1
|
Shapira G, Stachelek JL, Letsou A, Soodak LK, Liskay RM. Novel use of synthetic oligonucleotide insertion mutants for the study of homologous recombination in mammalian cells. Proc Natl Acad Sci U S A 1983; 80:4827-31. [PMID: 6576360 PMCID: PMC384138 DOI: 10.1073/pnas.80.15.4827] [Citation(s) in RCA: 72] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Thymidine kinase-deficient mouse L cells have been transformed with plasmid DNAs carrying 8-base-pair Xho I linker insertion mutations in the coding region of the herpes simplex virus type 1 thymidine kinase gene. When the mutant plasmids are introduced individually into LTK- cells, transformation efficiencies are greatly reduced relative to the wild type. However, when two mutant plasmids are cotransferred into the same LTK- recipients, significantly higher frequencies of transformation are observed (30-300 times). Here we demonstrate the usefulness of linker insertions for the study of homologous recombination in detecting the existence of normal thymidine kinase gene sequences (i.e., sequences lacking the insertions after recombination are substantiated by DNA . DNA hybridization). In addition, the frequencies of recombination in the various "crosses" are consistent with the known positions of the mutations.
Collapse
|
research-article |
42 |
72 |
2
|
Shapira R, Wilkinson KD, Shapira G. Racemization of individual aspartate residues in human myelin basic protein. J Neurochem 1988; 50:649-54. [PMID: 2447246 DOI: 10.1111/j.1471-4159.1988.tb02960.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Human myelin basic protein (MBP), a long-lived brain protein, undergoes gradual racemization of its amino acids, primarily aspartic acid and serine. Purified protein was treated at neutral pH with trypsin to yield peptides that were separated by HPLC using a C18 column. Twenty-nine peptides were isolated and analyzed for amino acid composition and aspartate racemization. Each aspartate and asparagine in the protein was racemized to a different extent, ranging from 2.2 to 17.1% D isomer. When the racemization was examined in terms of the beta-structure model of MBP, a correlation was observed in which six aspartate/asparagine residues assumed to be associated with myelin membrane lipids showed little racemization (2.2-4.9% D isomer), whereas five other aspartate residues were more highly racemized (9.9-17.1% D isomer). Although the observed aspartate racemization may be related to steric hindrance by neighboring residues and/or the protein secondary structure, interaction of aspartates with membrane lipids may also be a major factor. The data are compatible with a model in which each MBP molecule interacts with adjacent cytoplasmic layers of myelin membrane through a beta-sheet on one surface and loops and helices on the other surface, thereby stabilizing the myelin multilamellar structure.
Collapse
|
|
37 |
48 |
3
|
Shapira G, Shomron N, Gurwitz D. Ethnic differences in alpha-1 antitrypsin deficiency allele frequencies may partially explain national differences in COVID-19 fatality rates. FASEB J 2020; 34:14160-14165. [PMID: 32960480 PMCID: PMC7567128 DOI: 10.1096/fj.202002097] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 02/06/2023]
Abstract
Infection rates, severity, and fatalities due to COVID-19, the pandemic mediated by SARS-CoV-2, vary greatly between countries. With few exceptions, these are lower in East and Southeast Asian and Sub-Saharan African countries compared with other regions. Epidemiological differences may reflect differences in border closures, lockdowns, and social distancing measures taken by each county, and by cultural differences, such as common use of face masks in East and Southeast Asian countries. The plasma serine protease inhibitor alpha-1 antitrypsin was suggested to protect from COVID-19 by inhibiting TMPRSS2, a cell surface serine protease essential for the SARS-CoV-2 cell entry. Here, we present evidence that population differences in alpha-1 antitrypsin deficiency allele frequencies may partially explain national differences in the COVID-19 epidemiology. Our study compared reported national estimates for the major alpha-1 antitrypsin deficiency alleles PiZ and PiS (SERPINA1 rs28929474 and rs17580, respectively) with the Johns Hopkins University Coronavirus Resource Center dataset. We found a significant positive correlation (R = .54, P = 1.98e-6) between the combined frequencies of the alpha-1 antitrypsin PiZ and PiS deficiency alleles in 67 countries and their reported COVID-19 mortality rates. Our observations suggest that alpha-1 antitrypsin deficiency alleles may contribute to national differences in COVID-19 infection, severity, and mortality rates. Population-wide screening for carriers of alpha-1 antitrypsin deficiency alleles should be considered for prioritizing individuals for stricter social distancing measures and for receiving a SARS-CoV-2 vaccine once it becomes available.
