1
|
Marques PE, Amaral SS, Pires DA, Nogueira LL, Soriani FM, Lima BHF, Lopes GAO, Russo RC, Avila TV, Melgaço JG, Oliveira AG, Pinto MA, Lima CX, De Paula AM, Cara DC, Leite MF, Teixeira MM, Menezes GB. Chemokines and mitochondrial products activate neutrophils to amplify organ injury during mouse acute liver failure. Hepatology 2012; 56:1971-82. [PMID: 22532075 DOI: 10.1002/hep.25801] [Citation(s) in RCA: 254] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 04/16/2012] [Indexed: 12/12/2022]
Abstract
UNLABELLED Acetaminophen (APAP) is a safe analgesic and antipyretic drug. However, APAP overdose leads to massive hepatocyte death. Cell death during APAP toxicity occurs by oncotic necrosis, in which the release of intracellular contents can elicit a reactive inflammatory response. We have previously demonstrated that an intravascular gradient of chemokines and mitochondria-derived formyl peptides collaborate to guide neutrophils to sites of liver necrosis by CXC chemokine receptor 2 (CXCR2) and formyl peptide receptor 1 (FPR1), respectively. Here, we investigated the role of CXCR2 chemokines and mitochondrial products during APAP-induced liver injury and in liver neutrophil influx and hepatotoxicity. During APAP overdose, neutrophils accumulated into the liver, and blockage of neutrophil infiltration by anti-granulocyte receptor 1 depletion or combined CXCR2-FPR1 antagonism significantly prevented hepatotoxicity. In agreement with our in vivo data, isolated human neutrophils were cytotoxic to HepG2 cells when cocultured, and the mechanism of neutrophil killing was dependent on direct contact with HepG2 cells and the CXCR2-FPR1-signaling pathway. Also, in mice and humans, serum levels of both mitochondrial DNA (mitDNA) and CXCR2 chemokines were higher during acute liver injury, suggesting that necrosis products may reach remote organs through the circulation, leading to a systemic inflammatory response. Accordingly, APAP-treated mice exhibited marked systemic inflammation and lung injury, which was prevented by CXCR2-FPR1 blockage and Toll-like receptor 9 (TLR9) absence (TLR9(-/-) mice). CONCLUSION Chemokines and mitochondrial products (e.g., formyl peptides and mitDNA) collaborate in neutrophil-mediated injury and systemic inflammation during acute liver failure. Hepatocyte death is amplified by liver neutrophil infiltration, and the release of necrotic products into the circulation may trigger a systemic inflammatory response and remote lung injury.
Collapse
|
|
13 |
254 |
2
|
David BA, Rezende RM, Antunes MM, Santos MM, Freitas Lopes MA, Diniz AB, Sousa Pereira RV, Marchesi SC, Alvarenga DM, Nakagaki BN, Araújo AM, Dos Reis DS, Rocha RM, Marques PE, Lee WY, Deniset J, Liew PX, Rubino S, Cox L, Pinho V, Cunha TM, Fernandes GR, Oliveira AG, Teixeira MM, Kubes P, Menezes GB. Combination of Mass Cytometry and Imaging Analysis Reveals Origin, Location, and Functional Repopulation of Liver Myeloid Cells in Mice. Gastroenterology 2016; 151:1176-1191. [PMID: 27569723 DOI: 10.1053/j.gastro.2016.08.024] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 08/16/2016] [Accepted: 08/21/2016] [Indexed: 12/23/2022]
Abstract
BACKGROUND & AIMS Resident macrophages are derived from yolk sac precursors and seed the liver during embryogenesis. Native cells may be replaced by bone marrow precursors during extensive injuries, irradiation, and infections. We investigated the liver populations of myeloid immune cells and their location, as well as the dynamics of phagocyte repopulation after full depletion. The effects on liver function due to the substitution of original phagocytes by bone marrow-derived surrogates were also examined. METHODS We collected and analyzed liver tissues from C57BL/6 (control), LysM-EGFP, B6 ACTb-EGFP, CCR2-/-, CD11c-EYFP, CD11c-EYFP-DTR, germ-free mice, CX3CR1gfp/gfp, CX3CR1gpf/wt, and CX3CR1-DTR-EYFP. Liver nonparenchymal cells were immunophenotyped using mass cytometry and gene expression analyses. Kupffer and dendritic cells were depleted from mice by administration of clodronate, and their location and phenotype were examined using intravital microscopy and time-of-flight mass cytometry. Mice were given acetaminophen gavage or intravenous injections of fluorescently labeled Escherichia coli, blood samples were collected and analyzed, and liver function was evaluated. We assessed cytokine profiles of liver tissues using a multiplexed array. RESULTS Using mass cytometry and gene expression analyses, we identified 2 populations of hepatic macrophages and 2 populations of monocytes. We also identified 4 populations of dendritic cells and 1 population of basophils. After selective depletion of liver phagocytes, intravascular myeloid precursors began to differentiate into macrophages and dendritic cells; dendritic cells migrated out of sinusoids, after a delay, via the chemokine CX3CL1. The cell distribution returned to normal in 2 weeks, but the repopulated livers were unable to fully respond to drug-induced injury or clear bacteria for at least 1 month. This defect was associated with increased levels of inflammatory cytokines, and dexamethasone accelerated the repopulation of liver phagocytes. CONCLUSIONS In studies of hepatic phagocyte depletion in mice, we found that myeloid precursors can differentiate into liver macrophages and dendritic cells, which each localize to distinct tissue compartments. During replenishment, macrophages acquire the ability to respond appropriately to hepatic injury and to remove bacteria from the blood stream.
