1
|
Adams JM, Difazio LT, Rolandelli RH, Luján JJ, Haskó G, Csóka B, Selmeczy Z, Németh ZH. HIF-1: a key mediator in hypoxia. ACTA ACUST UNITED AC 2009; 96:19-28. [PMID: 19264039 DOI: 10.1556/aphysiol.96.2009.1.2] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The transcription factor HIF-1 is one of the principal mediators of homeostasis in human tissues exposed to hypoxia. It is implicated in virtually every process of rapid gene expression in response to low oxygen levels. The most common causes of tissue hypoxia are inflammation and/or insufficient circulation or a combination of both. Inflamed tissues and the areas surrounding malignant tumors are characterized by hypoxia and low concentrations of glucose. Serious and generalized inflammation can lead to sepsis and circulatory collapse resulting in acute or chronic tissue hypoxia in various vital organs which induces a rapid homeostatic process in all nucleated cells of affected organs in the human body. Under hypoxic conditions the alpha and beta subunits of HIF-1 make an active heterodimer and drive the transcription of over 60 genes important for cell survival, adaptation, anaerobic metabolism, immune reaction, cytokine production, vascularization and general tissue homeostasis. In addition, HIF-1 plays a key role in the development of physiological systems in fetal and postnatal life. It is also a critical mediator of cancer, lung and cardiovascular diseases. The better understanding of the functions of HIF-1 and the pharmacological modulation of its activity could mean a successful therapeutic approach to these diseases.
Collapse
|
2
|
Selmeczy Z, Csóka B, Pacher P, Vizi ES, Haskó G. The adenosine A2A receptor agonist CGS 21680 fails to ameliorate the course of dextran sulphate-induced colitis in mice. Inflamm Res 2007; 56:204-9. [PMID: 17588136 PMCID: PMC2225471 DOI: 10.1007/s00011-006-6150-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVE In this study we investigated the effect of CGS 21680 (2-p-(2-Carboxyethyl)phenethylamino-5-N-ethylcarboxamidoadenosine hydrochloride), an adenosine A2A receptor agonist, in a model of dextran sulphate sodium (DSS)-induced colitis. METHODS NMRI mice were fed 5 % (w/v) DSS, and were treated intraperitoneally with 0.5 mg/kg CGS 21680 or vehicle for 10 days. Changes of bodyweight, colon length, the incidence of rectal bleeding, levels of macrophage inflammatory protein (MIP)-1alpha, MIP-2, interferon gamma, interleukin (IL)-1beta, IL-12 and tumour necrosis factor-alpha from homogenates of colon biopsies, and the release of [3H]acetylcholine (ACh) from longitudinal muscle strip were determined. RESULTS DSS significantly decreased bodyweight, colon length, and it increased the incidence of rectal bleeding and levels of MIP-1alpha, MIP-2 and IL-1beta compared to DSS-untreated animals. CGS 21680 had no effect on these changes. No change could be observed in release of ACh in DSS-induced colitis with or without CGS 21680. CONCLUSION In summary, CGS 21680 is ineffective in ameliorating DSS-induced colitis in mice.
Collapse
|
3
|
Mabley JG, Pacher P, Liaudet L, Soriano FG, Haskó G, Marton A, Szabo C, Salzman AL. Inosine reduces inflammation and improves survival in a murine model of colitis. Am J Physiol Gastrointest Liver Physiol 2003; 284:G138-44. [PMID: 12388199 DOI: 10.1152/ajpgi.00060.2002] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Inosine, a naturally occurring purine formed from the breakdown of adenosine, has recently been shown to exert powerful anti-inflammatory effects both in vivo and in vitro. This study evaluated inosine as a potential therapy for colitis. Colitis was induced in mice by the administration of dextran sulfate sodium (DSS). Oral treatment with inosine was begun either before the onset of colitis or as a posttreatment once colitis was established. Evaluation of colon damage and inflammation was determined grossly (body wt, rectal bleeding), histologically, and biochemically (colon levels of MPO, MDA, and cytokines). DSS-induced colitis significantly increased inflammatory cell infiltration into the colon. DSS-induced colitis also increased colon levels of lipid peroxidation, cytokines, and chemokines. Inosine protected the colon from DSS-induced inflammatory cell infiltration and lipid peroxidation. Inosine also partially reduced these parameters in an experimental model of established colitis. Thus inosine treatment may be a potential therapy in colitis.
