1
|
Guinea GV, Elices M, Pérez-Rigueiro J, Plaza GR. Stretching of supercontracted fibers: a link between spinning and the variability of spider silk. J Exp Biol 2005; 208:25-30. [PMID: 15601874 DOI: 10.1242/jeb.01344] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
The spinning of spider silk requires a combination of aqueous environment and stretching, and the aim of this work was to explore the role of stretching silk fibers in an aqueous environment and its effect on the tensile properties of spider silk. In particular, the sensitivity of the spider silk tensile behaviour to wet-stretching could be relevant in the search for a relationship between processing and the variability of the tensile properties. Based on this idea and working with MAS silk from Argiope trifasciata orb-web building spiders, we developed a novel procedure that permits modification of the tensile properties of spider silk: silk fibers were allowed to supercontract and subsequently stretched in water. The ratio between the length after stretching and the initial supercontracted length was used to control the process. Tensile tests performed in air, after drying,demonstrated that this simple procedure allows to predictable reproduction of the stress-strain curves of either naturally spun or forcibly silked fibers. These results suggest that the supercontracted state has a critical biological function during the spinning process of spider silk.
Collapse
|
|
20 |
82 |
2
|
Plaza GR, Guinea GV, Pérez-Rigueiro J, Elices M. Thermo-hygro-mechanical behavior of spider dragline silk: Glassy and rubbery states. ACTA ACUST UNITED AC 2006. [DOI: 10.1002/polb.20751] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
|
19 |
80 |
3
|
Guinea GV, Pérez-Rigueiro J, Plaza GR, Elices M. Volume constancy during stretching of spider silk. Biomacromolecules 2006; 7:2173-7. [PMID: 16827584 DOI: 10.1021/bm060138v] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The characterization of silk properties requires a reliable measurement of stress-strain curves from tensile tests, which calls for a detailed analysis of what is considered the cross section of the sample and how it varies during the experiments. Here, spider silk fibers from the major ampullate gland (MAS) of Argiope trifasciata spiders are tensile tested, and the cross-sectional area is measured under different strained configurations. It has been found that the fiber volume remains practically constant during stretching, and deformation proceeds homogeneously in all the fibers. The conservation of volume is validated independently of the type of fiber and the strain level. This result, applied to compute true stress-strain curves for different MAS fibers, shows that the description of their properties depends noticeably on which set of tensile parameters is chosen (true or engineering), and that engineering values could lead to misinterpretation of experiments that combine results from different strain ranges.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
67 |
4
|
Plaza GR, Corsini P, Pérez-Rigueiro J, Marsano E, Guinea GV, Elices M. Effect of water onBombyx mori regenerated silk fibers and its application in modifying their mechanical properties. J Appl Polym Sci 2008. [DOI: 10.1002/app.28288] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
|
17 |
59 |
5
|
Shen Y, Wu C, Uyeda TQP, Plaza GR, Liu B, Han Y, Lesniak MS, Cheng Y. Elongated Nanoparticle Aggregates in Cancer Cells for Mechanical Destruction with Low Frequency Rotating Magnetic Field. Theranostics 2017; 7:1735-1748. [PMID: 28529648 PMCID: PMC5436524 DOI: 10.7150/thno.18352] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 02/03/2017] [Indexed: 12/16/2022] Open
Abstract
Magnetic nanoparticles (MNPs) functionalized with targeting moieties can recognize specific cell components and induce mechanical actuation under magnetic field. Their size is adequate for reaching tumors and targeting cancer cells. However, due to the nanometric size, the force generated by MNPs is smaller than the force required for largely disrupting key components of cells. Here, we show the magnetic assembly process of the nanoparticles inside the cells, to form elongated aggregates with the size required to produce elevated mechanical forces. We synthesized iron oxide nanoparticles doped with zinc, to obtain high magnetization, and functionalized with the epidermal growth factor (EGF) peptide for targeting cancer cells. Under a low frequency rotating magnetic field at 15 Hz and 40 mT, the internalized EGF-MNPs formed elongated aggregates and generated hundreds of pN to dramatically damage the plasma and lysosomal membranes. The physical disruption, including leakage of lysosomal hydrolases into the cytosol, led to programmed cell death and necrosis. Our work provides a novel strategy of designing magnetic nanomedicines for mechanical destruction of cancer cells.
