1
|
Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. JOURNAL OF BIOMOLECULAR NMR 1995; 6:277-93. [PMID: 8520220 DOI: 10.1007/bf00197809] [Citation(s) in RCA: 12043] [Impact Index Per Article: 401.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The NMRPipe system is a UNIX software environment of processing, graphics, and analysis tools designed to meet current routine and research-oriented multidimensional processing requirements, and to anticipate and accommodate future demands and developments. The system is based on UNIX pipes, which allow programs running simultaneously to exchange streams of data under user control. In an NMRPipe processing scheme, a stream of spectral data flows through a pipeline of processing programs, each of which performs one component of the overall scheme, such as Fourier transformation or linear prediction. Complete multidimensional processing schemes are constructed as simple UNIX shell scripts. The processing modules themselves maintain and exploit accurate records of data sizes, detection modes, and calibration information in all dimensions, so that schemes can be constructed without the need to explicitly define or anticipate data sizes or storage details of real and imaginary channels during processing. The asynchronous pipeline scheme provides other substantial advantages, including high flexibility, favorable processing speeds, choice of both all-in-memory and disk-bound processing, easy adaptation to different data formats, simpler software development and maintenance, and the ability to distribute processing tasks on multi-CPU computers and computer networks.
Collapse
|
|
30 |
12043 |
2
|
Dong H, Zhu G, Tamada K, Chen L. B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat Med 1999; 5:1365-9. [PMID: 10581077 DOI: 10.1038/70932] [Citation(s) in RCA: 1949] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The B7 family members B7-1 and B7-2 interact with CD28 and constitute an essential T-cell co-stimulatory pathway in the initiation of antigen-specific humoral and cell-mediated immune response. Here, we describe a third member of the B7 family, called B7-H1 that does not bind CD28, cytotoxic T-lymphocyte A4 or ICOS (inducible co-stimulator). Ligation of B7-H1 co-stimulated T-cell responses to polyclonal stimuli and allogeneic antigens, and preferentially stimulated the production of interleukin-10. Interleukin-2, although produced in small amounts, was required for the effect of B7-H1 co-stimulation. Our studies thus define a previously unknown co-stimulatory molecule that may be involved in the negative regulation of cell-mediated immune responses.
Collapse
|
Comparative Study |
26 |
1949 |
3
|
Ikura M, Clore GM, Gronenborn AM, Zhu G, Klee CB, Bax A. Solution structure of a calmodulin-target peptide complex by multidimensional NMR. Science 1992; 256:632-8. [PMID: 1585175 DOI: 10.1126/science.1585175] [Citation(s) in RCA: 941] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The three-dimensional solution structure of the complex between calcium-bound calmodulin (Ca(2+)-CaM) and a 26-residue synthetic peptide comprising the CaM binding domain (residues 577 to 602) of skeletal muscle myosin light chain kinase, has been determined using multidimensional heteronuclear filtered and separated nuclear magnetic resonance spectroscopy. The two domains of CaM (residues 6 to 73 and 83 to 146) remain essentially unchanged upon complexation. The long central helix (residues 65 to 93), however, which connects the two domains in the crystal structure of Ca(2+)-CaM, is disrupted into two helices connected by a long flexible loop (residues 74 to 82), thereby enabling the two domains to clamp residues 3 to 21 of the bound peptide, which adopt a helical conformation. The overall structure of the complex is globular, approximating an ellipsoid of dimensions 47 by 32 by 30 angstroms. The helical peptide is located in a hydrophobic channel that passes through the center of the ellipsoid at an angle of approximately 45 degrees with its long axis. The complex is mainly stabilized by hydrophobic interactions which, from the CaM side, involve an unusually large number of methionines. Key residues of the peptide are Trp4 and Phe17, which serve to anchor the amino- and carboxyl-terminal halves of the peptide to the carboxyl- and amino-terminal domains of CaM, respectively. Sequence comparisons indicate that a number of peptides that bind CaM with high affinity share this common feature containing either aromatic residues or long-chain hydrophobic ones separated by a stretch of 12 residues, suggesting that they interact with CaM in a similar manner.
Collapse
|
|
33 |
941 |
4
|
Chapoval AI, Ni J, Lau JS, Wilcox RA, Flies DB, Liu D, Dong H, Sica GL, Zhu G, Tamada K, Chen L. B7-H3: a costimulatory molecule for T cell activation and IFN-gamma production. Nat Immunol 2001; 2:269-74. [PMID: 11224528 DOI: 10.1038/85339] [Citation(s) in RCA: 782] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We describe here a newly identified member of the human B7 family, designated B7 homolog 3 (B7-H3), that shares 20-27% amino acid identity with other B7 family members. B7-H3 mRNA is not detectable in peripheral blood mononuclear cells, although it is found in various normal tissues and in several tumor cell lines. Expression of B7-H3 protein, however, can be induced on dendritic cells (DCs) and monocytes by inflammatory cytokines and a combination of phorbol myristate acetate (PMA) + ionomycin. Soluble B7-H3 protein binds a putative counter-receptor on activated T cells that is distinct from CD28, cytotoxic T lymphocyte antigen 4 (CTLA-4), inducible costimulator (ICOS) and PD-1. B7-H3 costimulates proliferation of both CD4+ and CD8+ T cells, enhances the induction of cytotoxic T cells and selectively stimulates interferon gamma (IFN-gamma) production in the presence of T cell receptor signaling. In contrast, inclusion of antisense B7-H3 oligonucleotides decreases the expression of B7-H3 on DCs and inhibits IFN-gamma production by DC-stimulated allogeneic T cells.Thus, we describe a newly identified costimulatory pathway that may participate in the regulation of cell-mediated immune responses.