Collapse
|
4
|
Mabley JG, Haskó G, Liaudet L, Soriano FG, Soriano F, Southan GJ, Salzman AL, Szabó C. NFkappaB1 (p50)-deficient mice are not susceptible to multiple low-dose streptozotocin-induced diabetes. J Endocrinol 2002; 173:457-64. [PMID: 12065235 DOI: 10.1677/joe.0.1730457] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Insulin-dependent diabetes mellitus (IDDM) is a disease characterized by the autoimmune destruction of the pancreatic beta-cells, which requires the expression of a number of immune-related genes including major histocompatibility complex proteins, cytokines, chemokines, and cytotoxic enzymes, many of which are regulated by the transcription factor, NFkappaB. Inhibition of the entire NFkappaB family of transcription factors may be harmful, as these factors are involved in many normal physiological processes. However, identifying and targeting specific NFkappaB subunits critical for the pathogenesis of disease may prove to be valuable in designing new therapeutic strategies. To assess the potential role of the NFkappaB subunit, p50, in the development of IDDM, mice with gene disruption for NFkappaB (p50) were investigated for susceptibility to IDDM. We found that p50-deficient mice were fully resistant against multiple low-dose streptozotocin-induced diabetes, a model of diabetes with a strong autoimmune component. The site of involvement of NFkappaB (p50) lies at an early, critical juncture of immune activation and proinflammatory mediator production, because: (1) isolated islets of Langerhans from NFkappaB (p50)-deficient mice were not protected from the islet dysfunction induced by in vitro application of proinflammatory cytokines; (2) p50-deficient mice were not resistant to diabetes induced by a single high dose of streptozotocin, a model with a large oxidant component and no autoimmune involvement; and (3) diabetes induced up-regulation of nitric oxide and interleukin-12 was blocked in the p50-deficient mice. Our data suggest that NFkappaB (p50) has an essential role in the development of autoimmune diabetes. Selective therapeutic blockade of this subunit may be beneficial in preventing IDDM.
Collapse
|
5
|
Pacher P, Liaudet L, Bai P, Virag L, Mabley JG, Haskó G, Szabó C. Activation of poly(ADP-ribose) polymerase contributes to development of doxorubicin-induced heart failure. J Pharmacol Exp Ther 2002; 300:862-7. [PMID: 11861791 DOI: 10.1124/jpet.300.3.862] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Activation of the nuclear enzyme poly(ADP-ribose) polymerase (PARP) by oxidant-mediated DNA damage is an important pathway of cell dysfunction and tissue injury in conditions associated with oxidative stress. Increased oxidative stress is a major factor implicated in the cardiotoxicity of doxorubicin (DOX), a widely used antitumor anthracycline antibiotic. Thus, we hypothesized that the activation of PARP may contribute to the DOX-induced cardiotoxicity. Using a dual approach of PARP-1 suppression, by genetic deletion or pharmacological inhibition with the phenanthridinone PARP inhibitor PJ34, we now demonstrate the role of PARP in the development of cardiac dysfunction induced by DOX. PARP-1+/+ and PARP-1-/- mice received a single injection of DOX (25 mg/kg i.p). Five days after DOX administration, left ventricular performance was significantly depressed in PARP-1+/+ mice, but only to a smaller extent in PARP-1-/- ones. Similar experiments were conducted in BALB/c mice treated with PJ34 or vehicle. Treatment with a PJ34 significantly improved cardiac dysfunction and increased the survival of the animals. In addition PJ34 significantly reduced the DOX-induced increase in the serum lactate dehydrogenase and creatine kinase activities but not metalloproteinase activation in the heart. Thus, PARP activation contributes to the cardiotoxicity of DOX. PARP inhibitors may exert protective effects against the development of severe cardiac complications associated with the DOX treatment.