Collapse
|
Research Support, N.I.H., Extramural |
8 |
58 |
6
|
Elices M, Plaza GR, Pérez-Rigueiro J, Guinea GV. The hidden link between supercontraction and mechanical behavior of spider silks. J Mech Behav Biomed Mater 2011; 4:658-69. [DOI: 10.1016/j.jmbbm.2010.09.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 09/16/2010] [Accepted: 09/17/2010] [Indexed: 10/19/2022]
|
|
14 |
55 |
7
|
Plaza GR, Corsini P, Marsano E, Pérez-Rigueiro J, Biancotto L, Elices M, Riekel C, Agulló-Rueda F, Gallardo E, Calleja JM, Guinea GV. Old Silks Endowed with New Properties. Macromolecules 2009. [DOI: 10.1021/ma9017235] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
|
16 |
50 |
8
|
Pérez-Rigueiro J, Elices M, Plaza GR, Guinea GV. Similarities and Differences in the Supramolecular Organization of Silkworm and Spider Silk. Macromolecules 2007. [DOI: 10.1021/ma070478o] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
|
18 |
47 |
9
|
Elices M, Plaza GR, Arnedo MA, Pérez-Rigueiro J, Torres FG, Guinea GV. Mechanical Behavior of Silk During the Evolution of Orb-Web Spinning Spiders. Biomacromolecules 2009; 10:1904-10. [DOI: 10.1021/bm900312c] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
|
16 |
46 |
10
|
Wu J, Ning P, Gao R, Feng Q, Shen Y, Zhang Y, Li Y, Xu C, Qin Y, Plaza GR, Bai Q, Fan X, Li Z, Han Y, Lesniak MS, Fan H, Cheng Y. Programmable ROS-Mediated Cancer Therapy via Magneto-Inductions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1902933. [PMID: 32596106 PMCID: PMC7312334 DOI: 10.1002/advs.201902933] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/06/2020] [Indexed: 05/05/2023]
Abstract
Reactive oxygen species (ROS), a group of oxygen derived radicals and derivatives, can induce cancer cell death via elevated oxidative stress. A spatiotemporal approach with safe and deep-tissue penetration capabilities to elevate the intracellular ROS level is highly desirable for precise cancer treatment. Here, a mechanical-thermal induction therapy (MTIT) strategy is developed for a programmable increase of ROS levels in cancer cells via assembly of magnetic nanocubes integrated with alternating magnetic fields. The magneto-based mechanical and thermal stimuli can disrupt the lysosomes, which sequentially induce the dysfunction of mitochondria. Importantly, intracellular ROS concentrations are responsive to the magneto-triggers and play a key role for synergistic cancer treatment. In vivo experiments reveal the effectiveness of MTIT for efficient eradication of glioma and breast cancer. By remote control of the force and heat using magnetic nanocubes, MTIT is a promising physical approach to trigger the biochemical responses for precise cancer treatment.
Collapse
|
research-article |
5 |
44 |
11
|
Corsini P, Perez-Rigueiro J, Guinea GV, Plaza GR, Elices M, Marsano E, Carnasciali MM, Freddi G. Influence of the draw ratio on the tensile and fracture behavior of NMMO regenerated silk fibers. ACTA ACUST UNITED AC 2007. [DOI: 10.1002/polb.21255] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
|
18 |
43 |
12
|
Chen M, Wu J, Ning P, Wang J, Ma Z, Huang L, Plaza GR, Shen Y, Xu C, Han Y, Lesniak MS, Liu Z, Cheng Y. Remote Control of Mechanical Forces via Mitochondrial-Targeted Magnetic Nanospinners for Efficient Cancer Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1905424. [PMID: 31867877 DOI: 10.1002/smll.201905424] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/21/2019] [Indexed: 06/10/2023]
Abstract
In cells, mechanical forces play a key role in impacting cell behaviors, including adhesion, differentiation, migration, and death. Herein, a 20 nm mitochondria-targeted zinc-doped iron oxide nanocube is designed as a nanospinner to exert mechanical forces under a rotating magnetic field (RMF) at 15 Hz and 40 mT to fight against cancer. The nanospinners can efficiently target the mitochondria of cancer cells. By means of the RMF, the nanocubes assemble in alignment with the external field and produce a localized mechanical force to impair the cancer cells. Both in vitro and in vivo studies show that the nanospinners can damage the cancer cells and reduce the brain tumor growth rate after the application of the RMF. This nanoplatform provides an effective magnetomechanical approach to treat deep-seated tumors in a spatiotemporal fashion.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
39 |
13
|
Guinea GV, Elices M, Plaza GR, Perea GB, Daza R, Riekel C, Agulló-Rueda F, Hayashi C, Zhao Y, Pérez-Rigueiro J. Minor ampullate silks from Nephila and Argiope spiders: tensile properties and microstructural characterization. Biomacromolecules 2012; 13:2087-98. [PMID: 22668322 DOI: 10.1021/bm3004644] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The mechanical behavior and microstructure of minor ampullate gland silk (miS) of two orb-web spinning species, Argiope trifasciata and Nephila inaurata, were extensively characterized, enabling detailed comparison with other silks. The similarities and differences exhibited by miS when compared with the intensively studied major ampullate gland silk (MAS) and silkworm (Bombyx mori) silk offer a genuine opportunity for testing some of the hypotheses proposed to correlate microstructure and tensile properties in silk. In this work, we show that miSs of different species show similar properties, even when fibers spun by spiders that diverged over 100 million years are