Collapse
|
|
9 |
159 |
3
|
Marques PE, Oliveira AG, Pereira RV, David BA, Gomides LF, Saraiva AM, Pires DA, Novaes JT, Patricio DO, Cisalpino D, Menezes-Garcia Z, Leevy WM, Chapman SE, Mahecha G, Marques RE, Guabiraba R, Martins VP, Souza DG, Mansur DS, Teixeira MM, Leite MF, Menezes GB. Hepatic DNA deposition drives drug-induced liver injury and inflammation in mice. Hepatology 2015; 61:348-60. [PMID: 24824608 DOI: 10.1002/hep.27216] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 05/08/2014] [Indexed: 12/12/2022]
Abstract
UNLABELLED Drug-induced liver injury (DILI) is an important cause of acute liver failure, with limited therapeutic options. During DILI, oncotic necrosis with concomitant release and recognition of intracellular content amplifies liver inflammation and injury. Among these molecules, self-DNA has been widely shown to trigger inflammatory and autoimmune diseases; however, whether DNA released from damaged hepatocytes accumulates into necrotic liver and the impact of its recognition by the immune system remains elusive. Here we show that treatment with two different hepatotoxic compounds (acetaminophen and thioacetamide) caused DNA release into the hepatocyte cytoplasm, which occurred in parallel with cell death in vitro. Administration of these compounds in vivo caused massive DNA deposition within liver necrotic areas, together with an intravascular DNA coating. Using confocal intravital microscopy, we revealed that liver injury due to acetaminophen overdose led to a directional migration of neutrophils to DNA-rich areas, where they exhibit an active patrolling behavior. DNA removal by intravenous DNASE1 injection or ablation of Toll-like receptor 9 (TLR9)-mediated sensing significantly reduced systemic inflammation, liver neutrophil recruitment, and hepatotoxicity. Analysis of liver leukocytes by flow cytometry revealed that emigrated neutrophils up-regulated TLR9 expression during acetaminophen-mediated necrosis, and these cells sensed and reacted to extracellular DNA by activating the TLR9/NF-κB pathway. Likewise, adoptive transfer of wild-type neutrophils to TLR9(-/-) mice reversed the hepatoprotective phenotype otherwise observed in TLR9 absence. CONCLUSION Hepatic DNA accumulation is a novel feature of DILI pathogenesis. Blockage of DNA recognition by the innate immune system may constitute a promising therapeutic venue.
Collapse
|
|
10 |
134 |
4
|
Kanashiro A, Hiroki CH, da Fonseca DM, Birbrair A, Ferreira RG, Bassi GS, Fonseca MD, Kusuda R, Cebinelli GCM, da Silva KP, Wanderley CW, Menezes GB, Alves-Fiho JC, Oliveira AG, Cunha TM, Pupo AS, Ulloa L, Cunha FQ. The role of neutrophils in neuro-immune modulation. Pharmacol Res 2019; 151:104580. [PMID: 31786317 DOI: 10.1016/j.phrs.2019.104580] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/07/2019] [Accepted: 11/27/2019] [Indexed: 01/10/2023]
Abstract
Neutrophils are peripheral immune cells that represent the first recruited innate immune defense against infections and tissue injury. However, these cells can also induce overzealous responses and cause tissue damage. Although the role of neutrophils activating the immune system is well established, only recently their critical implications in neuro-immune interactions are becoming more relevant. Here, we review several aspects of neutrophils in the bidirectional regulation between the nervous and immune systems. First, the role of neutrophils as a diffuse source of acetylcholine and catecholamines is controversial as well as the effects of these neurotransmitters in neutrophil's functions. Second, neutrophils contribute for the activation and sensitization of sensory neurons, and thereby, in events of nociception and pain. In addition, nociceptor activation promotes an axon reflex triggering a local release of neural mediators and provoking neutrophil activation. Third, the recruitment of neutrophils in inflammatory responses in the nervous system suggests these immune cells as innovative targets in the treatment of central infectious, neurological and neurodegenerative disorders. Multidisciplinary studies involving immunologists and neuroscientists are required to define the role of the neurons-neutrophils communication in the pathophysiology of infectious, inflammatory, and neurological disorders.
Collapse
|
Review |
6 |
103 |
5
|
Bassi GS, Dias DPM, Franchin M, Talbot J, Reis DG, Menezes GB, Castania JA, Garcia-Cairasco N, Resstel LBM, Salgado HC, Cunha FQ, Cunha TM, Ulloa L, Kanashiro A. Modulation of experimental arthritis by vagal sensory and central brain stimulation. Brain Behav Immun 2017; 64:330-343. [PMID: 28392428 PMCID: PMC6330674 DOI: 10.1016/j.bbi.2017.04.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/25/2017] [Accepted: 04/04/2017] [Indexed: 12/20/2022] Open
Abstract
Articular inflammation is a major clinical burden in multiple inflammatory diseases, especially in rheumatoid arthritis. Biological anti-rheumatic drug therapies are expensive and increase the risk of systemic immunosuppression, infections, and malignancies. Here, we report that vagus nerve stimulation controls arthritic joint inflammation by inducing local regulation of innate immune response. Most of the previous studies of neuromodulation focused on vagal regulation of inflammation via the efferent peripheral pathway toward the viscera. Here, we report that vagal stimulation modulates arthritic joint inflammation through a novel "afferent" pathway mediated by the locus coeruleus (LC) of the central nervous system. Afferent vagal stimulation activates two sympatho-excitatory brain areas: the paraventricular hypothalamic nucleus (PVN) and the LC. The integrity of the LC, but not that of the PVN, is critical for vagal control of arthritic joint inflammation. Afferent vagal stimulation suppresses articular inflammation in the ipsilateral, but not in the contralateral knee to the hemispheric LC lesion. Central stimulation is followed by subsequent activation of joint sympathetic nerve terminals inducing articular norepinephrine release. Selective adrenergic beta-blockers prevent the effects of articular norepinephrine and thereby abrogate vagal control of arthritic joint inflammation. These results reveals a novel neuro-immune brain map with afferent vagal signals controlling side-specific articular inflammation through specific inflammatory-processing brain centers and joint sympathetic innervations.