Collapse
|
6
|
Marton A, Pacher P, Murthy KG, Németh ZH, Haskó G, Szabó C. Anti-inflammatory effects of inosine in human monocytes, neutrophils and epithelial cells in vitro. Int J Mol Med 2001; 8:617-21. [PMID: 11712075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
Inosine is an endogenous purine, which has been recently shown to exert immunomodulatory, anti-inflammatory and anti-shock effects in rodent experimental systems. Some of these actions may be related to partial adenosine receptor agonistic effects. It has not been investigated previously whether inosine exerts similar immunomodulatory or anti-inflammatory effects in human cells or enzymes. Here we investigated the effects of inosine on the activation of human monocytes, neutrophils and epithelial cells in vitro. Furthermore, using a human inosine-5'-monophosphate dehydrogenase (IMPDH) enzyme, we examined the potential effects of inosine on the activity of IMPDH, an enzyme involved in the regulation of certain inflammatory/immune processes. Tumor necrosis factor alpha (TNF-alpha) production of bacterial lipopolysaccharide (LPS) stimulated whole blood was used as an indicator of human monocyte activation. The response was dose-dependently, partially suppressed in the presence of inosine. Inosine exerted a dose-dependent and, at the highest dose (3 mM), complete inhibition of the ability of human neutrophils activated with N-formyl-methionyl-leucyl-phenylalanine (fMLP) to induce cytochrome C reduction in vitro. In the human colon cancer cell line HT-29, inosine dose-dependently attenuated the production of IL-8. Inosine failed to affect the activity of IMPDH. Taken together, we conclude that inosine exerts anti-inflammatory effects in many human cell types. Further studies need to establish whether inosine supplementation exerts anti-inflammatory effects in human beings.
Collapse
|
7
|
Mabley JG, Jagtap P, Perretti M, Getting SJ, Salzman AL, Virág L, Szabó E, Soriano FG, Liaudet L, Abdelkarim GE, Haskó G, Marton A, Southan GJ, Szabó C. Anti-inflammatory effects of a novel, potent inhibitor of poly (ADP-ribose) polymerase. Inflamm Res 2001; 50:561-9. [PMID: 11766996 DOI: 10.1007/pl00000234] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVE AND DESIGN Oxygen- and nitrogen-derived free radicals and oxidants play an important role in the pathogenesis of various forms of inflammation. Recent work emphasizes the importance of oxidant-induced DNA strand breakage and activation of the nuclear enzyme poly(ADP-ribose) polymerase (PARP) in the pathogenesis of various inflammatory diseases. We have recently demonstrated the efficacy of PJ34, a novel, potent phenanthridinone derivative PARP inhibitor, in rodent models of diabetic vascular dysfunction and stroke. Here we tested the efficacy of PARP inhibition in various models of local inflammation in rodents. MATERIALS AND METHODS PJ34 (at doses of 0.03-30 mg/kg) was tested in rats and mice subjected to standard models of inflammation, with relevant parameters of inflammation measured using standard methods. RESULTS PJ34 treatment (s.c, i.p. and i.v.) dose-dependently suppressed neutrophil infiltration and nitric oxide (but not KC and IL-1beta) production in peritonitis. In a model of systemic endotoxemia, PJ34 pretreatment significantly reduced plasma levels of TNF-alpha, IL-1beta and nitrite/nitrate (breakdown products of nitric oxide) production. PJ34 treatment (oral gavage) induced a significant suppression of the inflammatory response in dextran sulfate colitis, multiple low dose streptozotocin diabetes and cyclophosphamide-accelerated autoimmune diabetes in the non-obese diabetic mice, and reduced the degree of mononuclear cell infiltration into the iris in an endotoxin-induced uveitis model. Delaying the start of PJ34 administration in the colitis model conferred significant protective effects, while in the arthritis model the post-treatment paradigm lacked protective effects. CONCLUSIONS PJ34 provides significant, dose-dependent, anti-inflammatory effects in a variety of local inflammation models. Some of its actions are maintained in the post-treatment regimen and/or after discontinuation of treatment. We conclude that PARP inhibition offers a powerful means for reducing the severity of various forms of local inflammatory responses.
