystrophy can teach us about insulin resistance and diabetes. Curr Diab Rep 2013; 13:757-67. [PMID: 24026869 DOI: 10.1007/s11892-013-0431-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Genetic lipodystrophic syndromes are rare diseases characterized by generalized or partial fat atrophy (lipoatrophy) associated with severe metabolic complications such as insulin resistance (IR), diabetes, dyslipidemia, nonalcoholic fatty liver disease, and ovarian hyperandrogenism. During the last 15 years, mutations in several genes have been shown to be responsible for monogenic forms of lipodystrophic syndromes, of autosomal dominant or recessive transmission. Although the molecular basis of lipodystrophies is heterogeneous, most mutated genes lead to impaired adipogenesis, adipocyte lipid storage, and/or formation or maintenance of the adipocyte lipid droplet (LD), showing that primary alterations of adipose tissue (AT) can result in severe systemic metabolic and endocrine consequences. The reduced expandability of AT alters its ability to buffer excess caloric intake, leading to ectopic lipid storage that impairs insulin signaling and other cellular functions ("lipotoxicity"). Genetic studies have also pointed out the close relationships between ageing, inflammatory processes, lipodystrophy, and IR.
Collapse
|
Review |
12 |
17 |
9
|
Pellegrinelli V, Rodriguez-Cuenca S, Rouault C, Figueroa-Juarez E, Schilbert H, Virtue S, Moreno-Navarrete JM, Bidault G, Vázquez-Borrego MC, Dias AR, Pucker B, Dale M, Campbell M, Carobbio S, Lin YH, Vacca M, Aron-Wisnewsky J, Mora S, Masiero MM, Emmanouilidou A, Mukhopadhyay S, Dougan G, den Hoed M, Loos RJF, Fernández-Real JM, Chiarugi D, Clément K, Vidal-Puig A. Dysregulation of macrophage PEPD in obesity determines adipose tissue fibro-inflammation and insulin resistance. Nat Metab 2022; 4:476-494. [PMID: 35478031 PMCID: PMC7617220 DOI: 10.1038/s42255-022-00561-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 03/18/2022] [Indexed: 02/02/2023]
Abstract
Resulting from impaired collagen turnover, fibrosis is a hallmark of adipose tissue (AT) dysfunction and obesity-associated insulin resistance (IR). Prolidase, also known as peptidase D (PEPD), plays a vital role in collagen turnover by degrading proline-containing dipeptides but its specific functional relevance in AT is unknown. Here we show that in human and mouse obesity, PEPD expression and activity decrease in AT, and PEPD is released into the systemic circulation, which promotes fibrosis and AT IR. Loss of the enzymatic function of PEPD by genetic ablation or pharmacological inhibition causes AT fibrosis in mice. In addition to its intracellular enzymatic role, secreted extracellular PEPD protein enhances macrophage and adipocyte fibro-inflammatory responses via EGFR signalling, thereby promoting AT fibrosis and IR. We further show that decreased prolidase activity is coupled with increased systemic levels of PEPD that act as a pathogenic trigger of AT fibrosis and IR. Thus, PEPD produced by macrophages might serve as a biomarker of AT fibro-inflammation and could represent a therapeutic target for AT fibrosis and obesity-associated IR and type 2 diabetes.
Collapse
|
Research Support, N.I.H., Extramural |
3 |
15 |
10
|
Patel S, Haider A, Alvarez-Guaita A, Bidault G, El-Sayed Moustafa JS, Guiu-Jurado E, Tadross JA, Warner J, Harrison J, Virtue S, Scurria F, Zvetkova I, Blüher M, Small KS, O'Rahilly S, Savage DB. Combined genetic deletion of GDF15 and FGF21 has modest effects on body weight, hepatic steatosis and insulin resistance in high fat fed mice. Mol Metab 2022; 65:101589. [PMID: 36064109 PMCID: PMC9486046 DOI: 10.1016/j.molmet.2022.101589] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/26/2022] [Accepted: 08/28/2022] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVES Obesity in humans and mice is associated with elevated levels of two hormones responsive to cellular stress, namely GDF15 and FGF21. Over-expression of each of these is associated with weight loss and beneficial metabolic changes but where they are secreted from and what they are required for physiologically in the context of overfeeding remains unclear. METHODS Here we used tissue selective knockout mouse models and human transcriptomics to determine the source of circulating GDF15 in obesity. We then generated and characterized the metabolic phenotypes of GDF15/FGF21 double knockout mice. RESULTS Circulating GDF15 and FGF21 are both largely derived from the liver, rather than adipose tissue or skeletal muscle, in obese states. Combined whole body deletion of FGF21 and GDF15 does not result in any additional weight gain in response to high fat feeding but it does result in significantly greater hepatic steatosis and insulin resistance than that seen in GDF15 single knockout mice. CONCLUSIONS Collectively the data suggest that overfeeding activates a stress response in the liver which is the major source of systemic rises in GDF15 and FGF21. These hormones then activate pathways which reduce this metabolic stress.