Collapse
|
research-article |
8 |
74 |
6
|
Menezes GB, Lee WY, Zhou H, Waterhouse CCM, Cara DC, Kubes P. Selective Down-Regulation of Neutrophil Mac-1 in Endotoxemic Hepatic Microcirculation via IL-10. THE JOURNAL OF IMMUNOLOGY 2009; 183:7557-68. [DOI: 10.4049/jimmunol.0901786] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
|
16 |
59 |
7
|
Machado MG, Tavares LP, Souza GVS, Queiroz-Junior CM, Ascenção FR, Lopes ME, Garcia CC, Menezes GB, Perretti M, Russo RC, Teixeira MM, Sousa LP. The Annexin A1/FPR2 pathway controls the inflammatory response and bacterial dissemination in experimental pneumococcal pneumonia. FASEB J 2019; 34:2749-2764. [PMID: 31908042 DOI: 10.1096/fj.201902172r] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/29/2019] [Accepted: 12/09/2019] [Indexed: 01/10/2023]
Abstract
Streptococcus pneumoniae is a major cause of community-acquired pneumonia leading to high mortality rates. Inflammation triggered by pneumococcal infection is necessary for bacterial clearance but must be spatially and temporally regulated to prevent further tissue damage and bacterial dissemination. Annexin A1 (AnxA1) mainly acts through Formyl Peptide Receptor 2 (FPR2) inducing the resolution of inflammation. Here, we have evaluated the role of AnxA1 and FPR2 during pneumococcal pneumonia in mice. For that, AnxA1, Fpr2/3 knockout (KO) mice and wild-type (WT) controls were infected intranasally with S pneumoniae. AnxA1 and Fpr2/3 KO mice were highly susceptible to infection, displaying uncontrolled inflammation, increased bacterial dissemination, and pulmonary dysfunction compared to WT animals. Mechanistically, the absence of AnxA1 resulted in the loss of lung barrier integrity and increased neutrophil activation upon S pneumoniae stimulation. Importantly, treatment of WT or AnxA1 KO-infected mice with Ac2-26 decreased inflammation, lung damage, and bacterial burden in the airways by increasing macrophage phagocytosis. Conversely, Ac2-26 peptide was ineffective to afford protection in Fpr2/3 KO mice during infection. Altogether, these findings show that AnxA1, via FPR2, controls inflammation and bacterial dissemination during pneumococcal pneumonia by promoting host defenses, suggesting AnxA1-based peptides as a novel therapeutic strategy to control pneumococcal pneumonia.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
49 |
8
|
Rezende RM, França DS, Menezes GB, dos Reis WGP, Bakhle YS, Francischi JN. Different mechanisms underlie the analgesic actions of paracetamol and dipyrone in a rat model of inflammatory pain. Br J Pharmacol 2007; 153:760-8. [PMID: 18157167 DOI: 10.1038/sj.bjp.0707630] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND AND PURPOSE The analgesics, paracetamol and dipyrone are weak inhibitors of the cyclooxygenase isoforms 1 or 2 (COX-1, COX-2) but more potent on COX-3. Both are also weak anti-inflammatory agents, relative to their analgesic and antipyretic activities. In a model of inflammatory pain mediated by prostaglandins, both compounds were analgesic. We have analysed this shared effect further in order to elucidate the underlying mechanisms. EXPERIMENTAL APPROACH Inflammation was induced in one hind paw of rats by intraplantar injection of 250 microg lambda-carrageenan (CG) and the contralateral paw injected with saline. Nociceptive thresholds to mechanical stimulation were measured immediately before and for 6 h after, injection of CG. The analgesics were s.c. or locally (intraplantar) injected either 30 min before or 2 h after CG. In some groups, naltrexone was injected (s.c. or intraplantar), 1 h before CG. KEY RESULTS Pretreatment with paracetamol or dipyrone (60-360 mg kg(-1)) reversed hyperalgesia induced by CG and increased nociceptive threshold in the inflamed paw above the basal level (hypoalgesia). Paracetamol, but not dipyrone, also raised nociceptive thresholds in the non-inflamed paw. Subcutaneous, but not local, administration of naltrexone, a specific opioid antagonist, reversed the hypoalgesia induced by paracetamol, but similar naltrexone treatment had no effect on dipyrone-induced analgesia. CONCLUSIONS AND IMPLICATIONS Although both paracetamol and dipyrone are inhibitors of COX isoforms and thus of prostaglandin biosynthesis and were analgesic in our model, their analgesic actions were functionally and mechanistically different. Satisfactory mechanisms of action for these analgesics still remain to be established.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
48 |
9
|
Marques PE, Oliveira AG, Chang L, Paula-Neto HA, Menezes GB. Understanding liver immunology using intravital microscopy. J Hepatol 2015; 63:733-42. [PMID: 26055800 DOI: 10.1016/j.jhep.2015.05.027] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 05/21/2015] [Accepted: 05/21/2015] [Indexed: 12/15/2022]
Abstract
The liver has come a long way since it was considered only a metabolic organ attached to the gastrointestinal tract. The simultaneous ascension of immunology and intravital microscopy evidenced the liver as a central axis in the immune system, controlling immune responses to local and systemic agents as well as disease tolerance. The multiple hepatic cell populations are organized in a vascular environment that promotes intimate cellular interactions, including initiation of innate and adaptive immune responses, rapid leukocyte recruitment, pathogen clearance and production of a variety of immune mediators. In this review, we focus on the advances in liver immunology supported by intravital microscopy in diseases such as isquemia/reperfusion, acute liver injury and infections.
Collapse
|
Review |
10 |
38 |
10
|
Nakagaki BN, Mafra K, de Carvalho É, Lopes ME, Carvalho-Gontijo R, de Castro-Oliveira HM, Campolina-Silva GH, de Miranda CDM, Antunes MM, Silva ACC, Diniz AB, Alvarenga DM, Lopes MAF, de Souza Lacerda VA, Mattos MS, Araújo AM, Vidigal PVT, Lima CX, Mahecha GAB, Madeira MFM, Fernandes GR, Nogueira RF, Moreira TG, David BA, Rezende RM, Menezes GB. Immune and metabolic shifts during neonatal development reprogram liver identity and function. J Hepatol 2018; 69:1294-1307. [PMID: 30171870 DOI: 10.1016/j.jhep.2018.08.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 08/14/2018] [Accepted: 08/15/2018] [Indexed: 12/28/2022]
Abstract
BACKGROUND & AIMS The liver is the main hematopoietic site in embryos, becoming a crucial organ in both immunity and metabolism in adults. However, how the liver adapts both the immune system and enzymatic profile to challenges in the postnatal period remains elusive. We aimed to identify the mechanisms underlying this adaptation. METHODS We analyzed liver samples from mice on day 0 after birth until adulthood. Human biopsies from newborns and adults were also examined. Liver immune cells were phenotyped using mass cytometry (CyTOF) and expression of several genes belonging to immune and metabolic pathways were measured. Mortality rate, bacteremia and hepatic bacterial retention after E. coli challenge were analyzed using intravital and in vitro approaches. In a set of experiments, mice were prematurely weaned and the impact on gene expression of metabolic pathways was evaluated. RESULTS Human and mouse newborns have a sharply different hepatic cellular composition and arrangement compared to adults. We also found that myeloid cells and immature B cells primarily compose the neonatal hepatic immune system. Although neonatal mice were more susceptible to infections, a rapid evolution to an efficient immune response was observed. Concomitantly, newborns displayed a reduction of several macronutrient metabolic functions and the normal expression level of enzymes belonging to lipid and carbohydrate metabolism was reached around the weaning period. Interestingly, early weaning profoundly disturbed the expression of several hepatic metabolic pathways, providing novel insights into how dietary schemes affect the metabolic maturation of the liver. CONCLUSION In newborns, the immune and metabolic profiles of the liver are dramatically different to those of the adult liver, which can be explained by the differences in the liver cell repertoire and phenotype. Also, dietary and antigen cues may be crucial to guide liver development during the postnatal phase. LAY SUMMARY Newborns face major challenges in the extra-uterine life. In fact, organs need to modify their cellular composition and gene expression profile in order to adapt to changes in both microbiota and diet throughout life. The liver is interposed between the gastrointestinal system and the systemic circulation, being the destination of all macronutrients and microbial products from the gut. Therefore, it is expected that delicately balanced mechanisms govern the transformation of a neonatal liver to a key organ in adults.