Collapse
|
8
|
Vizi ES, Szelényi J, Selmeczy ZS, Papp Z, Németh ZH, Haskó G. Enhanced tumor necrosis factor-alpha-specific and decreased interleukin-10-specific immune responses to LPS during the third trimester of pregnancy in mice. J Endocrinol 2001; 171:355-61. [PMID: 11691656 DOI: 10.1677/joe.0.1710355] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
It is increasingly apparent that there is a bidirectional interaction between the maternal immune system and the reproductive system during pregnancy. Pregnancy is associated with a suppression of maternal specific immune responses, which process underlies the protection of fetal tissues expressing paternally inherited alloantigens. However, recent evidence indicates that the suppression of specific, lymphocyte-mediated immune responses during pregnancy is accompanied by activation of the non-specific arm of the maternal immune response. In the present study, we have investigated the effect of pregnancy on the non-specific immune response induced by bacterial lipopolysaccharide (LPS, endotoxin) in mice. Pregnancy enhanced the LPS-induced production of proinflammatory cytokines, including tumor necrosis factor-alpha, interleukin (IL)-6, and interferon-gamma. On the other hand, LPS-induced levels of the anti-inflammatory cytokine IL-10 were suppressed in pregnant mice. These alterations in cytokine production correlated with an increased susceptibility for endotoxemic mortality in the pregnant mice. Although adrenergic receptors are important regulators of cytokine production in non-pregnant mice, the alpha(2)- and the beta-adrenoceptor-mediated modulation of cytokine production ceases to operate during pregnancy associated with severe endotoxemia. These data may explain how excessive activation of the non-specific immune responses during pregnancy can contribute to the increased severity of some maternal diseases, including septic shock, and can be an important pathophysiological factor in disseminated intravascular coagulation or preeclampsia.
Collapse
|
9
|
Liaudet L, Mabley JG, Soriano FG, Pacher P, Marton A, Haskó G, Szabó C. Inosine reduces systemic inflammation and improves survival in septic shock induced by cecal ligation and puncture. Am J Respir Crit Care Med 2001; 164:1213-20. [PMID: 11673212 DOI: 10.1164/ajrccm.164.7.2101013] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Inosine is a naturally occurring purine formed from the breakdown of adenosine. Here we have evaluated the effects of inosine in a murine model of polymicrobial sepsis induced by cecal ligation and puncture (CLP). Mice subjected to CLP were treated with either inosine (100 mg/kg, intraperitoneally) or vehicle 1 h before and 6 h after CLP. After 12 h tumor necrosis factor alpha, interleukin 6 (IL-6), and IL-10 were measured in plasma. Biochemical markers of organ damage, liver NAD+/NADH (indicator of the mitochondrial redox state), plasma nitrate, tissue myeloperoxidase (MPO, indicator of neutrophil accumulation) and malondialdehyde (MDA, indicator of lipid peroxidation), liver and lung chemokines (macrophage inflammatory protein 1alpha [MIP-1alpha] and MIP-2), and ex vivo vascular reactivity in aortic rings were also measured. Mice treated with inosine had significantly lower levels of circulating cytokines. Organ damage was significantly reduced by inosine treatment, which was associated at the tissue level with an increased hepatic NAD+/NADH ratio, decreased MPO activity in the lung, reduced MDA formation in the gut and liver, and decreased MIP-1alpha and MIP-2 in the lung and liver. Furthermore, inosine significantly improved endothelium-dependent relaxant responses of aortic rings. These effects were associated with significant improvement of the survival of CLP mice treated with inosine, an effect that was still observed when inosine treatment was delayed 1 h after CLP, especially when it was associated with appropriate antibiotic treatment. Thus, inosine reduced systemic inflammation, organ damage, tissue dysoxia, and vascular dysfunction, resulting in improved survival in septic shock.
Collapse
|
10
|
Lendvai B, Sántha E, Szelényi J, Haskó G. Platelet-activating factor evokes Ca2+ transients after the blockade of ryanodine receptor by dantrolene in RAW 264.7 macrophages. Neurochem Res 2001; 26:1007-13. [PMID: 11699928 DOI: 10.1023/a:1012348904580] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In the present study we studied platelet-activating factor (PAF)-, and ATP-induced increases in intracellular Ca2+ concentration ([Ca2+]i) using RAW 264.7 macrophages filled with fura-2/AM and imaged with fluorescence video microscopy. We found that the prevalence of detectable [Ca2+]i responses to PAF application was significantly higher in the presence of dantrolene. Dantrolene itself significantly decreased basal [Ca2+]i of macrophages compared to control cases after a 20-min incubation period. In the dantrolene-treated cells even the peak [Ca2+]i in response to PAF (as an average of all cells) was below the baseline of control suggesting that decreased [Ca2+]i plays a permissive role in the Ca2+ rise induced by PAF in macrophages. In contrast to the effect of PAF, neither the amplitude of response to ATP nor the frequency of responding cells changed significantly during dantrolene treatment in our experiments. These cells were able to respond to a standard immune stimulus as well: lipopolysaccharide (LPS) was able to increase [Ca2+]i. Our data indicate that the effectiveness of PAF to increase [Ca2+]i in RAW 264.7 macrophages depends on the resting [Ca2+]i. It has also been shown in this study that PAF and ATP differently regulate Ca2+ homeostasis in macrophages during inflammatory response and therefore they possibly differently modulate cytokine production by macrophages.