Collapse
|
|
24 |
782 |
5
|
Noginov MA, Zhu G, Belgrave AM, Bakker R, Shalaev VM, Narimanov EE, Stout S, Herz E, Suteewong T, Wiesner U. Demonstration of a spaser-based nanolaser. Nature 2009; 460:1110-2. [PMID: 19684572 DOI: 10.1038/nature08318] [Citation(s) in RCA: 659] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Accepted: 07/24/2009] [Indexed: 11/09/2022]
Abstract
One of the most rapidly growing areas of physics and nanotechnology focuses on plasmonic effects on the nanometre scale, with possible applications ranging from sensing and biomedicine to imaging and information technology. However, the full development of nanoplasmonics is hindered by the lack of devices that can generate coherent plasmonic fields. It has been proposed that in the same way as a laser generates stimulated emission of coherent photons, a 'spaser' could generate stimulated emission of surface plasmons (oscillations of free electrons in metallic nanostructures) in resonating metallic nanostructures adjacent to a gain medium. But attempts to realize a spaser face the challenge of absorption loss in metal, which is particularly strong at optical frequencies. The suggestion to compensate loss by optical gain in localized and propagating surface plasmons has been implemented recently and even allowed the amplification of propagating surface plasmons in open paths. Still, these experiments and the reported enhancement of the stimulated emission of dye molecules in the presence of metallic nanoparticles lack the feedback mechanism present in a spaser. Here we show that 44-nm-diameter nanoparticles with a gold core and dye-doped silica shell allow us to completely overcome the loss of localized surface plasmons by gain and realize a spaser. And in accord with the notion that only surface plasmon resonances are capable of squeezing optical frequency oscillations into a nanoscopic cavity to enable a true nanolaser, we show that outcoupling of surface plasmon oscillations to photonic modes at a wavelength of 531 nm makes our system the smallest nanolaser reported to date-and to our knowledge the first operating at visible wavelengths. We anticipate that now it has been realized experimentally, the spaser will advance our fundamental understanding of nanoplasmonics and the development of practical applications.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
16 |
659 |
6
|
Zhu G, Mallery SR, Schwendeman SP. Stabilization of proteins encapsulated in injectable poly (lactide- co-glycolide). Nat Biotechnol 2000; 18:52-7. [PMID: 10625391 DOI: 10.1038/71916] [Citation(s) in RCA: 491] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Controlled release from biodegradable polymers is a novel approach to replace daily painful injections of protein drugs. A major obstacle to development of these polymers is the need to retain the structure and biological activity of encapsulated proteins during months of incubation under physiological conditions. We encapsulated bovine serum albumin (BSA) in injectable poly(DL-lactide- co-glycolide) (PLGA) 50/50 cylindrical implants and determined the mechanism of BSA instability. Simulations of the polymer microclimate revealed that moisture and acidic pH (<3) triggered unfolding of encapsulated BSA, resulting in peptide bond hydrolysis and noncovalent aggregation. To neutralize the acids liberated by the biodegradable lactic/glycolic acid-based polyester, we coincorporated into the polymer an antacid, Mg(OH)2, which increased microclimate pH and prevented BSA structural losses and aggregation for over one month. We successfully applied this stabilization approach in both cylinder- and microsphere-injectable configurations and for delivery of angiogenic basic fibroblast growth factor and bone-regenerating bone morphogenetic protein-2.