Collapse
|
research-article |
5 |
37 |
4
|
Gutwillig A, Santana-Magal N, Farhat-Younis L, Rasoulouniriana D, Madi A, Luxenburg C, Cohen J, Padmanabhan K, Shomron N, Shapira G, Gleiberman A, Parikh R, Levy C, Feinmesser M, Hershkovitz D, Zemser-Werner V, Zlotnik O, Kroon S, Hardt WD, Debets R, Reticker-Flynn NE, Rider P, Carmi Y. Transient cell-in-cell formation underlies tumor relapse and resistance to immunotherapy. eLife 2022; 11:80315. [PMID: 36124553 PMCID: PMC9489212 DOI: 10.7554/elife.80315] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Despite the remarkable successes of cancer immunotherapies, the majority of patients will experience only partial response followed by relapse of resistant tumors. While treatment resistance has frequently been attributed to clonal selection and immunoediting, comparisons of paired primary and relapsed tumors in melanoma and breast cancers indicate that they share the majority of clones. Here, we demonstrate in both mouse models and clinical human samples that tumor cells evade immunotherapy by generating unique transient cell-in-cell structures, which are resistant to killing by T cells and chemotherapies. While the outer cells in this cell-in-cell formation are often killed by reactive T cells, the inner cells remain intact and disseminate into single tumor cells once T cells are no longer present. This formation is mediated predominantly by IFNγ-activated T cells, which subsequently induce phosphorylation of the transcription factors signal transducer and activator of transcription 3 (STAT3) and early growth response-1 (EGR-1) in tumor cells. Indeed, inhibiting these factors prior to immunotherapy significantly improves its therapeutic efficacy. Overall, this work highlights a currently insurmountable limitation of immunotherapy and reveals a previously unknown resistance mechanism which enables tumor cells to survive immune-mediated killing without altering their immunogenicity. Cancer immunotherapies use the body’s own immune system to fight off cancer. But, despite some remarkable success stories, many patients only see a temporary improvement before the immunotherapy stops being effective and the tumours regrow. It is unclear why this occurs, but it may have to do with how the immune system attacks cancer cells. Immunotherapies aim to activate a special group of cells known as killer T-cells, which are responsible for the immune response to tumours. These cells can identify cancer cells and inject toxic granules through their membranes, killing them. However, killer T-cells are not always effective. This is because cancer cells are naturally good at avoiding detection, and during treatment, their genes can mutate, giving them new ways to evade the immune system. Interestingly, when scientists analysed the genes of tumour cells before and after immunotherapy, they found that many of the genes that code for proteins recognized by T-cells do not change significantly. This suggests that tumours’ resistance to immune attack may be physical, rather than genetic. To investigate this hypothesis, Gutwillig et al. developed several mouse tumour models that stop responding to immunotherapy after initial treatment. Examining cells from these tumours revealed that when the immune system attacks, they reorganise by getting inside one another. This allows some cancer cells to hide under many layers of cell membrane. At this point killer T-cells can identify and inject the outer cell with toxic granules, but it cannot reach the cells inside. This ability of cancer cells to hide within one another relies on them recognising when the immune system is attacking. This happens because the cancer cells can detect certain signals released by the killer T-cells, allowing them to hide. Gutwillig et al. identified some of these signals, and showed that blocking them stopped cancer cells from hiding inside each other, making immunotherapy more effective. This new explanation for how cancer cells escape the immune system could guide future research and lead to new cancer treatments, or approaches to boost existing treatments. Understanding the process in more detail could allow scientists to prevent it from happening, by revealing which signals to block, and when, for best results.
Collapse
|
|
3 |
34 |
5
|
Magod P, Mastandrea I, Rousso-Noori L, Agemy L, Shapira G, Shomron N, Friedmann-Morvinski D. Exploring the longitudinal glioma microenvironment landscape uncovers reprogrammed pro-tumorigenic neutrophils in the bone marrow. Cell Rep 2021; 36:109480. [PMID: 34348160 DOI: 10.1016/j.celrep.2021.109480] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 03/17/2021] [Accepted: 07/13/2021] [Indexed: 12/13/2022] Open
Abstract
Recent multi-omics studies show different immune tumor microenvironment (TME) compositions in glioblastoma (GBM). However, temporal comprehensive knowledge of the TME from initiation of the disease remains sparse. We use Cre recombinase (Cre)-inducible lentiviral murine GBM models to compare the cellular evolution of the immune TME in tumors initiated from different oncogenic drivers. We show that neutrophils infiltrate early during tumor progression primarily in the mesenchymal GBM model. Depleting neutrophils in vivo at the onset of disease accelerates tumor growth and reduces the median overall survival time of mice. We show that, as a tumor progresses, bone marrow-derived neutrophils are skewed toward a phenotype associated with pro-tumorigenic processes. Our findings suggest that GBM can remotely regulate systemic myeloid differentiation in the bone marrow to generate neutrophils pre-committed to a tumor-supportive phenotype. This work reveals plasticity in the systemic immune host microenvironment, suggesting an additional point of intervention in GBM treatment.
Collapse
|
|
4 |
33 |
6
|
Dolitzky A, Shapira G, Grisaru-Tal S, Hazut I, Avlas S, Gordon Y, Itan M, Shomron N, Munitz A. Transcriptional Profiling of Mouse Eosinophils Identifies Distinct Gene Signatures Following Cellular Activation. Front Immunol 2022; 12:802839. [PMID: 34970274 PMCID: PMC8712732 DOI: 10.3389/fimmu.2021.802839] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/22/2021] [Indexed: 01/21/2023] Open
Abstract
Eosinophils are multifunctional, evolutionary conserved leukocytes that are involved in a plethora of responses ranging from regulation of tissue homeostasis to host defense and cancer. Eosinophils have been studied mostly in the context of Type 2 inflammatory responses such as those found in allergy. Nonetheless, it is now evident that they participate in Type 1 inflammatory responses and can respond to Type 1 cytokines such as IFN-γ. Recent data suggest that the pleotropic roles of eosinophils are due to heterogeneous responses to environmental cues. Despite this, the activation profile of eosinophils, in response to various stimuli is yet to be defined. To better understand the transcriptional spectrum of eosinophil activation, we exposed eosinophils to Type 1 (e.g. IFN-γ, E. coli) vs. Type 2 (e.g. IL-4) conditions and subjected them to global RNA sequencing. Our analyses show that IL-4, IFN-γ, E. coli and IFN-γ in the presence of E. coli (IFN-γ/E. coli)-stimulated eosinophils acquire distinct transcriptional profiles, which polarize them towards what we termed Type 1 and Type 2 eosinophils. Bioinformatics analyses using Gene Ontology based on biological processes revealed that different stimuli induced distinct pathways in eosinophils. These pathways were confirmed using functional assays by assessing cytokine/chemokine release (i.e. CXCL9, CCL24, TNF-α and IL-6) from eosinophils following activation. In addition, analysis of cell surface markers highlighted CD101 and CD274 as potential cell surface markers that distinguish between Type 1 and Type 2 eosinophils, respectively. Finally, the transcriptome signature of Type 1 eosinophils resembled that of eosinophils that were obtained from mice with experimental colitis whereas the transcriptome signature of Type 2 eosinophils resembled that of eosinophils from experimental asthma. Our data demonstrate that eosinophils are polarized to distinct “Type 1” and “Type 2” phenotypes following distinct stimulations. These findings provide fundamental knowledge regarding the heterogeneity of eosinophils and support the presence of transcriptional differences between Type 1 and Type 2 cells that are likely reflected by their pleotropic activities in diverse disease settings.