Collapse
|
11
|
Haskó G. Receptor-mediated interaction between the sympathetic nervous system and immune system in inflammation. Neurochem Res 2001; 26:1039-44. [PMID: 11699931 DOI: 10.1023/a:1012305122327] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The sympathetic nervous system plays a central role in establishing communication between the central nervous system and the immune system during inflammation. Inflammation activates the sympathetic nervous system, which causes release of the transmitters of the sympathetic nervous system in the periphery. The transmitters of the sympathetic nervous system are the catecholamines noradrenaline and adrenaline and the purines ATP, adenosine, and inosine. Once these transmitters are released, they stimulate both presynaptic receptors on nerve terminals and post-synaptic receptors on immune cells. The receptors that are sensitive to catecholamines are termed adrenoceptors, whereas the receptors that bind purines are called purinoceptors. Stimulation of the presynaptic receptors exerts an autoregulatory effect on the release of transmitters. Ligation of the postsynaptic receptors on inflammatory cells modulates the inflammatory activities of these cells. The present review summarizes some of the most important aspects of the current state of knowledge about the interactions between the sympathetic nervous system and the immune system during inflammation with a special emphasis on the role of adreno and purinoceptors.
Collapse
|
12
|
Haskó G, Szabó C, Németh ZH, Deitch EA. Sulphasalazine inhibits macrophage activation: inhibitory effects on inducible nitric oxide synthase expression, interleukin-12 production and major histocompatibility complex II expression. Immunology 2001; 103:473-8. [PMID: 11529938 PMCID: PMC1783262 DOI: 10.1046/j.1365-2567.2001.01272.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The anti-inflammatory agent sulphasalazine is an important component of several treatment regimens in the therapy of ulcerative colitis, Crohn's disease and rheumatoid arthritis. Sulphasalazine has many immunomodulatory actions, including modulation of the function of a variety of cell types, such as lymphocytes, natural killer cells, epithelial cells and mast cells. However, the effect of this agent on macrophage (M phi) function has not been characterized in detail. In the present study, we investigated the effect of sulphasalazine and two related compounds - sulphapyridine and 5-aminosalicylic acid - on M phi activation induced by bacterial lipopolysaccharide (LPS) and interferon-gamma (IFN-gamma). In J774 M phi stimulated with LPS (10 microg/ml) and IFN-gamma (100 U/ml), sulphasalazine (50-500 microM) suppressed nitric oxide (NO) production in a concentration-dependent manner. The expression of the inducible NO synthase (iNOS) was suppressed by sulphasalazine at 500 microM. Sulphasalazine inhibited the LPS/IFN-gamma-induced production of both interleukin-12 (IL-12) p40 and p70. The suppression of both NO and IL-12 production by sulphasalazine was superior to that by either sulphapyridine or 5-aminosalicylic acid. Although the combination of LPS and IFN-gamma induced a rapid expression of the active forms of p38 and p42/44 mitogen-activated protein kinases and c-Jun terminal kinase, sulphasalazine failed to interfere with the activation of any of these kinases. Finally, sulphasalazine suppressed the IFN-gamma-induced expression of major histocompatibility complex class II. These results demonstrate that the M phi is an important target of the immunosuppressive effect of sulphasalazine.