Collapse
|
|
25 |
491 |
7
|
Bax A, Vuister GW, Grzesiek S, Delaglio F, Wang AC, Tschudin R, Zhu G. Measurement of homo- and heteronuclear J couplings from quantitative J correlation. Methods Enzymol 1994; 239:79-105. [PMID: 7830604 DOI: 10.1016/s0076-6879(94)39004-5] [Citation(s) in RCA: 333] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
Review |
31 |
333 |
8
|
Bai D, Zhu G, Pennefather P, Jackson MF, MacDonald JF, Orser BA. Distinct functional and pharmacological properties of tonic and quantal inhibitory postsynaptic currents mediated by gamma-aminobutyric acid(A) receptors in hippocampal neurons. Mol Pharmacol 2001; 59:814-24. [PMID: 11259626 DOI: 10.1124/mol.59.4.814] [Citation(s) in RCA: 279] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
gamma-Aminobutyric acid (GABA), the principal inhibitory neurotransmitter, activates a persistent low amplitude tonic current in several brain regions in addition to conventional synaptic currents. Here we demonstrate that GABA(A) receptors mediating the tonic current in hippocampal neurons exhibit functional and pharmacological properties different from those of quantal synaptic currents. Patch-clamp techniques were used to characterize miniature inhibitory postsynaptic currents (mIPSCs) and the tonic GABAergic current recorded in CA1 pyramidal neurons in rat hippocampal slices and in dissociated neurons grown in culture. The competitive GABA(A) receptor antagonists, bicuculline and picrotoxin, blocked both the mIPSCs and the tonic current. In contrast, mIPSCs but not the tonic current were inhibited by gabazine (SR-95531). Coapplication experiments and computer simulations revealed that gabazine bound to the receptors responsible for the tonic current but did not prevent channel activation. However, gabazine competitively inhibited bicuculline blockade. The unitary conductance of the GABA(A) receptors underlying the tonic current (approximately 6 pS) was less than the main conductance of channels activated during quantal synaptic transmission (approximately 15--30 pS). Furthermore, compounds that potentiate GABA(A) receptor function including the benzodiazepine, midazolam, and anesthetic, propofol, prolonged the duration of mIPSCs and increased tonic current amplitude in cultured neurons to different extents. Clinically-relevant concentrations of midazolam and propofol caused a greater increase in tonic current compared with mIPSCs, as measured by total charge transfer. In summary, the receptors underlying the tonic current are functionally and pharmacologically distinct from quantally activated synaptic receptors and these receptors represent a novel target for neurodepressive drugs.
Collapse
|
|
24 |
279 |
9
|
Tamada K, Shimozaki K, Chapoval AI, Zhu G, Sica G, Flies D, Boone T, Hsu H, Fu YX, Nagata S, Ni J, Chen L. Modulation of T-cell-mediated immunity in tumor and graft-versus-host disease models through the LIGHT co-stimulatory pathway. Nat Med 2000; 6:283-9. [PMID: 10700230 DOI: 10.1038/73136] [Citation(s) in RCA: 265] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
LIGHT was recently described as a member of the tumor necrosis factor (TNF) 'superfamily'. We have isolated a mouse homolog of human LIGHT and investigated its immunoregulatory functions in vitro and in vivo. LIGHT has potent, CD28-independent co-stimulatory activity leading to T-cell growth and secretion of gamma interferon and granulocyte-macrophage colony-stimulating factor. Gene transfer of LIGHT induced an antigen-specific cytolytic T-cell response and therapeutic immunity against established mouse P815 tumor. In contrast, blockade of LIGHT by administration of soluble receptor or antibody led to decreased cell-mediated immunity and ameliorated graft-versus-host disease. Our studies identify a previously unknown T-cell co-stimulatory pathway as a potential therapeutic target.
Collapse
|
|
25 |
265 |
10
|
Zhu G, Spellman PT, Volpe T, Brown PO, Botstein D, Davis TN, Futcher B. Two yeast forkhead genes regulate the cell cycle and pseudohyphal growth. Nature 2000; 406:90-4. [PMID: 10894548 DOI: 10.1038/35017581] [Citation(s) in RCA: 243] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
There are about 800 genes in Saccharomyces cerevisiae whose transcription is cell-cycle regulated. Some of these form clusters of co-regulated genes. The 'CLB2' cluster contains 33 genes whose transcription peaks early in mitosis, including CLB1, CLB2, SWI5, ACE2, CDC5, CDC20 and other genes important for mitosis. Here we find that the genes in this cluster lose their cell cycle regulation in a mutant that lacks two forkhead transcription factors, Fkh1 and Fkh2. Fkh2 protein is associated with the promoters of CLB2, SWI5 and other genes of the cluster. These results indicate that Fkh proteins are transcription factors for the CLB2 cluster. The fkh1 fkh2 mutant also displays aberrant regulation of the 'SIC1' cluster, whose member genes are expressed in the M-G1 interval and are involved in mitotic exit. This aberrant regulation may be due to aberrant expression of the transcription factors Swi5 and Ace2, which are members of the CLB2 cluster and controllers of the SIC1 cluster. Thus, a cascade of transcription factors operates late in the cell cycle. Finally, the fkh1 fkh2 mutant displays a constitutive pseudohyphal morphology, indicating that Fkh1 and Fkh2 may help control the switch to this mode of growth.