Collapse
|
|
3 |
33 |
7
|
Karmon G, Sragovich S, Hacohen-Kleiman G, Ben-Horin-Hazak I, Kasparek P, Schuster B, Sedlacek R, Pasmanik-Chor M, Theotokis P, Touloumi O, Zoidou S, Huang L, Wu PY, Shi R, Kapitansky O, Lobyntseva A, Giladi E, Shapira G, Shomron N, Bereswill S, Heimesaat MM, Grigoriadis N, McKinney RA, Rubinstein M, Gozes I. Novel ADNP Syndrome Mice Reveal Dramatic Sex-Specific Peripheral Gene Expression With Brain Synaptic and Tau Pathologies. Biol Psychiatry 2022; 92:81-95. [PMID: 34865853 DOI: 10.1016/j.biopsych.2021.09.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/19/2021] [Accepted: 09/17/2021] [Indexed: 01/18/2023]
Abstract
BACKGROUND ADNP is essential for embryonic development. As such, de novo ADNP mutations lead to an intractable autism/intellectual disability syndrome requiring investigation. METHODS Mimicking humans, CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 editing produced mice carrying heterozygous Adnp p.Tyr718∗ (Tyr), a paralog of the most common ADNP syndrome mutation. Phenotypic rescue was validated by treatment with the microtubule/autophagy-protective ADNP fragment NAPVSIPQ (NAP). RESULTS RNA sequencing of spleens, representing a peripheral biomarker source, revealed Tyr-specific sex differences (e.g., cell cycle), accentuated in females (with significant effects on antigen processing and cellular senescence) and corrected by NAP. Differentially expressed, NAP-correctable transcripts, including the autophagy and microbiome resilience-linked FOXO3, were also deregulated in human patient-derived ADNP-mutated lymphoblastoid cells. There were also Tyr sex-specific microbiota signatures. Phenotypically, Tyr mice, similar to patients with ADNP syndrome, exhibited delayed development coupled with sex-dependent gait defects. Speech acquisition delays paralleled sex-specific mouse syntax abnormalities. Anatomically, dendritic spine densities/morphologies were decreased with NAP amelioration. These findings were replicated in the Adnp+/- mouse, including Foxo3 deregulation, required for dendritic spine formation. Grooming duration and nociception threshold (autistic traits) were significantly affected only in males. Early-onset tauopathy was accentuated in males (hippocampus and visual cortex), mimicking humans, and was paralleled by impaired visual evoked potentials and correction by acute NAP treatment. CONCLUSIONS Tyr mice model ADNP syndrome pathology. The newly discovered ADNP/NAP target FOXO3 controls the autophagy initiator LC3 (microtubule-associated protein 1 light chain 3), with known ADNP binding to LC3 augmented by NAP, protecting against tauopathy. NAP amelioration attests to specificity, with potential for drug development targeting accessible biomarkers.
Collapse
|
|
3 |
31 |
8
|
Rabinowitz T, Polsky A, Golan D, Danilevsky A, Shapira G, Raff C, Basel-Salmon L, Matar RT, Shomron N. Bayesian-based noninvasive prenatal diagnosis of single-gene disorders. Genome Res 2019; 29:428-438. [PMID: 30787035 PMCID: PMC6396420 DOI: 10.1101/gr.235796.118] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 01/23/2019] [Indexed: 12/04/2022]
Abstract
In the last decade, noninvasive prenatal diagnosis (NIPD) has emerged as an effective procedure for early detection of inherited diseases during pregnancy. This technique is based on using cell-free DNA (cfDNA) and fetal cfDNA (cffDNA) in maternal blood, and hence, has minimal risk for the mother and fetus compared with invasive techniques. NIPD is currently used for identifying chromosomal abnormalities (in some instances) and for single-gene disorders (SGDs) of paternal origin. However, for SGDs of maternal origin, sensitivity poses a challenge that limits the testing to one genetic disorder at a time. Here, we present a Bayesian method for the NIPD of monogenic diseases that is independent of the mode of inheritance and parental origin. Furthermore, we show that accounting for differences in the length distribution of fetal- and maternal-derived cfDNA fragments results in increased accuracy. Our model is the first to predict inherited insertions–deletions (indels). The method described can serve as a general framework for the NIPD of SGDs; this will facilitate easy integration of further improvements. One such improvement that is presented in the current study is a machine learning model that corrects errors based on patterns found in previously processed data. Overall, we show that next-generation sequencing (NGS) can be used for the NIPD of a wide range of monogenic diseases, simultaneously. We believe that our study will lead to the achievement of a comprehensive NIPD for monogenic diseases.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
23 |
9
|
Imber S, Shapira G, Gordon M, Judes H, Metzger Z. A virtual reality dental simulator predicts performance in an operative dentistry manikin course. EUROPEAN JOURNAL OF DENTAL EDUCATION : OFFICIAL JOURNAL OF THE ASSOCIATION FOR DENTAL EDUCATION IN EUROPE 2003; 7:160-163. [PMID: 14753761 DOI: 10.1034/j.1600-0579.2003.00299.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
This study was designed to test the ability of a virtual reality dental simulator to predict the performance of students in a traditional operative dentistry manikin course. Twenty-six dental students were pre-tested on the simulator, prior to the course. They were briefly instructed and asked to prepare 12 class I cavities which were automatically graded by the simulator. The instructors in the manikin course that followed were unaware of the students' performances in the simulator pre-test. The scores achieved by each student in the last six simulator cavities were compared to their final comprehensive grades in the manikin course. Class standing of the students in the simulator pre-test positively correlated with their achievements in the manikin course with a correlation coefficient of 0.49 (P = 0.012). Eighty-nine percent of the students in the lower third of the class in the pre-test remained in the low performing half of the class in the manikin course. These results indicate that testing students in a dental simulator, prior to a manikin course, may be an efficient way to allow early identification of those who are likely to perform poorly. This in turn could enable early allocation of personal tutors to these students in order to improve their chances of success.