Collapse
|
13
|
Szabó E, Virág L, Bakondi E, Gyüre L, Haskó G, Bai P, Hunyadi J, Gergely P, Szabó C. Peroxynitrite production, DNA breakage, and poly(ADP-ribose) polymerase activation in a mouse model of oxazolone-induced contact hypersensitivity. J Invest Dermatol 2001; 117:74-80. [PMID: 11442752 DOI: 10.1046/j.0022-202x.2001.01388.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Peroxynitrite-induced poly(ADP-ribose) polymerase activation has been implicated in the pathogenesis of various inflammatory conditions. Here we have investigated whether peroxynitrite and poly(ADP-ribose) polymerase may play a role in the pathophysiology of the elicitation phase of contact hypersensitivity. We have detected nitrotyrosine, DNA breakage, and poly(ADP-ribose) polymerase activation in the epidermis of mice in an oxazolone-induced contact hypersensitivity model. As tyrosine nitration is mostly mediated by peroxynitrite, a nitric-oxide-derived cytotoxic oxidant capable of causing DNA breakage, we have applied peroxynitrite directly on mouse skin and showed poly(ADP-ribose) polymerase activation in keratinocytes and in some scattered dermal cells. We have also investigated the cellular effects of peroxynitrite in HaCaT cells, a human keratinocyte cell line. We found that peroxynitrite inhibited cell proliferation and at higher concentrations also caused cytotoxicity. Peroxynitrite activates poly(ADP-ribose) polymerase in HaCaT cells and poly(ADP-ribose) polymerase activation contributes to peroxynitrite-induced cytotoxicity, as indicated by the cytoprotective effect of the poly(ADP-ribose) polymerase inhibitor 3-aminobenzamide. The cytoprotective effect of 3-aminobenzamide cannot be attributed to inhibition of apoptosis, as apoptotic parameters (caspase activation and DNA fragmentation) were not reduced in the presence of 3-aminobenzamide in peroxynitrite-treated cells. Moreover, poly(ADP-ribose) polymerase inhibition by 3-aminobenzamide dose-dependently reduced interferon-induced intercellular adhesion molecule 1 expression as well as interleukin-1beta-induced interleukin-8 expression. Our results indicate that peroxynitrite and poly(ADP-ribose) polymerase regulate keratinocyte function and death in contact hypersensitivity.
Collapse
|
14
|
Mabley JG, Suarez-Pinzon WL, Haskó G, Salzman AL, Rabinovitch A, Kun E, Szabó C. Inhibition of poly (ADP-ribose) synthetase by gene disruption or inhibition with 5-iodo-6-amino-1,2-benzopyrone protects mice from multiple-low-dose-streptozotocin-induced diabetes. Br J Pharmacol 2001; 133:909-19. [PMID: 11454665 PMCID: PMC1572858 DOI: 10.1038/sj.bjp.0704156] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Activation of poly(ADP-ribose) synthetase (PARS, also termed polyADP-ribose polymerase or PARP) has been proposed as a major mechanism contributing to beta-cell destruction in type I diabetes. In the present study, we have investigated the role of PARS in mediating the induction of diabetes and beta-cell death in the multiple-low-dose-streptozotocin (MLDS) model of type I diabetes. Mice genetically deficient in PARS were found to be less sensitive to MLDS than wild type mice, with a lower incidence of diabetes and reduced hyperglycemia. A potent inhibitor of PARS, 5-iodo-6-amino-1,2-benzopyrone (INH(2)BP), was also found to protect mice from MLDS and prevent beta-cell loss, in a dose-dependent manner. Paradoxically, in the PARS deficient mice, the compound increased the onset of diabetes. In vitro the cytokine combination; interleukin-1beta, tumor necrosis factor-alpha and interferon-gamma inhibited glucose-stimulated insulin secretion from isolated rat islets of Langerhans and decreased RIN-5F cell viability. The PARS inhibitor, INH(2)BP, protected both the rat islets and the beta-cell line, RIN-5F, from these cytokine-mediated effects. These protective effects were not mediated by inhibition of cytokine-induced nitric oxide formation. Inhibition of PARS by INH(2)BP was unable to protect rat islet cells from cytokine-mediated apoptosis. Cytokines, peroxynitrite and streptozotocin were all shown to induce PARS activation in RIN-5F cells, an effect suppressed by INH(2)BP. The present study provides evidence for in vivo PARS activation contributing to beta-cell damage and death in the MLDS model of diabetes, and indicates a role for PARS activation in cytokine-mediated depression of insulin secretion and cell viability in vitro.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Blood Glucose/drug effects