Collapse
|
|
25 |
243 |
11
|
Xu H, Paerl HW, Qin B, Zhu G, Hall NS, Wu Y. Determining critical nutrient thresholds needed to control harmful cyanobacterial blooms in eutrophic Lake Taihu, China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:1051-1059. [PMID: 25495555 DOI: 10.1021/es503744q] [Citation(s) in RCA: 233] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Nutrient overenrichment has led to dramatic increases in harmful cyanobacterial blooms, creating serious threats to drinking water supplies, ecological and economic sustainability of freshwater ecosystems. Nutrient-cyanobacterial bloom interactions were examined in eutrophic Lake Taihu, China. In situ microcosm nutrient dilution bioassays and mesocosm nutrient addition experiments were conducted to determine nitrogen (N) and phosphorus (P) concentration and load thresholds needed to control cyanobacterial bloom formation. Blooms were dominated by toxic, non N2 fixing Microcystis spp, from May to December. Dilution bioassays showed seasonality in nutrient limitation, with P-availability controlling prebloom spring conditions and N-availability controlling summer-fall blooms. Nutrient dilution and enrichment bioassays indicated that total nitrogen (TN) and total phosphorus (TP) concentration thresholds should be targeted at below 0.80 mg L(–1) and 0.05 mg L(–1), respectively, to limit intrinsic growth rates of Microcystis dominated blooms. Based on estimates of nutrient loading and observed stoichiometry of phytoplankton biomass, 61–71% TN and 20–46% TP reduction are necessary to bring Taihu’s phytoplankton biomass to “acceptable” sub-bloom conditions of less than 20 μg L(–1) chlorophyll a.
Collapse
|
|
10 |
233 |
12
|
Peter SJ, Miller ST, Zhu G, Yasko AW, Mikos AG. In vivo degradation of a poly(propylene fumarate)/beta-tricalcium phosphate injectable composite scaffold. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH 1998; 41:1-7. [PMID: 9641618 DOI: 10.1002/(sici)1097-4636(199807)41:1<1::aid-jbm1>3.0.co;2-n] [Citation(s) in RCA: 185] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This study was designed to investigate the in vivo biodegration and biocompatibility of a poly(propylene fumarate) (PPF)-based orthopedic biomaterial. The effects of varying the PPF to N-vinyl pyrrolidinone ratio and PPF to beta-tricalcium phosphate content were studied. The composite mechanical properties and local tissue interactions were analyzed over 12 weeks. An initial increase in both compressive modulus and strength was seen for composite formulations that incorporated beta-tricalcium phosphate. The samples incorporating a higher PPF to N-vinyl pyrrolidinone ratio reached a maximal compressive strength of 7.7 MPa and a maximal compressive modulus of 191.4 MPa at 3 weeks. The lower PPF to N-vinyl pyrrolidinone ratio samples gained a maximum compressive strength of 7.5 MPa initially and a compressive modulus of 134.0 MPa at 1 week. At 6 weeks, all samples for formulations incorporating beta-tricalcium phosphate crumbled upon removal and were not mechanically tested. Samples that did not incorporate beta-tricalcium phosphate were very weak and insufficient for bone replacement at the 4-day time point and beyond. Tissue interactions resulted in a mild inflammatory response at the initial time points and mature fibrous encapsulation by 12 weeks.
Collapse
|
|
27 |
185 |
13
|
Zhu G, Duffy DL, Eldridge A, Grace M, Mayne C, O'Gorman L, Aitken JF, Neale MC, Hayward NK, Green AC, Martin NG. A major quantitative-trait locus for mole density is linked to the familial melanoma gene CDKN2A: a maximum-likelihood combined linkage and association analysis in twins and their sibs. Am J Hum Genet 1999; 65:483-92. [PMID: 10417291 PMCID: PMC1377947 DOI: 10.1086/302494] [Citation(s) in RCA: 180] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Important risk factors for melanoma are densely clustered melanocytic nevi (common moles) and mutations in the p16 (CDKN2A) gene. Nevi may be subclassified as raised or flat. In our sample, raised nevi were 27% of the total, and the two kinds had a correlation of.33. Correlations for total-nevus count (TNC) in 153 MZ and 199 DZ twin pairs were.94 and.60, respectively, which are compatible with a very-high degree of genetic determination. We hypothesized that some of the genetic variance might be due to variation in the p16 gene. Analysis of linkage to a highly polymorphic marker (D9S942), located close to p16, detected quantitative-trait-loci (QTL) effects accounting for 27% of variance in TNC, rising to 33% if flat but not raised moles were considered. Total heritability was higher for raised (.69) than for flat (.42) moles, but QTL linkage was 0 for raised moles, whereas it accounted for 80% of the heritability of flat moles; additionally, family environment accounted for only 15% of variance in raised versus 46% in flat moles. These findings suggest that raised and flat nevi have very different etiologies. Longer alleles at D9S942 were associated with higher flat-mole counts, and a novel modification to a within-sibship association test showed that this association is genuine and not due to population stratification, although it accounts for only 1% of total variance. Since germline mutations in the exons of CDKN2A are rare, it is likely that variants in the noncoding regions of this gene, or in another gene nearby, are responsible for this major determinant of moliness and, hence, of melanoma risk.