Collapse
|
research-article |
3 |
11 |
11
|
Petkevicius K, Bidault G, Virtue S, Jenkins B, van Dierendonck XAMH, Dugourd A, Saez-Rodriguez J, Stienstra R, Koulman A, Vidal-Puig A. Norepinephrine promotes triglyceride storage in macrophages via beta2-adrenergic receptor activation. FASEB J 2021; 35:e21266. [PMID: 33484195 PMCID: PMC7898725 DOI: 10.1096/fj.202001101r] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 11/11/2020] [Accepted: 11/30/2020] [Indexed: 01/02/2023]
Abstract
Tissue‐resident macrophages are required for homeostasis, but also contribute to tissue dysfunction in pathophysiological states. The sympathetic neurotransmitter norepinephrine (NE) induces an anti‐inflammatory and tissue‐reparative phenotype in macrophages. As NE has a well‐established role in promoting triglyceride lipolysis in adipocytes, and macrophages accumulate triglyceride droplets in various physiological and disease states, we investigated the effect of NE on primary mouse bone marrow‐derived macrophage triglyceride metabolism. Surprisingly, our data show that in contrast to the canonical role of NE in stimulating lipolysis, NE acting via beta2‐adrenergic receptors (B2ARs) in macrophages promotes extracellular fatty acid uptake and their storage as triglycerides and reduces free fatty acid release from triglyceride‐laden macrophages. We demonstrate that these responses are mediated by a B2AR activation‐dependent increase in Hilpda and Dgat1 gene expression and activity. We further show that B2AR activation favors the storage of extracellular polyunsaturated fatty acids. Finally, we present evidence that macrophages isolated from hearts after myocardial injury, for which survival critically depends on leukocyte B2ARs, have a transcriptional signature indicative of a transient triglyceride accumulation. Overall, we describe a novel and unexpected role of NE in promoting triglyceride storage in macrophages that could have potential implications in multiple diseases.
Collapse
|
Research Support, Non-U.S. Gov't |
4 |
9 |
12
|
Patel V, Bidault G, Chambers JE, Carobbio S, Everden AJT, Garcés C, Dalton LE, Gribble FM, Vidal-Puig A, Marciniak SJ. Inactivation of Ppp1r15a minimises weight gain and insulin resistance during caloric excess in female mice. Sci Rep 2019; 9:2903. [PMID: 30814564 PMCID: PMC6393541 DOI: 10.1038/s41598-019-39562-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 01/09/2019] [Indexed: 02/02/2023] Open
Abstract
Phosphorylation of the translation initiation factor eIF2α within the mediobasal hypothalamus is known to suppress food intake, but the role of the eIF2α phosphatases in regulating body weight is poorly understood. Mice deficient in active PPP1R15A, a stress-inducible eIF2α phosphatase, are healthy and more resistant to endoplasmic reticulum stress than wild type controls. We report that when female Ppp1r15a mutant mice are fed a high fat diet they gain less weight than wild type littermates owing to reduced food intake. This results in healthy leaner Ppp1r15a mutant animals with reduced hepatic steatosis and improved insulin sensitivity, albeit with a possible modest defect in insulin secretion. By contrast, no weight differences are observed between wild type and Ppp1r15a deficient mice fed a standard diet. We conclude that female mice lacking the C-terminal PP1-binding domain of PPP1R15A show reduced dietary intake and preserved glucose tolerance. Our data indicate that this results in reduced weight gain and protection from diet-induced obesity.