Collapse
|
Comparative Study |
22 |
17 |
10
|
Weiner C, Hecht I, Rotenstreich Y, Guttman S, Or L, Morad Y, Shapira G, Shomron N, Pras E. The pathogenicity of SLC38A8 in five families with foveal hypoplasia and congenital nystagmus. Exp Eye Res 2020; 193:107958. [PMID: 32032626 DOI: 10.1016/j.exer.2020.107958] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 01/16/2020] [Accepted: 02/03/2020] [Indexed: 11/30/2022]
Abstract
PURPOSE A recently described subtype of foveal hypoplasia with congenital nystagmus and optic-nerve-decussation defects was found to be associated with mutations in the SLC38A8 gene. The aim of this study is to advance the clinical and molecular knowledge of SLC38A8 gene mutations. METHODS Five Israeli families with congenital foveal hypoplasia were studied, two of Karait Jewish origins and three of Indian Jewish origins. Subjects underwent a comprehensive ophthalmic examination including retinal photography and ocular coherence tomography. Molecular analysis including whole exome sequencing and screening of the SLC38A8 gene for specific disease-causing variants was performed. RESULTS Eight affected individuals were identified, all had congenital nystagmus and all but one had hypoplastic foveal pits. Anterior segment dysgenesis was observed in only one patient, one had evidence of developmental delay and another displayed early age-related macular degeneration (AMD). Molecular analysis revealed a recently described homozygous mutation, c.95T > G; p.Ile32Ser, in two families of Jewish Indian descent, and the same mutation in two families of Karaite Jewish descent. In a patient with only one pathogenic mutation (c.95T > G; p.Ile32Ser), a possible partial clinical expression of the disorder was seen. One patient of Jewish Indian descent was found to be compound heterozygous for c.95T > G; p.Ile32Ser and a novel mutation c.490_491delCT; p.L164Vfs*41. CONCLUSIONS In five unrelated families with congenital nystagmus and foveal hypoplasia, mutations in the SLC38A8 gene were identified. Possible partial expression in a heterozygous patient was observed and novel potential disease-related phenotypes were identified including early-onset AMD and developmental delay. A novel mutation was also identified and a similar mutation in both Indian and Karaite Jewish ethnicities could be suggestive for common ancestry.
Collapse
|
Journal Article |
5 |
14 |
11
|
Preisler L, Habib A, Shapira G, Kuznitsov-Yanovsky L, Mayshar Y, Carmel-Gross I, Malcov M, Azem F, Shomron N, Kariv R, Hershkovitz D, Ben-Yosef D. Heterozygous APC germline mutations impart predisposition to colorectal cancer. Sci Rep 2021; 11:5113. [PMID: 33664379 PMCID: PMC7933349 DOI: 10.1038/s41598-021-84564-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 02/04/2021] [Indexed: 12/24/2022] Open
Abstract
Familial adenomatous polyposis (FAP) is an inherited syndrome caused by a heterozygous adenomatous polyposis coli (APC) germline mutation, associated with a profound lifetime risk for colorectal cancer. While it is well accepted that tumorigenic transformation is initiated following acquisition of a second mutation and loss of function of the APC gene, the role of heterozygous APC mutation in this process is yet to be discovered. This work aimed to explore whether a heterozygous APC mutation induces molecular defects underlying tumorigenic transformation and how different APC germline mutations predict disease severity. Three FAP-human embryonic stem cell lines (FAP1/2/3-hESC lines) carrying germline mutations at different locations of the APC gene, and two control hESC lines free of the APC mutation, were differentiated into colon organoids and analyzed by immunohistochemistry and RNA sequencing. In addition, data regarding the genotype and clinical phenotype of the embryo donor parents were collected from medical records. FAP-hESCs carrying a complete loss-of-function of a single APC allele (FAP3) generated complex and molecularly mature colon organoids, which were similar to controls. In contrast, FAP-hESCs carrying APC truncation mutations (FAP1 and FAP2) generated only few cyst-like structures and cell aggregates of various shape, occasionally with luminal parts, which aligned with their failure to upregulate critical differentiation genes early in the process, as shown by RNA sequencing. Abnormal disease phenotype was shown also in non-pathological colon of FAP patients by the randomly distribution of proliferating cells throughout the crypts, compared to their focused localization in the lower part of the crypt in healthy/non-FAP patients. Genotype/phenotype analysis revealed correlations between the colon organoid maturation potential and FAP severity in the carrier parents. In conclusion, this study suggest that a single truncated APC allele is sufficient to initiate early molecular tumorigenic activity. In addition, the results hint that patient-specific hESC-derived colon organoids can probably predict disease severity among FAP patients.