Collapse
|
research-article |
26 |
180 |
14
|
McLaughlin L, Zhu G, Mistry M, Ley-Ebert C, Stuart WD, Florio CJ, Groen PA, Witt SA, Kimball TR, Witte DP, Harmony JA, Aronow BJ. Apolipoprotein J/clusterin limits the severity of murine autoimmune myocarditis. J Clin Invest 2000; 106:1105-13. [PMID: 11067863 PMCID: PMC301413 DOI: 10.1172/jci9037] [Citation(s) in RCA: 171] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Apolipoprotein J/clusterin (apoJ/clusterin), an intriguing protein with unknown function, is induced in myocarditis and numerous other inflammatory injuries. To test its ability to modify myosin-induced autoimmune myocarditis, we generated apoJ-deficient mice. ApoJ-deficient and wild-type mice exhibited similar initial onset of myocarditis, as evidenced by the induction of two early markers of the T cell-mediated immune response, MHC-II and TNF receptor p55. Furthermore, autoantibodies against the primary antigen cardiac myosin were induced to the same extent. Although the same proportion of challenged animals exhibited some degree of inflammatory infiltrate, inflammation was more severe in apoJ-deficient animals. Inflammatory lesions were more diffuse and extensive in apoJ-deficient mice, particularly in females. In marked contrast to wild-type animals, the development of a strong generalized secondary response against cardiac antigens in apoJ-deficient mice was predictive of severe myocarditis. Wild-type mice with a strong Ab response to secondary antigens appeared to be protected from severe inflammation. After resolution of inflammation, apoJ-deficient, but not wild-type, mice exhibited cardiac function impairment and severe myocardial scarring. These results suggest that apoJ limits progression of autoimmune myocarditis and protects the heart from postinflammatory tissue destruction.
Collapse
|
research-article |
25 |
171 |
15
|
Mehler MF, Mabie PC, Zhu G, Gokhan S, Kessler JA. Developmental changes in progenitor cell responsiveness to bone morphogenetic proteins differentially modulate progressive CNS lineage fate. Dev Neurosci 2000; 22:74-85. [PMID: 10657700 DOI: 10.1159/000017429] [Citation(s) in RCA: 169] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Although multipotent progenitor cells capable of generating neurons, astrocytes and oligodendrocytes are present within the germinal zones of the brain throughout embryonic, postnatal and adult life, the different neural cell types are generated within discrete temporospatial developmental windows. This might suggest that multipotent progenitor cells encounter different signals during each developmental stage, thus accounting for separate waves of lineage commitment and cellular differentiation. This study demonstrates, however, that progenitor cell responses to the same class of signals, the bone morphogenetic proteins (BMPs), change during ontogeny, and that these same signals may thus initiate progenitor cell elaboration of several different lineages. BMPs promote cell death and inhibit the proliferation of early (embryonic day 13, E13) ventricular zone progenitor cells. At later embryonic (E16) stages of cerebral cortical development, BMPs exhibit a concentration-dependent dissociation of cellular actions, with either enhancement of neuronal and astroglial elaboration (at 1-10 ng/ml) or potentiation of cell death (at 100 ng/ml). Finally, during the period of perinatal cortical gliogenesis, BMPs enhance astroglial lineage elaboration. By contrast, oligodendroglial lineage elaboration is inhibited by the BMPs at all stages. Further, application of the BMP antagonist noggin to cultured progenitors promotes the generation of oligodendrocytes, indicating that endogenous BMP signaling can actively suppress oligodendrogliogenesis. These observations suggest that developmental changes in neural progenitor cell responsiveness to the BMPs may represent a novel mechanism for orchestrating context-specific cellular events such as lineage elaboration and cellular viability.
Collapse
|
|
25 |
169 |
16
|
Tamura H, Dong H, Zhu G, Sica GL, Flies DB, Tamada K, Chen L. B7-H1 costimulation preferentially enhances CD28-independent T-helper cell function. Blood 2001; 97:1809-16. [PMID: 11238124 DOI: 10.1182/blood.v97.6.1809] [Citation(s) in RCA: 169] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
B7-H1 is a recently described B7-like molecule that costimulates T-cell growth and cytokine secretion without binding to CD28, cytotoxic T-lymphocyte antigen-4 (CTLA-4), and inducible costimulator (ICOS). In this report, a mouse homologue of human B7-H1 is identified, and its immunologic functions are studied in vitro and in vivo. Mouse B7-H1 shares 69% amino acid homology to the human counterpart. Similar to human B7-H1, mouse B7-H1 can be induced to express on macrophages, T cells, and B cells and to enhance T-cell proliferation and secretion of interleukin-10 (IL-10), interferon-gamma, and granulocyte-macrophage colony-stimulating factor but not IL-2 and IL-4. Furthermore, B7-H1 preferentially costimulates CD4+ T cells independently of CD28 and enhances mixed lymphocyte responses to allogeneic antigens. In contrast to B7-1, expression of B7-H1 on murine P815 tumor cells by transfection fails to increase allogeneic and syngeneic cytolytic T-cell responses in vitro and in vivo. Administration of B7-H1Ig fusion protein, however, enhances keyhole limpet hemocyanin- specific T-cell proliferation and 2,4,6-trinitrophenyl-specific immunoglobulin G2a antibody production. The study thus identifies a unique costimulatory pathway that preferentially affects T-helper cell functions.