Collapse
|
|
7 |
34 |
11
|
Monti-Rocha R, Cramer A, Gaio Leite P, Antunes MM, Pereira RVS, Barroso A, Queiroz-Junior CM, David BA, Teixeira MM, Menezes GB, Machado FS. SOCS2 Is Critical for the Balancing of Immune Response and Oxidate Stress Protecting Against Acetaminophen-Induced Acute Liver Injury. Front Immunol 2019; 9:3134. [PMID: 30723477 PMCID: PMC6349694 DOI: 10.3389/fimmu.2018.03134] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 12/18/2018] [Indexed: 12/27/2022] Open
Abstract
Acetaminophen (APAP) is usually safe when administrated in therapeutic doses; however, APAP overdose can lead to severe liver injury. APAP can cause direct hepatocyte damage, and stimulates an inflammatory response leading to oxidative stress. Supressor of Cytokine Signaling (SOCS) 2 modulates cytokine and growth factor signaling, and plays a role in the regulation of hepatic cellular processes. Our study evaluated the role of SOCS2 in APAP liver injury. The administration of a toxic dose (600 mg/kg) of APAP caused significant liver necrosis in WT mice. In SOCS2−/− mice, there was significantly more necrosis, neutrophil recruitment, and expression of the neutrophil-active chemokine CXCL-1. Expression of proinflammatory cytokines, such as TNF-α and IL-6, was elevated, while expression of anti-inflammatory cytokines, IL-10 and TGF-β, was diminished. In vitro, SOCS2−/− hepatocytes expressed more p-NF-kB and produced more ROS than WT hepatocytes when exposed to APAP. SOCS2−/− hepatocytes were more sensitive to cell death in the presence of IL-6 and hydrogen peroxide. The administration of catalase in vitro and in vivo resulted in a pronounced reduction of cells/mice death and necrosis in the SOCS2−/− group. We have demonstrated that SOCS2 has a protective role in the liver by controlling pro-oxidative and inflammatory mechanisms induced by APAP.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
26 |
12
|
Fonseca RC, Bassi GS, Brito CC, Rosa LB, David BA, Araújo AM, Nóbrega N, Diniz AB, Jesus ICG, Barcelos LS, Fontes MAP, Bonaventura D, Kanashiro A, Cunha TM, Guatimosim S, Cardoso VN, Fernandes SOA, Menezes GB, de Lartigue G, Oliveira AG. Vagus nerve regulates the phagocytic and secretory activity of resident macrophages in the liver. Brain Behav Immun 2019; 81:444-454. [PMID: 31271871 PMCID: PMC7826199 DOI: 10.1016/j.bbi.2019.06.041] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 02/08/2023] Open
Abstract
The gastrointestinal (GI) tract harbors commensal microorganisms as well as invasive bacteria, toxins and other pathogens and, therefore, plays a pivotal barrier and immunological role against pathogenic agents. The vagus nerve is an important regulator of the GI tract-associated immune system, having profound effects on inflammatory responses. Among GI tract organs, the liver is a key site of immune surveillance, as it has a large population of resident macrophages and receives the blood drained from the guts through the hepatic portal circulation. Although it is widely accepted that the hepatic tissue is a major target for vagus nerve fibers, the role of this neural circuit in liver immune functions is still poorly understood. Herein we used in vivo imaging techniques, including confocal microscopy and scintigraphy, to show that vagus nerve stimulation increases the phagocytosis activity by resident macrophages in the liver, even on the absence of an immune challenge. The activation of this neural circuit in a non-lethal model of sepsis optimized the removal of bacteria in the liver and resulted in the production of anti-inflammatory and pro-regenerative cytokines. Our findings provide new insights into the neural regulation of the immune system in the liver.