compared. The tensile properties of miS are comparable to those of MAS when tested in air, significantly in terms of work to fracture, but differ considerably when tested in water. In particular, miS does not show a supercontraction effect and an associated ground state. In this regard, the behavior of miS in water is similar to that of B. mori silk, and it is shown that the initial elastic modulus of both fibers can be explained using a common model. Intriguingly, the microstructural parameters measured in miS are comparable to those of MAS and considerably different from those found in B. mori. This fact suggests that some critical microstructural information is still missing in our description of silks, and our results suggest that the hydrophilicity of the lateral groups or the large scale organization of the sequences might be routes worth exploring.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
38 |
14
|
Plaza GR, Corsini P, Marsano E, Pérez-Rigueiro J, Elices M, Riekel C, Vendrely C, Guinea GV. Correlation between processing conditions, microstructure and mechanical behavior in regenerated silkworm silk fibers. ACTA ACUST UNITED AC 2011. [DOI: 10.1002/polb.23025] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
|
14 |
30 |
15
|
Madurga R, Gañán-Calvo AM, Plaza GR, Guinea GV, Elices M, Pérez-Rigueiro J. Production of High Performance Bioinspired Silk Fibers by Straining Flow Spinning. Biomacromolecules 2017; 18:1127-1133. [DOI: 10.1021/acs.biomac.6b01757] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
|
8 |
30 |
16
|
Madurga R, Plaza GR, Blackledge TA, Guinea GV, Elices M, Pérez-Rigueiro J. Material properties of evolutionary diverse spider silks described by variation in a single structural parameter. Sci Rep 2016; 6:18991. [PMID: 26755434 PMCID: PMC4709512 DOI: 10.1038/srep18991] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 11/06/2015] [Indexed: 11/24/2022] Open
Abstract
Spider major ampullate gland silks (MAS) vary greatly in material properties among species but, this variation is shown here to be confined to evolutionary shifts along a single universal performance trajectory. This reveals an underlying design principle that is maintained across large changes in both spider ecology and silk chemistry. Persistence of this design principle becomes apparent after the material properties are defined relative to the true alignment parameter, which describes the orientation and stretching of the protein chains in the silk fiber. Our results show that the mechanical behavior of all Entelegynae major ampullate silk fibers, under any conditions, are described by this single parameter that connects the sequential action of three deformation micromechanisms during stretching: stressing of protein-protein hydrogen bonds, rotation of the β-nanocrystals and growth of the ordered fraction. Conservation of these traits for over 230 million years is an indication of the optimal design of the material and gives valuable clues for the production of biomimetic counterparts based on major ampullate spider silk.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
28 |
17
|
Guinea GV, Cerdeira M, Plaza GR, Elices M, Pérez-Rigueiro J. Recovery in viscid line fibers. Biomacromolecules 2010; 11:1174-9. [PMID: 20355706 DOI: 10.1021/bm901285c] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The development of a reliable procedure for removing the viscous coating of viscid silk has allowed the accurate characterization of the tensile behavior of clean flagelliform silk (i.e., silk of the flagelliform gland without the viscous coating synthetised in the aggregate gland). For comparison, tensile tests on native viscid silk (with the viscous coating) fibers were also performed. It was found that viscid silk, either native or clean, has an elastomeric behavior when kept wet, either by immersion in water (clean fibers) or by the effect of the viscid coating (native fibers). When tested in dry environments (35% RH, relative humidity, for clean fibers and 10% RH for native fibers), their mechanical behavior was no longer elastomeric, with it being more similar to other silk fibers. Furthermore, it was noticed that flagelliform silk fibers show a ground state to which they can return independent of the previous loading history.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
19 |
18
|
Shen Y, Cheng Y, Uyeda TQP, Plaza GR. Cell Mechanosensors and the Possibilities of Using Magnetic Nanoparticles to Study Them and to Modify Cell Fate. Ann Biomed Eng 2017; 45:2475-2486. [PMID: 28744841 DOI: 10.1007/s10439-017-1884-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 07/07/2017] [Indexed: 12/13/2022]
Abstract
The use of magnetic nanoparticles (MNPs) is a promising technique for future advances in biomedical applications. This idea is supported by the availability of MNPs that can target specific cell components, the variety of shapes of MNPs and the possibility of finely controlling the applied magnetic forces. To examine this opportunity, here we review the current developments in the use of MNPs to mechanically stimulate cells and, specifically, the cell mechanotransduction systems. We analyze the cell components that may act as mechanosensors and their effect on cell fate and we focus on the promising possibilities of controlling stem-cell differentiation, inducing cancer-cell death and treating nervous-system diseases.