Collapse
|
Comparative Study |
24 |
169 |
17
|
Zhu G, Wang Y, Huang B, Liang J, Ding Y, Xu A, Wu W. A Rac1/PAK1 cascade controls β-catenin activation in colon cancer cells. Oncogene 2011; 31:1001-12. [PMID: 21822311 DOI: 10.1038/onc.2011.294] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
P21-activated kinase 1 (PAK1) is associated with colon cancer progression and metastasis, whereas the molecular mechanism remains elusive. Here, we show that downregulation of PAK1 in colon cancer cells reduces total β-catenin level, as well as cell proliferation. Mechanistically, PAK1 directly phosphorylates β-catenin proteins at Ser675 site and this leads to more stable and transcriptional active β-catenin. Corroborating these results, PAK1 is required for full Wnt signaling, and superactivation of β-catenin is achieved by simultaneous knockdown of adenomatous polyposis coli protein and activation of PAK1. Moreover, we show that Rac1 functions upstream of PAK1 in colon cancer cells and contributes to β-catenin phosphorylation and accumulation. We conclude that a Rac1/PAK1 cascade controls β-catenin S675 phosphorylation and full activation in colon cancer cells. Supporting this conclusion, overexpression of PAK1 is observed in 70% of colon cancer samples and is correlated with massive β-catenin accumulation.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
154 |
18
|
Jiang XH, Wong BC, Lin MC, Zhu GH, Kung HF, Jiang SH, Yang D, Lam SK. Functional p53 is required for triptolide-induced apoptosis and AP-1 and nuclear factor-kappaB activation in gastric cancer cells. Oncogene 2001; 20:8009-18. [PMID: 11753684 DOI: 10.1038/sj.onc.1204981] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2001] [Revised: 08/22/2001] [Accepted: 09/18/2001] [Indexed: 11/08/2022]
Abstract
Triptolide, a major component in the extract of Chinese herbal plant Tripterygium wilfordii Hook f (TWHf), has potential anti-neoplastic effect. In the present study we investigated the potential therapeutic effects and mechanisms of triptolide against human gastric cancer cells. Four gastric cancer cell lines with different p53 status, AGS and MKN-45 (wild type p53); MKN-28 and SGC-7901 (mutant p53) were observed as to cell growth inhibition and induction of apoptosis in response to triptolide treatment. We showed that triptolide inhibited cell growth, induced apoptosis and suppressed NK-kappaB and AP-1 transactivation in AGS cells with wild-type p53. Triptolide induced apoptosis by stimulating the expressions of p53, p21(waf1/cip1), bax protein, and increased the activity of caspases. In addition, it caused cell cycle arrest in the G(0)/G(1) phase. To examine the role of p53 in these functions, we showed that suppression of p53 level with antisense oligonucleotide abrogated triptolide-induced apoptosis and over-expression of dominant negative p53 abolished the inhibitory effect on NF-kappaB activation. Furthermore, we demonstrated that triptolide had differential effects on gastric cancer cells with different p53 status. We showed that triptolide also inhibited cell growth and induced apoptosis in MKN-45 with wild-type p53, whereas it had no significant growth-inhibition and apoptosis induction effects on the MKN-28 and SGC-7901 cells with mutant p53. Our data suggest that triptolide exhibits anti-tumor and anti-inflammatory effects by inhibiting cell proliferation, inducing apoptosis and inhibiting NF-kappaB and AP-1 transcriptional activity. However, a functional p53 is required for these proapoptotic, anti-inflammatory and anti-tumor effects.
Collapse
|
|
24 |
151 |
19
|
Zhu G, Xia Y, Nicholson LK, Sze KH. Protein dynamics measurements by TROSY-based NMR experiments. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2000; 143:423-426. [PMID: 10729271 DOI: 10.1006/jmre.2000.2022] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The described TROSY-based experiments for investigating backbone dynamics of proteins make it possible to elucidate internal motions in large proteins via measurements of T(1), T(2), and NOE of backbone (15)N nuclei. In our proposed sequences, the INEPT sequence is eliminated and the PEP sequence is replaced by the ST2-PT sequence from the HSQC-based experiments. This has the benefit of shortening the pulse sequences by 5.4 ms (=1/2J) and results in an increase in the intrinsic sensitivity of the proposed TROSY-based experiments. The TROSY-based experiments are on average of 13% more sensitive than the corresponding HSQC-based experiments on a uniformly (15)N-labeled Xenopus laevis calcium-bound calmodulin sample on a 750-MHz spectrometer at 5 degrees C. The amide proton linewidths of the TROSY-based experiments are 2-13 Hz narrower than those of the HSQC experiments. More sensitivity gain and higher resolution are expected if the protein sample is deuterated.