Collapse
|
research-article |
6 |
23 |
13
|
Antunes MM, Leocádio PCL, Teixeira LG, Leonel AJ, Cara DC, Menezes GB, Generoso SDV, Cardoso VN, Alvarez-Leite JI, Correia MITD. Pretreatment With L-Citrulline Positively Affects the Mucosal Architecture and Permeability of the Small Intestine in a Murine Mucositis Model. JPEN J Parenter Enteral Nutr 2015; 40:279-86. [PMID: 25573703 DOI: 10.1177/0148607114567508] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 11/14/2014] [Indexed: 12/19/2022]
Abstract
BACKGROUND Mucositis is a common complication in patients undergoing radiotherapy and chemotherapy. It is associated with pain, poor quality of life, and malnutrition, leading to an increased number of hospital admissions and prolonged hospitalization. The use of immunonutrients may be an alternative treatment option, which may help to improve patient outcome. OBJECTIVE Here we assessed the impact of L-citrulline (CIT) on a murine model of 5-fluorouracil (5FU)-induced mucositis. METHODS Swiss male mice were randomized into 4 groups: control, CIT, 5FU, and 5FU+CIT. Mice were fed with commercial chow and supplemented with an oral solution of alanine (control and 5FU groups) or CIT (CIT and 5FU+CIT groups). On the seventh day, mice received intraperitoneal phosphate-buffered saline or 5FU (200 mg/kg, single dose) to induce mucositis. On the 10th day, mice were euthanized, and the blood and small intestines were harvested. Body weight, morphology, histopathology score (hematoxylin and eosin) of the small intestine (from 0-12), myeloperoxidase activity, oxidative stress level, and intestinal permeability were assessed. RESULTS We observed significant weight loss after the administration of 5FU in both treated and control animals. CIT administration contributed to a partial recovery of the mucosal architecture as well as an intermediate reduction of the histopathologic score, and functional intestinal permeability was partially rescued. CONCLUSIONS CIT administration attenuated 5FU-mediated damage to the mucosal architecture of the small intestine, decreasing the size of the injured areas and promoting decreased intestinal permeability.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
22 |
14
|
do Valle IB, Prazeres PHDM, Mesquita RA, Silva TA, de Castro Oliveira HM, Castro PR, Freitas IDP, Oliveira SR, Gomes NA, de Oliveira RF, Marquiore LF, Macari S, do Amaral FA, Jácome-Santos H, Barcelos LS, Menezes GB, Marques MM, Birbrair A, Diniz IMA. Photobiomodulation drives pericyte mobilization towards skin regeneration. Sci Rep 2020; 10:19257. [PMID: 33159113 PMCID: PMC7648092 DOI: 10.1038/s41598-020-76243-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 10/26/2020] [Indexed: 12/11/2022] Open
Abstract
Photobiomodulation is being widely applied for improving dermal or mucosal wound healing. However, the underlying cellular and molecular processes that directly contribute to its effects remain poorly understood. Pericytes are relevant cells involved in the wound microenvironment and could be one of the main targets of photobiomodulation due to their plasticity and perivascular localization. Herein, we investigate tissue repair under the photobiomodulation stimulus using a pericyte labeled (or reporter) transgenic mice. Using a model of two contralateral back wounds, one the control and the other photoactivated daily (660 nm, 20 mW, 0.71 W/cm2, 5 J/cm2, 7 s, 0.14 J), we showed an overall influx of immune and undifferentiated cells and higher mobilization of a potent pericyte subpopulation (Type-2 pericytes) in the photoactivated wounds in comparison to the controls. Doppler analysis showed a significant increase in the blood flow in the photoactivated wounds, while marked vascular supply was observed histologically. Histochemical analysis has indicated more advanced stages of tissue repair after photoactivation. These data suggest that photobiomodulation significantly accelerates tissue repair through its vascular effects with direct recruitment of pericytes to the injury site.
Collapse
|
research-article |
5 |
21 |
15
|
Pires DA, Marques PE, Pereira RV, David BA, Gomides LF, Dias ACF, Nunes-Silva A, Pinho V, Cara DC, Vieira LQ, Teixeira MM, Menezes GB. Interleukin-4 deficiency protects mice from acetaminophen-induced liver injury and inflammation by prevention of glutathione depletion. Inflamm Res 2013; 63:61-9. [PMID: 24100592 DOI: 10.1007/s00011-013-0671-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 09/28/2013] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVE Interleukin-4 (IL-4) is a multifunctional cytokine involved in many diseases such as autoimmune hepatitis and idiosyncratic drug reactions. However, its role in acetaminophen (APAP)-induced liver injury remains unclear. Our objective was to evaluate the contribution of IL-4 to the pathogenesis of APAP-induced liver injury. METHODS Balb/C (WT) and IL-4 knockout (IL-4(-/-)) mice were orally overdosed with APAP. After 24 h, survival percentage, biochemical and morphological markers of liver injury, and tissue inflammation were assessed. RESULTS IL-4(-/-) mice were protected from APAP toxicity. Intravital confocal microscopy, tissue histology and serum ALT levels showed significantly less liver injury and inflammation than in the WT group, which may explain the increased survival rate of IL-4(-/-) mice. In addition, IL-4(-/-) mice had decreased production of tumor necrosis factor α, CXCL1 and interleukin-1β in the liver, but not in a remote site such as the lungs. Hepatic macrophage activation was markedly reduced in IL-4-deficient mice. In addition, glutathione depletion-a primary cause of APAP-mediated injury-was significantly attenuated in IL-4(-/-) mice. CONCLUSIONS Taken together, our data demonstrate that IL-4(-/-) mice are protected from APAP-induced liver injury due to reduced depletion of glutathione, which prevented liver damage and tissue inflammation.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
19 |
16
|
Araujo AMD, Antunes MM, Mattos MS, Diniz AB, Alvarenga DM, Nakagaki BN, Carvalho ÉD, Lacerda VAS, Carvalho-Gontijo R, Goulart J, Mafra K, Freitas-Lopes MA, Oliveira HMDC, Dutra CM, David BA, Mendes Silva A, Quesniaux V, Ryffel B, Oliveira SC, Barber GN, Mansur DS, Cunha TM, Rezende RM, Oliveira AG, Menezes GB. Liver Immune Cells Release Type 1 Interferon Due to DNA Sensing and Amplify Liver Injury from Acetaminophen Overdose. Cells 2018; 7:cells7080088. [PMID: 30060463 PMCID: PMC6115735 DOI: 10.3390/cells7080088] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 07/23/2018] [Accepted: 07/26/2018] [Indexed: 01/07/2023] Open
Abstract
Hepatocytes may rupture after a drug overdose, and their intracellular contents act as damage-associated molecular patterns (DAMPs) that lead to additional leukocyte infiltration, amplifying the original injury. Necrosis-derived DNA can be recognized as a DAMP, activating liver non-parenchymal cells (NPCs). We hypothesized that NPCs react to DNA by releasing interferon (IFN)-1, which amplifies acetaminophen (APAP)-triggered liver necrosis. We orally overdosed different knockout mouse strains to investigate the pathways involved in DNA-mediated amplification of APAP-induced necrosis. Mice were imaged under intravital confocal microscopy to estimate injury progression, and hepatocytes and liver NPCs were differentially isolated for gene expression assays. Flow cytometry (FACS) using a fluorescent reporter mouse estimated the interferon-beta production by liver leukocytes under different injury conditions. We also treated mice with DNase to investigate the role of necrosis DNA signaling in IFN-1 production. Hepatocytes released a large amount of DNA after APAP overdose, which was not primarily sensed by these cells. However, liver NPCs promptly sensed such environmental disturbances and activated several DNA sensing pathways. Liver NPCs synthesized and released IFN-1, which was associated with concomitant hepatocyte necrosis. Ablation of IFN-1 recognition in interferon α/β receptor (IFNAR−/−) mice delayed APAP-mediated liver necrosis and dampened IFN-1 sensing pathways. We demonstrated a novel loop involving DNA recognition by hepatic NPCs and additional IFN-1 mediated hepatocyte death.