Collapse
|
research-article |
6 |
7 |
13
|
Petkevicius K, Bidault G, Virtue S, Newland SA, Dale M, Dugourd A, Saez-Rodriguez J, Mallat Z, Vidal-Puig A. Macrophage beta2-adrenergic receptor is dispensable for the adipose tissue inflammation and function. Mol Metab 2021; 48:101220. [PMID: 33774223 PMCID: PMC8086137 DOI: 10.1016/j.molmet.2021.101220] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/18/2021] [Accepted: 03/20/2021] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Neuroimmune interactions between the sympathetic nervous system (SNS) and macrophages are required for the homeostasis of multiple tissues, including the adipose tissue. It has been proposed that the SNS maintains adipose tissue macrophages (ATMs) in an anti-inflammatory state via direct norepinephrine (NE) signaling to macrophages. This study aimed to investigate the physiological importance of this paradigm by utilizing a mouse model in which the adrenergic signaling from the SNS to macrophages, but not to other adipose tissue cells, was disrupted. METHODS We generated a macrophage-specific B2AR knockout mouse (Adrb2ΔLyz2) by crossing Adrb2fl/fl and Lyz2Cre/+ mice. We have previously shown that macrophages isolated from Adrb2ΔLyz2 animals do not respond to NE stimulation in vitro. Herein we performed a metabolic phenotyping of Adrb2ΔLyz2 mice on either chow or high-fat diet (HFD). We also assessed the adipose tissue function of Adrb2ΔLyz2 animals during fasting and cold exposure. Finally, we transplanted Adrb2ΔLyz2 bone marrow to low-density lipoprotein receptor (LDLR) knockout mice and investigated the development of atherosclerosis during Western diet feeding. RESULTS We demonstrated that SNS-associated ATMs have a transcriptional profile indicative of activated beta-2 adrenergic receptor (B2AR), the main adrenergic receptor isoform in myeloid cells. However, Adrb2ΔLyz2 mice have unaltered energy balance on a chow or HFD. Furthermore, Adrb2ΔLyz2 mice show similar levels of adipose tissue inflammation and function during feeding, fasting, or cold exposure, and develop insulin resistance during HFD at the same rate as controls. Finally, macrophage-specific B2AR deletion does not affect the development of atherosclerosis on an LDL receptor-null genetic background. CONCLUSIONS Overall, our data suggest that the SNS does not directly modulate the phenotype of adipose tissue macrophages in either lean mice or mouse models of cardiometabolic disease. Instead, sympathetic nerve activity exerts an indirect effect on adipose tissue macrophages through the modulation of adipocyte function.
Collapse
MESH Headings
- Adipocytes/metabolism
- Adipose Tissue, White/metabolism
- Animals
- Atherosclerosis/complications
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Bone Marrow Transplantation/methods
- Cells, Cultured
- Diet, High-Fat/adverse effects
- Diet, Western/adverse effects
- Disease Models, Animal
- Female
- Insulin Resistance/genetics
- Macrophages/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Obesity/complications
- Obesity/genetics
- Obesity/metabolism
- Panniculitis/genetics
- Panniculitis/metabolism
- Phenotype
- Receptors, Adrenergic, beta-2/genetics
- Receptors, Adrenergic, beta-2/metabolism
- Signal Transduction/genetics
- Sympathetic Nervous System/metabolism
Collapse
|
research-article |
4 |
7 |
14
|
Risi R, Vidal-Puig A, Bidault G. An adipocentric perspective of pancreatic lipotoxicity in diabetes pathogenesis. J Endocrinol 2024; 262:e230313. [PMID: 38642584 PMCID: PMC11227041 DOI: 10.1530/joe-23-0313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 04/16/2024] [Indexed: 04/22/2024]
Abstract
Obesity and diabetes represent two increasing and invalidating public health issues that often coexist. It is acknowledged that fat mass excess predisposes to insulin resistance and type 2 diabetes mellitus (T2D), with the increasing incidence of the two diseases significantly associated. Moreover, emerging evidence suggests that obesity might also accelerate the appearance of type 1 diabetes (T1D), which is now a relatively frequent comorbidity in patients with obesity. It is a common clinical finding that not all patients with obesity will develop diabetes at the same level of adiposity, with gender, genetic, and ethnic factors playing an important role in defining the timing of diabetes appearance. The adipose tissue (AT) expandability hypothesis explains this paradigm, indicating that the individual capacity to appropriately store energy surplus in the form of fat within the AT determines and prevents the toxic deposition of lipids in other organs, such as the pancreas. Thus, we posit that when the maximal storing capacity of AT is exceeded, individuals will develop T2D. In this review, we provide insight into mechanisms by which the AT controls pancreas lipid content and homeostasis in case of obesity to offer an adipocentric perspective of pancreatic lipotoxicity in the pathogenesis of diabetes. Moreover, we suggest that improving AT function is a valid therapeutic approach to fighting obesity-associated complications including diabetes.