Collapse
|
Journal Article |
4 |
14 |
12
|
Kneip B, Raymondjean M, Bogdanovsky D, Bachner L, Shapira G. An improved and easy technique for polyamine determination in biological samples. Application to cell-free system from hypertrophied rat heart. JOURNAL OF CHROMATOGRAPHY 1979; 162:547-59. [PMID: 160916 DOI: 10.1016/s0378-4347(00)81834-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An accurate, improved cation-exchange chromatographic method using o-phthalaldehyde and ultraviolet detection at 280 nm for the determination of free polyamines (putrescine, spermidine, spermine) has been developed. Different samples, such as the 105,000 g supernatant of reticulocyte or heart muscle, and KCl ribosomal wash containing initiation factors, can be analysed. The minor modification of reagents results in a good precision and sensitivity, which is demonstrated by a relative standard deviation of 5--9% and recoveries of 98%. This technique is of particular interest because it allows polyamine determination in biological samples with high concentrations of salt.
Collapse
|
|
46 |
12 |
13
|
Poleg S, Kourieh E, Ruban A, Shapira G, Shomron N, Barak B, Offen D. Behavioral aspects and neurobiological properties underlying medical cannabis treatment in Shank3 mouse model of autism spectrum disorder. Transl Psychiatry 2021; 11:524. [PMID: 34645786 PMCID: PMC8514476 DOI: 10.1038/s41398-021-01612-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 07/16/2021] [Accepted: 08/04/2021] [Indexed: 12/27/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disease with a wide spectrum of manifestation. The core symptoms of ASD are persistent deficits in social communication, and restricted and repetitive patterns of behavior, interests, or activities. These are often accompanied by intellectual disabilities. At present, there is no designated effective treatment for the core symptoms and co-morbidities of ASD. Recently, interest is rising in medical cannabis as a treatment for ASD, with promising clinical data. However, there is a notable absence of basic pre-clinical research in this field. In this study, we investigate the behavioral and biochemical effects of long-term oral treatment with CBD-enriched medical cannabis oil in a human mutation-based Shank3 mouse model of ASD. Our findings show that this treatment alleviates anxiety and decreases repetitive grooming behavior by over 70% in treated mutant mice compared to non-treated mutant mice. Furthermore, we were able to uncover the involvement of CB1 receptor (CB1R) signaling in the Avidekel oil mechanism, alongside a mitigation of cerebrospinal fluid (CSF) glutamate concentrations. Subsequently, RNA sequencing (RNA seq) of cerebellar brain samples revealed changes in mRNA expression of several neurotransmission-related genes post-treatment. Finally, our results question the relevancy of CBD enrichment of medical cannabis for treating the core symptoms of ASD, and emphasize the importance of the THC component for alleviating deficits in repetitive and social behaviors in ASD.
Collapse
|
research-article |
4 |
12 |
14
|
Levert-Levitt E, Shapira G, Sragovich S, Shomron N, Lam JCK, Li VOK, Heimesaat MM, Bereswill S, Yehuda AB, Sagi-Schwartz A, Solomon Z, Gozes I. Oral microbiota signatures in post-traumatic stress disorder (PTSD) veterans. Mol Psychiatry 2022; 27:4590-4598. [PMID: 35864319 DOI: 10.1038/s41380-022-01704-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/06/2022] [Accepted: 07/06/2022] [Indexed: 12/14/2022]
Abstract
Post-traumatic stress disorder (PTSD) represents a global public health concern, affecting about 1 in 20 individuals. The symptoms of PTSD include intrusiveness (involuntary nightmares or flashbacks), avoidance of traumatic memories, negative alterations in cognition and mood (such as negative beliefs about oneself or social detachment), increased arousal and reactivity with irritable reckless behavior, concentration problems, and sleep disturbances. PTSD is also highly comorbid with anxiety, depression, and substance abuse. To advance the field from subjective, self-reported psychological measurements to objective molecular biomarkers while considering environmental influences, we examined a unique cohort of Israeli veterans who participated in the 1982 Lebanon war. Non-invasive oral 16S RNA sequencing was correlated with psychological phenotyping. Thus, a microbiota signature (i.e., decreased levels of the bacteria sp_HMT_914, 332 and 871 and Noxia) was correlated with PTSD severity, as exemplified by intrusiveness, arousal, and reactivity, as well as additional psychopathological symptoms, including anxiety, hostility, memory difficulties, and idiopathic pain. In contrast, education duration correlated with significantly increased levels of sp_HMT_871 and decreased levels of Bacteroidetes and Firmicutes, and presented an inverted correlation with adverse psychopathological measures. Air pollution was positively correlated with PTSD symptoms, psychopathological symptoms, and microbiota composition. Arousal and reactivity symptoms were correlated with reductions in transaldolase, an enzyme controlling a major cellular energy pathway, that potentially accelerates aging. In conclusion, the newly discovered bacterial signature, whether an outcome or a consequence of PTSD, could allow for objective soldier deployment and stratification according to decreases in sp_HMT_914, 332, 871, and Noxia levels, coupled with increases in Bacteroidetes levels. These findings also raise the possibility of microbiota pathway-related non-intrusive treatments for PTSD.