Collapse
|
Journal Article |
7 |
19 |
17
|
Antunes MM, Araújo AM, Diniz AB, Pereira RVS, Alvarenga DM, David BA, Rocha RM, Lopes MAF, Marchesi SC, Nakagaki BN, Carvalho É, Marques PE, Ryffel B, Quesniaux V, Guabiraba Brito R, Filho JCA, Cara DC, Rezende RM, Menezes GB. IL-33 signalling in liver immune cells enhances drug-induced liver injury and inflammation. Inflamm Res 2017; 67:77-88. [PMID: 29032512 DOI: 10.1007/s00011-017-1098-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/15/2017] [Accepted: 09/27/2017] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE AND DESIGN The aim of this study was to investigate the contribution of IL-33/ST2 axis in the onset and progression of acute liver injury using a mice model of drug-induced liver injury (DILI). MATERIAL AND TREATMENTS DILI was induced by overdose administration of acetaminophen (APAP) by oral gavage in wild-type BALB/c, ST2-deficient mice and in different bone marrow chimeras. Neutrophils were depleted by anti-Ly6G and macrophages with clodronate liposomes (CLL). METHODS Blood and liver were collected for biochemical, immunologic and genetic analyses. Mice were imaged by confocal intravital microscopy and liver non-parenchymal cells and hepatocytes were isolated for flow cytometry, genetic and immunofluorescence studies. RESULTS Acetaminophen overdose caused a massive necrosis and accumulation of immune cells within the liver, concomitantly with IL-33 and chemokine release. Liver non-parenchymal cells were the major sensors for IL-33, and amongst them, neutrophils were the major players in amplification of the inflammatory response triggered by IL-33/ST2 signalling pathway. CONCLUSION Blockage of IL-33/ST2 axis reduces APAP-mediated organ injury by dampening liver chemokine release and activation of resident and infiltrating liver non-parenchymal cells.
Collapse
|
Journal Article |
8 |
18 |
18
|
Alvarenga DM, Mattos MS, Lopes ME, Marchesi SC, Araújo AM, Nakagaki BN, Santos MM, David BA, De Souza VA, Carvalho É, Sousa Pereira RV, Marques PE, Mafra K, de Castro Oliveira HM, de Miranda CDM, Diniz AB, de Oliveira THC, Teixeira MM, Rezende RM, Antunes MM, Menezes GB. Paradoxical Role of Matrix Metalloproteinases in Liver Injury and Regeneration after Sterile Acute Hepatic Failure. Cells 2018; 7:cells7120247. [PMID: 30563238 PMCID: PMC6315354 DOI: 10.3390/cells7120247] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 11/22/2018] [Accepted: 12/04/2018] [Indexed: 12/21/2022] Open
Abstract
Acetaminophen (APAP) poisoning is one of the leading causes of acute hepatic failure and liver transplantation is often the only lifesaving alternative. During the course of hepatocyte necrosis, an intense accumulation of neutrophils is often observed within the liver microenvironment. Despite the classic idea that neutrophil accumulation in tissues causes collateral tissue damage, there is a growing body of evidence showing that neutrophils can also orchestrate the resolution of inflammation. In this work, drug-induced liver injury was induced by oral administration of APAP and pharmacological intervention was made 12 h after this challenge. Liver injury and repair kinetics were evaluated by a novel combination of enzyme quantifications, ELISA, specific antagonists of neutrophil enzymes and confocal intravital microscopy. We have demonstrated that neutrophil infiltration is not only involved in injury amplification, but also in liver tissue repair after APAP-induced liver injury. In fact, while neutrophil depletion led to reduced hepatic necrosis during APAP poisoning, injury recovery was also delayed in neutropenic mice. The mechanisms underlying the neutrophil reparative role involved rapid degranulation and matrix metalloproteinases (MMPs) activity. Our data highlights the crucial role of neutrophils, in particular for MMPs, in the resolution phase of APAP-induced inflammatory response.
Collapse
|
Journal Article |
7 |
17 |
19
|
Alvarenga DM, Mattos MS, Araújo AM, Antunes MM, Menezes GB. Neutrophil biology within hepatic environment. Cell Tissue Res 2017; 371:589-598. [PMID: 29127519 DOI: 10.1007/s00441-017-2722-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 10/26/2017] [Indexed: 12/29/2022]
Abstract
Neutrophils are the most abundant leukocyte in the human circulation. These short-lived cells are constantly produced from hematopoietic stem cells (HSC) within the bone marrow from which they daily reach the blood and perform major roles in innate immunity. Neutrophils are the first cells to reach inflamed tissues and are armed with a plethora of enzymes that help both with their trafficking within tissues and the killing of pathogens. Damaged or infected organs are rapidly invaded by neutrophils. Their erroneous activation within parenchyma or the vasculature is involved in the pathogenesis of several inflammatory diseases including arthritis, colitis, sepsis, acute lung injury and liver failure. Despite the proposal of a canonical pathway that governs neutrophil migration into tissues, the liver has been extensively described as a unique environment for leukocyte recruitment. Since the control of inflammatory responses is considered one of the most promising avenues for novel therapeutics, the expansion of our understanding of the mechanisms behind neutrophil accumulation within injured liver might add to the development of specific and more efficacious treatments. In this review, we discuss the basic concepts of neutrophil ontogeny and biology, with a focus on the particularities and the molecular steps involved in neutrophil recruitment to the liver.
Collapse
|
Review |
8 |
16 |
20
|
Gomides LF, Marques PE, Faleiros BE, Pereira RV, Amaral SS, Lage TR, Resende GHS, Guidine PAM, Foureaux G, Ribeiro FM, Martins FP, Fontes MAP, Ferreira AJ, Russo RC, Teixeira MM, Moraes MF, Teixeira AL, Menezes GB. Murine model to study brain, behavior and immunity during hepatic encephalopathy. World J Hepatol 2014; 6:243-250. [PMID: 24799993 PMCID: PMC4009480 DOI: 10.4254/wjh.v6.i4.243] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 01/08/2014] [Accepted: 02/18/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To propose an alternative model of hepatic encephalopathy (HE) in mice, resembling the human features of the disease.