- Blood Glucose/metabolism
- Cell Survival/drug effects
- Coumarins/pharmacology
- Cytokines/pharmacology
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Experimental/prevention & control
- Dose-Response Relationship, Drug
- Enzyme Inhibitors/pharmacology
- Female
- Genotype
- In Vitro Techniques
- Insulin/metabolism
- Insulin Secretion
- Islets of Langerhans/drug effects
- Islets of Langerhans/metabolism
- Islets of Langerhans/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred Strains
- Mice, Knockout
- Mutation
- Nitrates/pharmacology
- Nitric Oxide/metabolism
- Poly(ADP-ribose) Polymerase Inhibitors
- Poly(ADP-ribose) Polymerases/genetics
- Rats
- Severity of Illness Index
- Streptozocin/administration & dosage
- Tumor Cells, Cultured/cytology
- Tumor Cells, Cultured/drug effects
- Tumor Cells, Cultured/enzymology
Collapse
|
15
|
Fekete Z, Hauser CJ, Adams JM, Adams CA, Forsythe RM, Haskó G, Xu DZ, Livingston DH, Deitch EA. Injury-enhanced calcium mobilization in circulating rat neutrophils models human PMN responses. Shock 2001; 16:15-20. [PMID: 11442309 DOI: 10.1097/00024382-200116010-00003] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
G-protein coupled (GPC) chemoattractants are important neutrophil (PMN) activators in human shock and sepsis, acting in part by increasing cytosolic calcium ([Ca2+]i). Rats are widely used as laboratory models of shock and sepsis, but reports of [Ca2+]i flux in circulating rat PMN are rare. Moreover, the [Ca2+]i values reported often differ markedly from human systems. We developed study methods where basal [Ca2+]i values in circulating rat PMN were comparable to human PMN, but rat PMN still mobilized calcium poorly after stimulation. Trauma (laparotomy) did not change rat PMN basal [Ca2+]i, but induced brisk [Ca2+]i responses to chemokine and lipid mediators that approximated human PMN responses. This was associated with marked loading of microsomal calcium stores. Formyl peptides still mobilized calcium less well in rat than human PMN. Normal rat PMN appear to circulate in a less mature or primed form than human PMN. A very limited injury rapidly converts rat PMN to a more activated phenotype. PMN thus activated act quite similar to human PMN in terms of GPC receptor-mediated calcium mobilization. Trauma enhances rat PMN responses to GPC agonists at least in part by loading cell calcium stores.
Collapse
|
16
|
Németh ZH, Mabley JG, Deitch EA, Szabó C, Haskó G. Inhibition of the Na(+)/H(+) antiporter suppresses IL-12 p40 production by mouse macrophages. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1539:233-42. [PMID: 11420121 DOI: 10.1016/s0167-4889(01)00111-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The amiloride-inhibitable Na(+)/H(+) antiporter plays an important role in macrophage activation. The intracellular pathways leading to interleukin (IL)-12 p40 production by activated macrophages are incompletely understood. In the present study, we examined the contribution of the Na(+)/H(+) antiporter to the production of IL-12 p40. Amiloride or its analogs decreased the production of IL-12 p40 in macrophages stimulated with bacterial lipopolysaccharide and interferon-gamma. The order of potency of amiloride analogs was consistent with the proposition that the effect of amiloride is mediated by the inhibition of the Na(+)/H(+) antiporter. The effect of amiloride was post-transcriptional, as IL-12 p40 mRNA levels induced by lipopolysaccharide and interferon-gamma were not affected by this inhibitor. Furthermore, the inhibitory effect of amiloride on IL-12 p40 production was not a result of interference with the activation of the p38 and p42/44 mitogen-activated protein kinases or c-Jun kinase. In summary, the production of IL-12 p40 requires a functional Na(+)/H(+) antiporter.