Collapse
|
|
3 |
8 |
15
|
Grad M, Nir A, Levy G, Trangle SS, Shapira G, Shomron N, Assaf Y, Barak B. Altered White Matter and microRNA Expression in a Murine Model Related to Williams Syndrome Suggests That miR-34b/c Affects Brain Development via Ptpru and Dcx Modulation. Cells 2022; 11:cells11010158. [PMID: 35011720 PMCID: PMC8750756 DOI: 10.3390/cells11010158] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/15/2021] [Accepted: 12/28/2021] [Indexed: 11/16/2022] Open
Abstract
Williams syndrome (WS) is a multisystem neurodevelopmental disorder caused by a de novo hemizygous deletion of ~26 genes from chromosome 7q11.23, among them the general transcription factor II-I (GTF2I). By studying a novel murine model for the hypersociability phenotype associated with WS, we previously revealed surprising aberrations in myelination and cell differentiation properties in the cortices of mutant mice compared to controls. These mutant mice had selective deletion of Gtf2i in the excitatory neurons of the forebrain. Here, we applied diffusion magnetic resonance imaging and fiber tracking, which showed a reduction in the number of streamlines in limbic outputs such as the fimbria/fornix fibers and the stria terminalis, as well as the corpus callosum of these mutant mice compared to controls. Furthermore, we utilized next-generation sequencing (NGS) analysis of cortical small RNAs' expression (RNA-Seq) levels to identify altered expression of microRNAs (miRNAs), including two from the miR-34 cluster, known to be involved in prominent processes in the developing nervous system. Luciferase reporter assay confirmed the direct binding of miR-34c-5p to the 3'UTR of PTPRU-a gene involved in neural development that was elevated in the cortices of mutant mice relative to controls. Moreover, we found an age-dependent variation in the expression levels of doublecortin (Dcx)-a verified miR-34 target. Thus, we demonstrate the substantial effect a single gene deletion can exert on miRNA regulation and brain structure, and advance our understanding and, hopefully, treatment of WS.
Collapse
|
|
3 |
8 |
16
|
Shapira G, Abu Hamad R, Weiner C, Rainy N, Sorek-Abramovich R, Benveniste-Levkovitz P, Rock R, Avnat E, Levtzion-Korach O, Bar Chaim A, Shomron N. Population differences in antibody response to SARS-CoV-2 infection and BNT162b2 vaccination. FASEB J 2022; 36:e22223. [PMID: 35239233 PMCID: PMC9111330 DOI: 10.1096/fj.202101492r] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/24/2022] [Accepted: 02/10/2022] [Indexed: 12/14/2022]
Abstract
The concentration of SARS‐CoV‐2‐specific serum antibodies, elicited by vaccination or infection, is a primary determinant of anti‐viral immunity, which correlates with protection against infection and COVID‐19. Serum samples were obtained from 25 897 participants and assayed for anti‐SARS‐CoV‐2 spike protein RBD IgG antibodies. The cohort was composed of newly vaccinated BNT162b2 recipients, in the first month or 6 months after vaccination, COVID‐19 patients and a general sample of the Israeli population. Antibody levels of BNT162b2 vaccine recipients were negatively correlated with age, with a prominent decrease in recipients over 55 years old, which was most significant in males. This trend was observable within the first month and 6 months after vaccination, while younger participants were more likely to maintain stable levels of serum antibodies. The antibody concentration of participants previously infected with SARS‐CoV‐2 was lower than the vaccinated and had a more complex, non‐linear relation to age, sex and COVID‐19 symptoms. Taken together, our data supports age and sex as primary determining factors for both the magnitude and durability of humoral response to SARS‐CoV‐2 infection and the COVID‐19 vaccine. Our results could inform vaccination policies, prioritizing the most susceptible populations for repeated vaccination.
Collapse
|
|
3 |
7 |
17
|
Admoni-Elisha L, Elbaz T, Chopra A, Shapira G, Bedford M, Fry C, Shomron N, Biggar K, Feldman M, Levy D. TWIST1 methylation by SETD6 selectively antagonizes LINC-PINT expression in glioma. Nucleic Acids Res 2022; 50:6903-6918. [PMID: 35694846 PMCID: PMC9262621 DOI: 10.1093/nar/gkac485] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 05/16/2022] [Accepted: 05/30/2022] [Indexed: 12/24/2022] Open
Abstract
Gliomas are one of the most common and lethal brain tumors among adults. One process that contributes to glioma progression and recurrence is the epithelial to mesenchymal transition (EMT). EMT is regulated by a set of defined transcription factors which tightly regulate this process, among them is the basic helix-loop-helix family member, TWIST1. Here we show that TWIST1 is methylated on lysine-33 at chromatin by SETD6, a methyltransferase with expression levels correlating with poor survival in glioma patients. RNA-seq analysis in U251 glioma cells suggested that both SETD6 and TWIST1 regulate cell adhesion and migration processes. We further show that TWIST1 methylation attenuates the expression of the long-non-coding RNA, LINC-PINT, thereby promoting EMT in glioma. Mechanistically, TWIST1 methylation represses the transcription of LINC-PINT by increasing the occupancy of EZH2 and the catalysis of the repressive H3K27me3 mark at the LINC-PINT locus. Under un-methylated conditions, TWIST1 dissociates from the LINC-PINT locus, allowing the expression of LINC-PINT which leads to increased cell adhesion and decreased cell migration. Together, our findings unravel a new mechanistic dimension for selective expression of LINC-PINT mediated by TWIST1 methylation.