METHODS: Mice received two consecutive intraperitoneal injections of thioacetamide (TAA) at low dosage (300 mg/kg). Liver injury was assessed by serum transaminase levels (ALT) and liver histology (hematoxylin and eosin). Neutrophil infiltration was estimated by confocal liver intravital microscopy. Coagulopathy was evaluated using prolonged prothrombin and partial thromboplastin time. Hemodynamic parameters were measured through tail cuff. Ammonia levels were quantified in serum and brain samples. Electroencephalography (EEG) and psychomotor activity score were performed to show brain function. Brain edema was evaluated using magnetic resonance imaging.
RESULTS: Mice submitted to the TAA regime developed massive liver injury, as shown by elevation of serum ALT levels and a high degree of liver necrosis. An intense hepatic neutrophil accumulation occurred in response to TAA-induced liver injury. This led to mice mortality and weight loss, which was associated with severe coagulopathy. Furthermore, TAA-treated mice presented with increased serum and cerebral levels of ammonia, in parallel with alterations in EEG spectrum and discrete brain edema, as shown by magnetic resonance imaging. In agreement with this, neuropsychomotor abnormalities ensued 36 h after TAA, fulfilling several HE features observed in humans. In this context of liver injury and neurological dysfunction, we observed lung inflammation and alterations in blood pressure and heart rate that were indicative of multiple organ dysfunction syndrome.
CONCLUSION: In summary, we describe a new murine model of hepatic encephalopathy comprising multiple features of the disease in humans, which may provide new insights for treatment.
Collapse
|
Brief Article |
11 |
15 |
21
|
da Fonseca-Martins AM, de Souza Lima-Gomes P, Antunes MM, de Moura RG, Covre LP, Calôba C, Rocha VG, Pereira RM, Menezes GB, Gomes DCO, Saraiva EM, de Matos Guedes HL. Leishmania Parasites Drive PD-L1 Expression in Mice and Human Neutrophils With Suppressor Capacity. Front Immunol 2021; 12:598943. [PMID: 34211455 PMCID: PMC8240668 DOI: 10.3389/fimmu.2021.598943] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 04/13/2021] [Indexed: 12/14/2022] Open
Abstract
Neutrophils play an important role in the outcome of leishmaniasis, contributing either to exacerbating or controlling the progression of infection, a dual effect whose underlying mechanisms are not clear. We recently reported that CD4+ and CD8+ T cells, and dendritic cells of Leishmania amazonensis-infected mice present high expression of PD-1 and PD-L1, respectively. Given that the PD-1/PD-L1 interaction may promote cellular dysfunction, and that neutrophils could interact with T cells during infection, we investigated here the levels of PD-L1 in neutrophils exposed to Leishmania parasites. We found that both, promastigotes and amastigotes of L. amazonensis induced the expression of PD-L1 in the human and murine neutrophils that internalized these parasites in vitro. PD-L1-expressing neutrophils were also observed in the ear lesions and the draining lymph nodes of L. amazonensis-infected mice, assessed through cell cytometry and intravital microscopy. Moreover, expression of PD-L1 progressively increased in neutrophils from ear lesions as the disease evolved to the chronic phase. Co-culture of infected neutrophils with in vitro activated CD8+ T cells inhibits IFN-γ production by a mechanism dependent on PD-1 and PD-L1. Importantly, we demonstrated that in vitro infection of human neutrophils by L braziliensis induced PD-L1+ expression and also PD-L1+ neutrophils were detected in the lesions of patients with cutaneous leishmaniasis. Taken together, these findings suggest that the Leishmania parasite increases the expression of PD-L1 in neutrophils with suppressor capacity, which could favor the parasite survival through impairing the immune response.
Collapse
|
Research Support, Non-U.S. Gov't |
4 |
13 |
22
|
Nakagaki BN, Vieira AT, Rezende RM, David BA, Menezes GB. Tissue macrophages as mediators of a healthy relationship with gut commensal microbiota. Cell Immunol 2018; 330:16-26. [PMID: 29422270 DOI: 10.1016/j.cellimm.2018.01.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 01/26/2018] [Accepted: 01/31/2018] [Indexed: 12/12/2022]
Abstract
Mammals and microorganisms have evolved a complex and tightly controlled mutual relationship. This interaction grants protection and energy source for the microorganisms, and on the other hand, provides several immunologic, metabolic and physiological advantages for the host. The gastrointestinal tract (GI) harbors the largest bacteria diversity within the body and complex mechanisms control microbiota community under homeostasis. However, once disrupted, microbiota imbalance can lead to overt growth of resident and invasive populations, with potential risk for lethal diseases. In these cases, bacteria might also escape from the intestines and reach different organs through the blood and lymphatic circulation. To control these unwanted conditions, all body tissues are populated with resident macrophages that have the ability to capture and eliminate pathogens, avoiding their dissemination. Here we discuss the different routes for bacterial translocation from the intestinal tract, and how macrophages act in the removal of these microorganisms to prevent systemic infections and restore the homeostasis.