Collapse
|
Review |
1 |
|
15
|
Tan J, Virtue S, Norris DM, Conway OJ, Yang M, Bidault G, Gribben C, Lugtu F, Kamzolas I, Krycer JR, Mills RJ, Liang L, Pereira C, Dale M, Shun-Shion AS, Baird HJ, Horscroft JA, Sowton AP, Ma M, Carobbio S, Petsalaki E, Murray AJ, Gershlick DC, Nathan JA, Hudson JE, Vallier L, Fisher-Wellman KH, Frezza C, Vidal-Puig A, Fazakerley DJ. Limited oxygen in standard cell culture alters metabolism and function of differentiated cells. EMBO J 2024; 43:2127-2165. [PMID: 38580776 PMCID: PMC11148168 DOI: 10.1038/s44318-024-00084-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/20/2024] [Accepted: 03/03/2024] [Indexed: 04/07/2024] Open
Abstract
The in vitro oxygen microenvironment profoundly affects the capacity of cell cultures to model physiological and pathophysiological states. Cell culture is often considered to be hyperoxic, but pericellular oxygen levels, which are affected by oxygen diffusivity and consumption, are rarely reported. Here, we provide evidence that several cell types in culture actually experience local hypoxia, with important implications for cell metabolism and function. We focused initially on adipocytes, as adipose tissue hypoxia is frequently observed in obesity and precedes diminished adipocyte function. Under standard conditions, cultured adipocytes are highly glycolytic and exhibit a transcriptional profile indicative of physiological hypoxia. Increasing pericellular oxygen diverted glucose flux toward mitochondria, lowered HIF1α activity, and resulted in widespread transcriptional rewiring. Functionally, adipocytes increased adipokine secretion and sensitivity to insulin and lipolytic stimuli, recapitulating a healthier adipocyte model. The functional benefits of increasing pericellular oxygen were also observed in macrophages, hPSC-derived hepatocytes and cardiac organoids. Our findings demonstrate that oxygen is limiting in many terminally-differentiated cell types, and that considering pericellular oxygen improves the quality, reproducibility and translatability of culture models.
Collapse
|
research-article |
1 |
|
16
|
Stefanucci L, Moslemi C, Tomé AR, Virtue S, Bidault G, Gleadall NS, Watson LPE, Kwa JE, Burden F, Farrow S, Chen J, Võsa U, Burling K, Walker L, Ord J, Barker P, Warner J, Frary A, Renhstrom K, Ashford SE, Piper J, Biggs G, Erber WN, Hoffman GJ, Schoenmakers N, Erikstrup C, Rieneck K, Dziegiel MH, Ullum H, Azzu V, Vacca M, Aparicio HJ, Hui Q, Cho K, Sun YV, Wilson PW, Bayraktar OA, Vidal-Puig A, Ostrowski SR, Astle WJ, Olsson ML, Storry JR, Pedersen OB, Ouwehand WH, Chatterjee K, Vuckovic D, Frontini M. SMIM1 absence is associated with reduced energy expenditure and excess weight. MED 2024; 5:1083-1095.e6. [PMID: 38906141 PMCID: PMC7617389 DOI: 10.1016/j.medj.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/06/2023] [Accepted: 05/29/2024] [Indexed: 06/23/2024]
Abstract
BACKGROUND Obesity rates have nearly tripled in the past 50 years, and by 2030 more than 1 billion individuals worldwide are projected to be obese. This creates a significant economic strain due to the associated non-communicable diseases. The root cause is an energy expenditure imbalance, owing to an interplay of lifestyle, environmental, and genetic factors. Obesity has a polygenic genetic architecture; however, single genetic variants with large effect size are etiological in a minority of cases. These variants allowed the discovery of novel genes and biology relevant to weight regulation and ultimately led to the development of novel specific treatments. METHODS We used a case-control approach to determine metabolic differences between individuals homozygous for a loss-of-function genetic variant