Collapse
|
research-article |
3 |
6 |
18
|
Jurkevitch EJ, Shapira G. Structure and Colonization Dynamics of Epiphytic Bacterial Communities and of Selected Component Strains on Tomato (Lycopersicon esculentum) Leaves. MICROBIAL ECOLOGY 2000; 40:300-308. [PMID: 12035088 DOI: 10.1007/s002480000023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/1999] [Accepted: 01/06/2000] [Indexed: 05/23/2023]
Abstract
The sizes and compositions of bacterial populations found on leaves of greenhouse and field grown tomato plants were studied by dilution plating, fatty acid methyl ester analysis (FAME), and BIOLOG plates of isolates in pure cultures. In the greenhouse, overhead-irrigated plants sustained higher microbial populations (up to 105 cfu g-1) than soil-irrigated plants (103 cfu g-1). Strains isolated from overhead-irrigated plants grown in a vegetable garden (n = 216) and from greenhouse-grown plants (n = 114) were subjected to FAME analysis. Similarly, strains from soil-irrigated field-grown plants (n = 83) were identified using BIOLOG plates. In each case, populations were dominated by a few genera. When concentrated phyllosphere washes (CPW) were sprayed on greenhouse-grown, soil-irrigated plants, leaf bacterial populations of more than 105 CFU g-1 were sustained for 4 days; sterile buffer-sprayed leaves sustained less than 104 CFU g-1. No significant enrichment of any strain isolated from the sprayed leaves could be detected by FAME identification of randomly selected colonies. However, when recurring leaf saprophytic species (both Gram-positive and Gram-negative) isolated from these experiments and from plants grown outdoors were tested for epiphytic colonization under stressful conditions, all could still be detected at various levels up to 4 days after inoculation, indicating differential epiphytic fitness. The non-epiphytic bacteria Escherichia coli and Azospirillum brasilense disappeared from the leaf surface within the same experimental period.
Collapse
|
|
25 |
6 |
19
|
Pillar N, Haguel D, Grad M, Shapira G, Yoffe L, Shomron N. Characterization of MicroRNA and Gene Expression Profiles Following Ricin Intoxication. Toxins (Basel) 2019; 11:E250. [PMID: 31052539 PMCID: PMC6563297 DOI: 10.3390/toxins11050250] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/23/2019] [Accepted: 04/30/2019] [Indexed: 12/12/2022] Open
Abstract
Ricin, derived from the castor bean plant, is a highly potent toxin, classified as a potential bioterror agent. Current methods for early detection of ricin poisoning are limited in selectivity. MicroRNAs (miRNAs), which are naturally occurring, negative gene expression regulators, are known for their tissue specific pattern of expression and their stability in tissues and blood. While various approaches for ricin detection have been investigated, miRNAs remain underexplored. We evaluated the effect of pulmonary exposure to ricin on miRNA expression profiles in mouse lungs and peripheral blood mononuclear cells (PBMCs). Significant changes in lung tissue miRNA expression levels were detected following ricin intoxication, specifically regarding miRNAs known to be involved in innate immunity pathways. Transcriptome analysis of the same lung tissues revealed activation of several immune regulation pathways and immune cell recruitment. Our work contributes to the understanding of the role of miRNAs and gene expression in ricin intoxication.
Collapse
|
research-article |
6 |
6 |
20
|
Shapira KE, Shapira G, Schmukler E, Pasmanik-Chor M, Shomron N, Pinkas-Kramarski R, Henis YI, Ehrlich M. Autophagy is induced and modulated by cholesterol depletion through transcription of autophagy-related genes and attenuation of flux. Cell Death Discov 2021; 7:320. [PMID: 34716312 PMCID: PMC8556405 DOI: 10.1038/s41420-021-00718-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/12/2021] [Accepted: 10/15/2021] [Indexed: 01/18/2023] Open
Abstract
Perturbations to cellular homeostasis, including reduction of the cholesterol level, induce autophagy, a self-digestion process of cellular constituents through an autophagosomal-lysosomal pathway. In accord with its function as a membrane organizer and metabolic sentinel, the cellular response to cholesterol depletion comprises multiple phenomena, including the activation of transcriptional responses, accumulation of reactive oxygen species (ROS), and activation of stress-related signaling pathways. However, the molecular mechanisms by which cholesterol depletion regulates autophagy and the putative involvement of transcriptional responses, ROS and/or stress-related signaling in autophagy regulation in this biological context are not fully understood. Here, we find that cholesterol depletion regulates autophagy at three different levels. First, employing RNA-seq, we show that cholesterol depletion increases the expression of autophagy-related genes independent of ROS or JNK activity. Second, analysis of LC3 lipidation and intracellular localization, and of p62 levels and degradation kinetics, reveals that cholesterol depletion mediates autophagy induction while interfering with autophagic flux. Of note, only the latter depends on ROS accumulation and JNK activity. In view of the common use of cholesterol-reducing drugs as therapeutic agents, our findings have important implications for multiple cellular settings in which autophagy plays a prominent role.
Collapse
|
research-article |
4 |
6 |
21
|
Pertzov B, Shapira G, Abushkara S, Cohen S, Turjeman A, Kramer MR, Gurwitz D, Shomron N. Lower serum alpha 1 antitrypsin levels in patients with severe COVID-19 compared with patients hospitalized due to non-COVID-19 pneumonia. Infect Dis (Lond) 2022; 54:846-851. [PMID: 35975662 DOI: 10.1080/23744235.2022.2111464] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
INTRODUCTION Alpha 1 antitrypsin (A1AT) is the major human blood serine protease inhibitor. Transmembrane serine protease 2 (TMPRSS2), which is crucial for SARS-CoV-2 cell entry, is inhibited by A1AT. Therefore, we hypothesized that individuals with diminished levels of A1AT may be more prone to SARS-CoV-2 infection and severe COVID-19 disease. Our aim in this study was to evaluate the level of A1AT in hospitalized COVID-19 patients in comparison to hospitalized patients with non-COVID-19 pneumonia. METHODS We conducted an observational prospective study between October 2020 and April 2021 in Rabin Medical Centre in Israel. A1AT levels were measured from the routine serum samples of hospitalized patients with COVID-19 and non-COVID-19 pneumonia (control group). The primary outcome was A1AT level, secondary outcomes were clinical outcomes and predictors of morality. RESULTS Overall, 145 patients were included in the study, 98 in the COVID-19 group and 47 in the control group. The median A1AT level was 222 mg/dL (interquartile range (IQR) 188-269) and 258 mg/dL (IQR 210-281) in the COVID-19 and control groups, respectively (p = .045). Multivariate analysis for independent risk factors for mortality among COVID-19 patients showed that diabetes mellitus (p = .02), older age (p = .04), and high A1AT levels (p = .04) were all associated with increased mortality. CONCLUSION Patients admitted due to severe COVID-19 had lower A1AT levels in comparison to patients admitted due to non-COVID pneumonia. This observation may suggest an association between mildly diminished A1AT and higher risk of SARS-CoV-2 infection with severe COVID-19 disease.