Collapse
|
Review |
8 |
16 |
19
|
Perea GB, Solanas C, Plaza GR, Guinea GV, Jorge I, Vázquez J, Pérez Mateos JM, Marí-Buyé N, Elices M, Pérez-Rigueiro J. Unexpected behavior of irradiated spider silk links conformational freedom to mechanical performance. SOFT MATTER 2015; 11:4868-4878. [PMID: 25994594 DOI: 10.1039/c5sm00395d] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Silk fibers from Argiope trifasciata and Nephila inaurata orb-web weaving spiders were UV irradiated to modify the molecular weight of the constituent proteins. Fibers were characterized either as forcibly silked or after being subjected to maximum supercontraction. The effect of irradiation on supercontraction was also studied, both in terms of the percentage of supercontraction and the tensile properties exhibited by irradiated and subsequently supercontracted fibers. The effects of UV exposure at the molecular level were assessed by polyacrylamide gel electrophoresis and mass spectrometry. It is shown that UV-irradiated fibers show a steady decrease in their main tensile parameters, most notably, tensile strength and strain. The combination of the mechanical and biochemical data suggests that the restricted conformational freedom of the proteins after UV irradiation is critical in the reduction of these properties. Consequently, an adequate topological organization of the protein chains emerges as a critical design principle in the performance of spider silk.
Collapse
|
|
10 |
14 |
20
|
Jiang P, Marí-Buyé N, Madurga R, Arroyo-Hernández M, Solanas C, Gañán A, Daza R, Plaza GR, Guinea GV, Elices M, Cenis JL, Pérez-Rigueiro J. Spider silk gut: development and characterization of a novel strong spider silk fiber. Sci Rep 2014; 4:7326. [PMID: 25475975 PMCID: PMC4256644 DOI: 10.1038/srep07326] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 11/19/2014] [Indexed: 11/09/2022] Open
Abstract
Spider silk fibers were produced through an alternative processing route that differs widely from natural spinning. The process follows a procedure traditionally used to obtain fibers directly from the glands of silkworms and requires exposure to an acid environment and subsequent stretching. The microstructure and mechanical behavior of the so-called spider silk gut fibers can be tailored to concur with those observed in naturally spun spider silk, except for effects related with the much larger cross-sectional area of the former. In particular spider silk gut has a proper ground state to which the material can revert independently from its previous loading history by supercontraction. A larger cross-sectional area implies that spider silk gut outperforms the natural material in terms of the loads that the fiber can sustain. This property suggests that it could substitute conventional spider silk fibers in some intended uses, such as sutures and scaffolds in tissue engineering.
Collapse
|
research-article |
11 |
12 |
21
|
Cenis JL, Madurga R, Aznar-Cervantes SD, Lozano-Pérez AA, Marí-Buyé N, Meseguer-Olmo L, Plaza GR, Guinea GV, Elices M, Del Pozo F, Pérez-Rigueiro J. Mechanical behaviour and formation process of silkworm silk gut. SOFT MATTER 2015; 11:8981-8991. [PMID: 26403149 DOI: 10.1039/c5sm01877c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
High performance silk fibers were produced directly from the silk glands of silkworms (Bombyx mori) following an alternative route to natural spinning. This route is based on a traditional procedure that consists of soaking the silk glands in a vinegar solution and stretching them by hand leading to the so called silkworm guts. Here we present, to the authors' best knowledge, the first comprehensive study on the formation, properties and microstructure of silkworm gut fibers. Comparison of the tensile properties and microstructural organization of the silkworm guts with those of naturally spun fibers allows gain of a deeper insight into the mechanisms that lead to the formation of the fiber, as well as the relationship between the microstructure and properties of these materials. In this regard, it is proved that an acidic environment and subsequent application of tensile stress in the range of 1000 kPa are sufficient conditions for the formation of a silk fiber.