in the small integral membrane protein 1 (SMIM1) and the general population, leveraging data from five cohorts. Metabolic characterization of SMIM1-/- individuals was performed using plasma biochemistry, calorimetric chamber, and DXA scan. FINDINGS We found that individuals homozygous for a loss-of-function genetic variant in SMIM1 gene, underlying the blood group Vel, display excess body weight, dyslipidemia, altered leptin to adiponectin ratio, increased liver enzymes, and lower thyroid hormone levels. This was accompanied by a reduction in resting energy expenditure. CONCLUSION This research identified a novel genetic predisposition to being overweight or obese. It highlights the need to investigate the genetic causes of obesity to select the most appropriate treatment given the large cost disparity between them. FUNDING This work was funded by the National Institute of Health Research, British Heart Foundation, and NHS Blood and Transplant.
Collapse
|
research-article |
1 |
|
17
|
Tan J, Virtue S, Norris DM, Conway OJ, Yang M, Bidault G, Gribben C, Lugtu F, Kamzolas I, Krycer JR, Mills RJ, Liang L, Pereira C, Dale M, Shun-Shion AS, Baird HJ, Horscroft JA, Sowton AP, Ma M, Carobbio S, Petsalaki E, Murray AJ, Gershlick DC, Nathan JA, Hudson JE, Vallier L, Fisher-Wellman KH, Frezza C, Vidal-Puig A, Fazakerley DJ. Author Correction: Limited oxygen in standard cell culture alters metabolism and function of differentiated cells. EMBO J 2024; 43:4439. [PMID: 39242789 PMCID: PMC11445423 DOI: 10.1038/s44318-024-00230-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024] Open
|
Published Erratum |
1 |
|
18
|
Dearden L, Furigo IC, Pantaleão LC, Wong LWP, Fernandez-Twinn DS, de Almeida-Faria J, Kentistou KA, Carreira MV, Bidault G, Vidal-Puig A, Ong KK, Perry JRB, Donato J, Ozanne SE. Maternal obesity increases hypothalamic miR-505-5p expression in mouse offspring leading to altered fatty acid sensing and increased intake of high-fat food. PLoS Biol 2024; 22:e3002641. [PMID: 38833481 PMCID: PMC11149872 DOI: 10.1371/journal.pbio.3002641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 04/25/2024] [Indexed: 06/06/2024] Open
Abstract
In utero exposure to maternal obesity programs increased obesity risk. Animal models show that programmed offspring obesity is preceded by hyperphagia, but the mechanisms that mediate these changes are unknown. Using a mouse model of maternal obesity, we observed increased intake of a high-fat diet (HFD) in offspring of obese mothers that precedes the development of obesity. Through small RNA sequencing, we identified programmed overexpression of hypothalamic miR-505-5p that is established in the fetus, lasts to adulthood and is maintained in hypothalamic neural progenitor cells cultured in vitro. Metabolic hormones and long-chain fatty acids associated with obesity increase miR-505-5p expression in hypothalamic neurons in vitro. We demonstrate that targets of miR-505-5p are enriched in fatty acid metabolism pathways and overexpression of miR-505-5p decreased neuronal fatty acid metabolism in vitro. miR-505-5p targets are associated with increased BMI in human genetic studies. Intra-cerebroventricular injection of miR-505-5p in wild-type mice increased HFD intake, mimicking the phenotype observed in offspring exposed to maternal obesity. Conversely, maternal exercise intervention in an obese mouse pregnancy rescued the programmed increase of hypothalamic miR-505-5p in offspring of obese dams and reduced HFD intake to control offspring levels. This study identifies a novel mechanism by which maternal obesity programs obesity in offspring via increased intake of high-fat foods.
Collapse
|
research-article |
1 |
|