Collapse
|
Review |
7 |
12 |
23
|
Diniz AB, Antunes MM, Lacerda VADS, Nakagaki BN, Freitas Lopes MA, Castro-Oliveira HMD, Mattos MS, Mafra K, de Miranda CDM, de Oliveira Costa KM, Lopes ME, Alvarenga DM, Carvalho-Gontijo R, Marchesi SC, Lacerda DR, de Araújo AM, de Carvalho É, David BA, Santos MM, Lima CX, Silva Gomes JA, Minto Fontes Cal TC, de Souza BR, Couto CA, Faria LC, Teixeira Vidigal PV, Matos Ferreira AV, Radhakrishnnan S, Ricci M, Oliveira AG, Rezende RM, Menezes GB. Imaging and immunometabolic phenotyping uncover changes in the hepatic immune response in the early phases of NAFLD. JHEP Rep 2020; 2:100117. [PMID: 32695965 PMCID: PMC7365949 DOI: 10.1016/j.jhepr.2020.100117] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/02/2020] [Accepted: 03/26/2020] [Indexed: 12/25/2022] Open
Abstract
Background & Aims The precise determination of non-alcoholic fatty liver disease (NAFLD) onset is challenging. Thus, the initial hepatic responses to fat accumulation, which may be fundamental to our understanding of NAFLD evolution and clinical outcomes, are largely unknown. Herein, we chronologically mapped the immunologic and metabolic changes in the liver during the early stages of fatty liver disease in mice and compared this with human NAFLD samples. Methods Liver biopsies from patients with NAFLD (NAFLD activity score [NAS] 2–3) were collected for gene expression profiling. Mice received a high-fat diet for short periods to mimic initial steatosis and the hepatic immune response was investigated using a combination of confocal intravital imaging, gene expression, cell isolation, flow cytometry and bone marrow transplantation assays. Results We observed major immunologic changes in patients with NAS 2–3 and in mice in the initial stages of NAFLD. In mice, these changes significantly increased mortality rates upon drug-induced liver injury, as well as predisposing mice to bacterial infections. Moreover, deletion of Toll-like receptor 4 in liver cells dampened tolerogenesis, particularly in Kupffer cells, in the initial stages of dietary insult. Conclusion The hepatic immune system acts as a sentinel for early and minor changes in hepatic lipid content, mounting a biphasic response upon dietary insult. Priming of liver immune cells by gut-derived Toll-like receptor 4 ligands plays an important role in liver tolerance in initial phases, but continuous exposure to insults may lead to damage and reduced ability to control infections. Lay summary Fatty liver is a very common form of hepatic disease, leading to millions of cases of cirrhosis every year. Patients are often asymptomatic until becoming very sick. Therefore, it is important that we expand our knowledge of the early stages of disease pathogenesis, to enable early diagnosis. Herein, we show that even in the early stages of fatty liver disease, there are significant alterations in genes involved in the inflammatory response, suggesting that the hepatic immune system is disturbed even following minor and undetectable changes in liver fat content. This could have implications for the diagnosis and clinical management of fatty liver disease.
Hepatic immune response is already altered in liver biopsies from patients with mild NAFLD. We designed a novel mouse model to mimic mild NAFLD, enabling the chronological mapping of liver changes. This revealed an increased mortality rate upon secondary liver damage and a window of increased susceptibility to infection. NAFLD diagnosis may be significantly improved by a more profound investigation of changes in hepatic immunology. These data could guide customized nutritional and therapeutic interventions at different stages of NAFLD.
Collapse
Key Words
- ALT, alanine aminotransferase
- APAP, acetaminophen
- CFUs, colony forming units
- DCs, dendritic cells
- E. coli, Escherichia coli
- HFD, high-fat diet
- ITT, insulin tolerance test
- KCs, Kupffer cells
- NAFLD
- NAFLD, non-alcoholic fatty liver disease
- NAS, NAFLD activity score
- NPCs, non-parenchymal cells
- SD, standard diet
- TLR4, Toll-like receptor 4
- WT, wild-type
- diet
- immune system
- immunity
- in vivo imaging
- liver
- metabolism
- steatosis
Collapse
|
|
5 |
11 |
24
|
Ferreira RG, Matsui TC, Gomides LF, Godin AM, Menezes GB, de Matos Coelho M, Klein A. Niacin inhibits carrageenan-induced neutrophil migration in mice. Naunyn Schmiedebergs Arch Pharmacol 2013; 386:533-40. [PMID: 23525501 DOI: 10.1007/s00210-013-0854-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 03/12/2013] [Indexed: 12/20/2022]
Abstract
Several emerging lines of evidence support an anti-inflammatory role for nicotinic acid (niacin); however, its role in the regulation of leukocyte migration in response to inflammatory stimuli has not been elucidated until now. Herein, we have examined the effect of nicotinic acid on neutrophil recruitment in experimentally induced inflammation. We demonstrated that nicotinic acid treatment inhibited interleukin (IL)-8-induced, leukotriene (LT)B4-induced, and carrageenan-induced neutrophil migration into the pleural cavity of BALB/c mice and reduced neutrophil rolling and adherence in a mouse cremaster muscle preparation. Surprisingly, nicotinic acid treatment increased the level of the neutrophil chemoattractant KC in response to carrageenan. These results suggest that nicotinic acid plays an important role in the regulation of inflammation due to its ability to inhibit the actions of the neutrophil chemoattractants IL-8 and LTB4. Further inhibition of chemoattractants leads to impairment of leukocyte rolling and adherence to the vascular endothelium in the microcirculation of inflamed tissues.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
11 |
25
|
Figueiredo AFA, Wnuk NT, Vieira CP, Gonçalves MFF, Brener MRG, Diniz AB, Antunes MM, Castro-Oliveira HM, Menezes GB, Costa GMJ. Activation of C-C motif chemokine receptor 2 modulates testicular macrophages number, steroidogenesis, and spermatogenesis progression. Cell Tissue Res 2021; 386:173-190. [PMID: 34296344 DOI: 10.1007/s00441-021-03504-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 07/02/2021] [Indexed: 01/13/2023]
Abstract
The monocyte chemoattractant protein 1 (MCP-1) belongs to the CC chemokine family and acts in the recruitment of C-C motif chemokine receptor 2 (CCR2)-positive immune cell types to inflammation sites. In testis, the MCP-1/CCR2 axis has been associated with the macrophage population's functional regulation, which presents significant functions supporting germ cell development. In this context, herein, we aimed to investigate the role of the chemokine receptor CCR2 in mice testicular environment and its impact on male sperm production. Using adult transgenic mice strain that had the CCR2 gene replaced by a red fluorescent protein gene, we showed a stage-dependent expression of CCR2 in type B spermatogonia and early primary spermatocytes. Several parameters related to sperm production were reduced in the absence of CCR2 protein, such as Sertoli cell efficiency, meiotic index, and overall yield of spermatogenesis. Daily sperm production decreased by almost 40%, and several damages in the seminiferous tubules were observed. Significant reduction in the expression of important genes related to the Sertoli cell function (Cnx43, Vim, Ocln, Spna2) and meiosis initiation (Stra8, Pcna, Prdm9, Msh5) occurred in comparison to controls. Also, the number of macrophages significantly decreased in the absence of CCR2 protein, along with a disturbance in Leydig cell steroidogenic activity. In summary, our results show that the non-activation of the MCP-1/CCR2 axis disturbs the testicular homeostasis, interfering in macrophage population, meiosis initiation, blood-testis barrier function, and androgen synthesis, leading to the malfunction of seminiferous tubules, decreased testosterone levels, defective sperm production, and lower fertility index.
Collapse
|
Journal Article |
4 |
10 |