Collapse
|
|
10 |
12 |
22
|
Pérez-Rigueiro J, Madurga R, Gañán-Calvo AM, Plaza GR, Elices M, López PA, Daza R, González-Nieto D, Guinea GV. Straining Flow Spinning of Artificial Silk Fibers: A Review. Biomimetics (Basel) 2018; 3:E29. [PMID: 31105251 PMCID: PMC6352662 DOI: 10.3390/biomimetics3040029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/13/2018] [Accepted: 10/01/2018] [Indexed: 11/16/2022] Open
Abstract
This work summarizes the main principles and some of the most significant results of straining flow spinning (SFS), a technology developed originally by the authors of this work. The principles on which the technology is based, inspired by the natural spinning system of silkworms and spiders, are presented, as well as some of the main achievements of the technique. Among these achievements, spinning under environmentally friendly conditions, obtaining high-performance fibers, and imparting the fibers with emerging properties such as supercontraction are discussed. Consequently, SFS appears as an efficient process that may represent one of the first realizations of a biomimetic technology with a significant impact at the production level.
Collapse
|
Review |
7 |
12 |
23
|
Pérez-Rigueiro J, Elices M, Plaza GR, Guinea GV. Basic Principles in the Design of Spider Silk Fibers. Molecules 2021; 26:molecules26061794. [PMID: 33806736 PMCID: PMC8004941 DOI: 10.3390/molecules26061794] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 11/16/2022] Open
Abstract
The prominence of spider silk as a hallmark in biomimetics relies not only on its unrivalled mechanical properties, but also on how these properties are the result of a set of original design principles. In this sense, the study of spider silk summarizes most of the main topics relevant to the field and, consequently, offers a nice example on how these topics could be considered in other biomimetic systems. This review is intended to present a selection of some of the essential design principles that underlie the singular microstructure of major ampullate gland silk, as well as to show how the interplay between them leads to the outstanding tensile behavior of spider silk. Following this rationale, the mechanical behavior of the material is analyzed in detail and connected with its main microstructural features, specifically with those derived from the semicrystalline organization of the fibers. Establishing the relationship between mechanical properties and microstructure in spider silk not only offers a vivid image of the paths explored by nature in the search for high performance materials, but is also a valuable guide for the development of new artificial fibers inspired in their natural counterparts.
Collapse
|
Review |
4 |
11 |
24
|
Pérez-Rigueiro J, Elices M, Plaza GR, Real JI, Guinea GV. The influence of anaesthesia on the tensile properties of spider silk. J Exp Biol 2006; 209:320-6. [PMID: 16391354 DOI: 10.1242/jeb.02009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
In this study of the effect of anaesthesia on both the forced silking process and on the properties of the retrieved silk fibres, a monitored forced silking process enables the silking force to be measured during the whole process. Silk samples were tensile-tested and their diameters measured. Force-displacement curves and stress-strain curves were drawn. The evolution of the silking process of anaesthetized spiders is found to be complex, but it sheds light on the details of the spinning mechanism of spider silk.
Collapse
|
|
19 |
11 |
25
|
Plaza GR, Uyeda TQP, Mirzaei Z, Simmons CA. Study of the influence of actin-binding proteins using linear analyses of cell deformability. SOFT MATTER 2015; 11:5435-5446. [PMID: 26059185 DOI: 10.1039/c5sm00125k] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The actin cytoskeleton plays a key role in the deformability of the cell and in mechanosensing. Here we analyze the contributions of three major actin cross-linking proteins, myosin II, α-actinin and filamin, to cell deformability, by using micropipette aspiration of Dictyostelium cells. We examine the applicability of three simple mechanical models: for small deformation, linear viscoelasticity and drop of liquid with a tense cortex; and for large deformation, a Newtonian viscous fluid. For these models, we have derived linearized equations and we provide a novel, straightforward methodology to analyze the experiments. This methodology allowed us to differentiate the effects of the cross-linking proteins in the different regimes of deformation. Our results confirm some previous observations and suggest important relations between the molecular characteristics of the actin-binding proteins and the cell behavior: the effect of myosin is explained in terms of the relation between the lifetime of the bond to actin and the resistive force; the presence of α-actinin obstructs the deformation of the cytoskeleton, presumably mainly due to the higher molecular stiffness and to the lower dissociation rate constants; and filamin contributes critically to the global connectivity of the network, possibly by rapidly turning over cross-links during the remodeling of the cytoskeletal network, thanks to the higher rate constants, flexibility and larger size. The results suggest a sophisticated relationship between the expression levels of actin-binding proteins, deformability and mechanosensing.
Collapse
|
|
10 |
9 |