Collapse
|
|
25 |
150 |
20
|
Zhu G, Ye N, Zhang J. Glucose-induced delay of seed germination in rice is mediated by the suppression of ABA catabolism rather than an enhancement of ABA biosynthesis. PLANT & CELL PHYSIOLOGY 2009; 50:644-51. [PMID: 19208695 DOI: 10.1093/pcp/pcp022] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Both glucose and ABA play crucial roles in the regulation of seed germination and post-germination development. In Arabidopsis thaliana, up-regulation of ABA biosynthesis is suggested as one of the possible mechanisms mediating the glucose-induced delay in seed germination. Since the endogenous ABA level is controlled by the equilibrium between ABA biosynthesis and catabolism, we investigated how this equilibrium is related to the regulation of seed germination by glucose in rice. When ABA biosynthesis was inhibited by nordihydroguaiaretic acid (NDGA), an inhibitor of the ABA anabolic enzyme 9-cis-epoxycarotenoid dioxygenase (NCED), rice seed germination showed no response. In contrast, inhibition of ABA catabolism by diniconazole significantly arrested seed germination, suggesting that the regulation of ABA catabolism plays a major role. Further experiments indicated that the expression of OsABA8ox3, a key gene in ABA catabolism and encoding ABA 8'-hydroxylase in rice, was significantly increased during the first 6 h of imbibition, which was consistent with the decline of ABA content in the imbibed seeds. Expression of OsABA8ox genes, especially OsABA8ox2 and OsABA8ox3, was sensitively suppressed in the presence of exogenously supplied glucose. In contrast, the expression profiles of OsNCED genes that control the limiting step of ABA biosynthesis showed no significant changes in response to low levels of glucose. Our results demonstrated that the glucose-induced delay of seed germination is a result of the suppression of ABA catabolism rather than any enhancement of ABA biosynthesis during rice seed germination.
Collapse
|
|
16 |
144 |
21
|
Otten TG, Xu H, Qin B, Zhu G, Paerl HW. Spatiotemporal patterns and ecophysiology of toxigenic microcystis blooms in Lake Taihu, China: implications for water quality management. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:3480-3488. [PMID: 22324444 DOI: 10.1021/es2041288] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Whole lake monitoring of hypertrophic Lake Taihu, China, was conducted during the summers of 2009-2010, with the intent of identifying environmental factors influencing Microcystis bloom formation and promoting the growth of toxigenic strains (mcyE possessing). Low N:P ratios (replete N & P)appeared to select for toxigenic populations of Microcystis spp., whereas nontoxic Microcystis spp. strains were dominant in more nutrient limited regions of the lake. Chlorophyll a (Adj. R(2) = 0.83, p < 0.0001) was equally predicative of microcystin variance across the lake as fluorescence based real-time quantitative PCR (qPCR) measurements of microcystin synthetase E (mcyE) gene equivalents (Adj. R(2) = 0.85, p < 0.0001). Interestingly, chlorophyll a was identified as a more robust and useful metric for predicting microcystin concentrations than qPCR measurements enumerating the total Microcystis population based on c-phycocyanin (α subunit; cpcA) gene equivalents (Adj. R(2) = 0.61, p < 0.0001). Overall, the lakewide composition of Microcystis spp. was highly variable over time and space, and on average the population consisted of 36 ± 12% potentially toxic cells. On the basis of this study's findings, a framework for the design and implementation of a water safety plan for Taihu water quality managers and public health officials is proposed.
Collapse
|
|
13 |
135 |
22
|
Whitfield JB, Cullen LM, Jazwinska EC, Powell LW, Heath AC, Zhu G, Duffy DL, Martin NG. Effects of HFE C282Y and H63D polymorphisms and polygenic background on iron stores in a large community sample of twins. Am J Hum Genet 2000; 66:1246-58. [PMID: 10739755 PMCID: PMC1288192 DOI: 10.1086/302862] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/1999] [Accepted: 01/31/2000] [Indexed: 11/03/2022] Open
Abstract
The aim of this study was to assess and to compare the role of HFE polymorphisms and other genetic factors in variation in iron stores. Blood samples were obtained from 3,375 adult male and female twins (age range 29-82 years) recruited from the Australian Twin Registry. There were 1,233 complete pairs (562 monozygotic and 571 dizygotic twins). Serum iron, transferrin, transferrin saturation with iron, and ferritin were measured, and the HFE C282Y and H63D genotypes were determined. The frequency of the C282Y allele was.072, and that of the H63D allele was.141. Significant sources of variation in the indices of iron status included age, sex, age-sex interaction, body-mass index, and both the C282Y and H63D genotypes. The iron, transferrin, and saturation values of CC and CY subjects differed significantly, but the ferritin values did not. After correction for age and body-mass index, 23% and 31% of the variance in iron, 66% and 49% of the variance in transferrin, 33% and 47% of the variance in transferrin saturation, and 47% and 47% of the variance in ferritin could be explained by additive genetic factors, for men and women, respectively. HFE C282Y and H63D variation accounted for <5% of the corrected phenotypic variance, except for saturation (12% in women and 5% in men). We conclude that HFE CY and HD heterozygotes differ in iron status from the CC and HH homozygotes and that serum transferrin saturation is more affected than is serum ferritin. There are highly significant effects of other as-yet-unidentified genes on iron stores, in addition to HFE genotype.