Collapse
|
|
3 |
5 |
22
|
Israel-Elgali I, Hertzberg L, Shapira G, Segev A, Krieger I, Nitzan U, Bloch Y, Pillar N, Mayer O, Weizman A, Gurwitz D, Shomron N. Blood transcriptional response to treatment-resistant depression during electroconvulsive therapy. J Psychiatr Res 2021; 141:92-103. [PMID: 34182381 DOI: 10.1016/j.jpsychires.2021.06.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/17/2021] [Accepted: 06/20/2021] [Indexed: 12/13/2022]
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are currently the first-line antidepressant drug treatment for major depressive disorder (MDD). Treatment-resistant depression (TRD), defined as failure to achieve remission despite adequate treatment, affects ~30% of persons with MDD. The current recommended treatment for TRD is electroconvulsive therapy (ECT), while ketamine is an experimentally suggested treatment. This study aimed to elucidate the transcriptional differences in peripheral blood mononuclear cells (PBMC) between individuals with TRD and a control group without a psychiatric illness; and between patients with TRD, treated with either standard antidepressant drugs alone, or in combination with ECT or ketamine. Additionally, PBMC transcriptomics were compared between treatment responders, following completion of their treatment protocols. Total RNA was extracted from PBMC of the TRD group at two time points, and RNA and miRNA expression were profiled. Multiple mRNAs and miRNAs were found to be modified, with two protein coding genes, FKBP5 and ITGA2B, which are up- and downregulated, respectively; and several miRNAs have shown changes following successful ECT treatment. Further analysis demonstrated the direct functional regulation of ITGA2B by miR-24-3p. Our findings suggest that PBMC expression levels of FKBP5, ITGA2B, and miR-24-3p should be further explored as tentative ECT response biomarkers.
Collapse
|
|
4 |
4 |
23
|
Weissman R, Diamond EL, Haroche J, Pillar N, Shapira G, Durham BH, Buthorn J, Cohen F, Ki M, Stemer G, Ulaner GA, Amoura Z, Emile JF, Mazor RD, Shomron N, Abdel-Wahab OI, Shpilberg O, Hershkovitz-Rokah O. The Contribution of MicroRNAs to the Inflammatory and Neoplastic Characteristics of Erdheim-Chester Disease. Cancers (Basel) 2020; 12:E3240. [PMID: 33153128 PMCID: PMC7693724 DOI: 10.3390/cancers12113240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/27/2020] [Accepted: 10/30/2020] [Indexed: 01/18/2023] Open
Abstract
The pathogenesis of histiocytic neoplasms is driven by mutations activating the MAPK/ERK pathway, but little is known about the transcriptional and post-transcriptional alterations involved in these neoplasms. We analyzed microRNA (miRNA) expression in plasma samples and tissue biopsies of Erdheim-Chester disease (ECD) and Langerhans cell histiocytosis (LCH) patients. In silico analysis revealed a potential role of miRNAs in regulating gene expression in these neoplasms as compared with healthy controls (HC). NanoString analysis revealed 101 differentially expressed plasma miRNAs in 16 ECD patients as compared with 11 HC, 95% of which were downregulated. MiRNAs-15a-5p, -15b-5p, -21-5p, -107, -221-3p, -320e, -630, and let-7 family miRNAs were further evaluated by qRT-PCR in an extended cohort of 32 ECD patients, seven LCH and 15 HC. Six miRNAs (let-7a, let-7c, miR-15a-5p, miR-15b-5p, miR-107 and miR-630) were highly expressed in LCH plasma and tissue samples as compared with ECD. Pathway enrichment analysis indicated the miRNA contribution to inflammatory and pro-survival signaling pathways. Moreover, the let-7 family members were downregulated in untreated ECD patients as compared with HC, while treatment with MAPK/ERK signaling inhibitors for 16 weeks resulted in their upregulation, which was in parallel with the radiologic response seen by PET-CT. The study highlights the potential contribution of miRNA to the inflammatory and neoplastic characteristics of ECD and LCH.
Collapse
|
research-article |
5 |
3 |
24
|
Vinker S, Kaplan B, Yaphe J, Cohen O, Shumla V, Shapira G, Shofty I, Kitai E. Use of hormone replacement therapy by menopausal women in six family-practice teaching clinics in Israel. Climacteric 2009. [DOI: 10.1080/cmt.6.1.75.80] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
|
16 |
3 |
25
|
Abstract
Over the last decade, single cell RNA sequencing (scRNAseq) became an increasingly viable solution for analyzing cellular heterogeneity and cell-specific expression differences. While not as mature or fully realized as bulk sequencing, newly developed computational methods offer a solution to the challenges of scRNAseq data analysis, providing previously inaccessible biological insight at unprecedented levels of detail. Here, we go over the inherent challenges of single-cell data analysis and the computational methods used to overcome them. We cover current and future applications of scRNAseq in research of cellular dynamics and as an integrative component of biological research.
Collapse
|
|
4 |
2 |