Collapse
|
Twin Study |
25 |
132 |
23
|
Ye N, Zhu G, Liu Y, Zhang A, Li Y, Liu R, Shi L, Jia L, Zhang J. Ascorbic acid and reactive oxygen species are involved in the inhibition of seed germination by abscisic acid in rice seeds. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:1809-22. [PMID: 22200664 PMCID: PMC3295380 DOI: 10.1093/jxb/err336] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The antagonism between abscisic acid (ABA) and gibberellin (GA) plays a key role in controlling seed germination, but the mechanism of antagonism during this process is not known. The possible links among ABA, reactive oxygen species (ROS), ascorbic acid (ASC), and GA during rice seed germination were investigated. Unlike in non-seed tissues where ROS production is increased by ABA, ABA reduced ROS production in imbibed rice seeds, especially in the embryo region. Such reduced ROS also led to an inhibition of ASC production. GA accumulation was also suppressed by a reduced ROS and ASC level, which was indicated by the inhibited expression of GA biosynthesis genes, amylase genes, and enzyme activity. Application of exogenous ASC can partially rescue seed germination from ABA treatment. Production of ASC, which acts as a substrate in GA biosynthesis, was significantly inhibited by lycorine which thus suppressed the accumulation of GA. Consequently, expression of GA biosynthesis genes was suppressed by the low levels of ROS and ASC in ABA-treated seeds. It can be concluded that ABA regulates seed germination in multiple dimensions. ROS and ASC are involved in its inhibition of GA biosynthesis.
Collapse
|
research-article |
13 |
122 |
24
|
Goldstein AS, Zhu G, Morris GE, Meszlenyi RK, Mikos AG. Effect of osteoblastic culture conditions on the structure of poly(DL-lactic-co-glycolic acid) foam scaffolds. TISSUE ENGINEERING 1999; 5:421-34. [PMID: 10586098 DOI: 10.1089/ten.1999.5.421] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Poly(DL-lactic-co-glycolic acid) (PLGA) foams are an osteoconductive support that holds promise for the development of bone tissue in vitro and implantation into orthopedic defects. Because it is desirable that foams maintain their shape and size, we examined a variety of foams cultured in vitro with osteoblastic cells. Foams were prepared with different porosities and pore sizes by the method of solvent casting/porogen leaching using 80, 85, and 90 wt% NaCl sieved with particle sizes of 150-300 and 300-500 microm and characterized by mercury intrusion porosimetry. Foams seeded with cells were found to have volumes after 7 days in static culture that decreased with increasing porosity: the least porous exhibited no change in volume while the most porous foams decreased by 39 +/- 10%. In addition, a correlation was observed between decreasing foam volume after 7 days in culture and decreasing internal surface area of the foams prior to seeding. Furthermore, foams prepared with the 300-500 microm porogen had lower porosities, greater mean wall thicknesses between adjacent pores, and larger volumes after 7 days in culture than those prepared with the smaller porogen. Two culture conditions for maintaining cells, static and agitated (in a rotary vessel), were found to have similar influences on foam size, cell density, and osteoblastic function for 7 and 14 days in culture. Finally, we examined unseeded foams in aqueous solutions of pH 3.0, 5.0, and 7.4 and found no significant decrease in foam size with degradation. This study demonstrates that adherent osteoblastic cells may collapse very porous PLGA foams prepared by solvent casting/particulate leaching: a potentially undesirable property for repair of orthopedic defects.
Collapse
|
|
26 |
117 |
25
|
Whitfield JB, Zhu G, Heath AC, Powell LW, Martin NG. Effects of alcohol consumption on indices of iron stores and of iron stores on alcohol intake markers. Alcohol Clin Exp Res 2001. [PMID: 11505030 DOI: 10.1111/j.1530-0277.2001.tb02314.x] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Alcohol increases body iron stores. Alcohol and iron may increase oxidative stress and the risk of alcohol-related liver disease. The relationship between low or "safe" levels of alcohol use and indices of body iron stores, and the factors that affect the alcohol-iron relationship, have not been fully characterized. Other aspects of the biological response to alcohol use have been reported to depend on iron status. METHODS We have measured serum iron, transferrin, and ferritin as indices of iron stores in 3375 adult twin subjects recruited through the Australian Twin Registry. Information on alcohol use and dependence and smoking was obtained from questionnaires and interviews. RESULTS Serum iron and ferritin increased progressively across classes of alcohol intake. The effects of beer consumption were greater than those of wine or spirits. Ferritin concentration was significantly higher in subjects who had ever been alcohol dependent. There was no evidence of interactions between HFE genotype or body mass index and alcohol. Alcohol intake-adjusted carbohydrate-deficient transferrin was increased in women in the lowest quartile of ferritin results, whereas adjusted gamma-glutamyltransferase, aspartate aminotransferase, and alanine aminotransferase values were increased in subjects with high ferritin. CONCLUSIONS Alcohol intake at low level increases ferritin and, by inference, body iron stores. This may be either beneficial or harmful, depending on circumstances. The response of biological markers of alcohol intake can be affected by body iron stores; this has implications for test sensitivity and specificity and for variation in biological responses to alcohol use.
Collapse
|
Twin Study |
24 |
115 |