Collapse
|
17
|
Garcia Soriano F, Liaudet L, Marton A, Haskó G, Batista Lorigados C, Deitch EA, Szabó C. Inosine improves gut permeability and vascular reactivity in endotoxic shock. Crit Care Med 2001; 29:703-8. [PMID: 11373452 DOI: 10.1097/00003246-200104000-00001] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
OBJECTIVE To investigate the effects of inosine administration on vascular reactivity, gut permeability, neutrophil accumulation and lipid peroxidation in tissues in murine endotoxin shock. DESIGN Randomized, prospective laboratory study. SETTING Research laboratory. SUBJECTS BALB/c mice 6-8 wks age. INTERVENTIONS BALB/c mice were randomly assigned to one of five groups: a) vehicle controls, which received saline intraperitoneally; b) inosine controls, which received inosine alone (100 mg/kg, ip); c) lipopolysaccharide (LPS)-treated animals, which received LPS (40 and 100 mg/kg, ip, depending on the experimental protocol); d) inosine pretreatment group, which received inosine (100 mg/kg, ip) 30 mins before LPS; and finally, e) inosine posttreatment group, which received inosine (100 mg/kg, ip) 60 mins after LPS. MEASUREMENTS AND MAIN RESULTS The passage of fluorescein isothiocyanate-conjugated dextran (4 kDa, FD4) was analyzed in everted gut ileal sacs incubated ex vivo as an index of gut permeability. LPS induced a significant intestinal hyperpermeability, and inosine exerted protective effects both in pre- and posttreatment regimens. Myeloperoxidase and malondialdehyde were also measured to study neutrophil accumulation and lipid peroxidation in selected tissues. Inosine, both in pre- and posttreatment regimens ameliorated the increases in myeloperoxidase and malondialdehyde in the lung and gut. LPS-treated animals showed decreased contractile and relaxant responses, and inosine pretreatment (but not posttreatment) partially improved these responses. CONCLUSIONS Taken together, inosine has organ protective effects during shock. A significant portion of its protective action is maintained even in the posttreatment scenario.
Collapse
|
18
|
Lohinai Z, Stachlewitz R, Virág L, Székely AD, Haskó G, Szabó C. Evidence for reactive nitrogen species formation in the gingivomucosal tissue. J Dent Res 2001; 80:470-5. [PMID: 11332535 DOI: 10.1177/00220345010800021401] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
An increase in nitric oxide production has been demonstrated in periodontitis. Here we investigated the potential role of nitric-oxide-derived nitrating species (such as peroxynitrite) in a rat model of ligature-induced periodontitis. Formation of 3-nitrotyrosine, the stable product formed from tyrosine reacting with nitric-oxide-derived nitrating species, was detected in the gingivomucosal tissue. 3-Nitrotyrosine immunohistochemical analysis revealed a significant elevation in the number of immunopositive leukocytes, and higher immunoreactivity of the gingival ligaments and epithelium in the ligated than in the contralateral (control) side. On both sides, several 3-nitrotyrosine-positive bands and, on the ligated side, a unique 52-kDa 3-nitrotyrosine-positive band were detected by Western blot. However, in the sterile gingivomucosal tissue of rat pups, no 3-nitrotyrosine or inducible nitric oxide synthase immunoreactivity was found. Analysis of these data suggests that resident bacteria of the gingivomucosal tissue induce an increase in reactive nitrogen species, which is greatly enhanced by plaque formation in periodontitis.
Collapse
|
19
|
Gulácsi K, Litkei G, Antus S, Szántay C, Darkó LL, Szelényi J, Haskó G, Vizi SE. Synthesis and biological activity of the structural analogues of (-)-cabenegrin A-I. Arch Pharm (Weinheim) 2001; 334:53-61. [PMID: 11268775 DOI: 10.1002/1521-4184(200102)334:2<53::aid-ardp53>3.0.co;2-c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A series of phenylbutene and butanol derivatives (6a-j, 12, 13, 15, 17, 24b,c, 26, 27a,b) were prepared from the readily available resorcinol derivatives 2a-f and 7-hydroxy-chroman (18). The products were tested for inhibitory activity on the LPS-induced TNF-alpha production in the plasma in comparison with that of cabenegrin A-I (1a).
Collapse
|
20
|
Sperlágh B, Dóda M, Baranyi M, Haskó G. Ischemic-like condition releases norepinephrine and purines from different sources in superfused rat spleen strips. J Neuroimmunol 2000; 111:45-54. [PMID: 11063820 DOI: 10.1016/s0165-5728(00)00365-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Transmitters and cotransmitters of the sympathetic nervous system are involved in the regulation of a variety of immune cell functions. However, it is not entirely clear what stimuli lead to the release of these molecules in immune organs. In this study, we investigated whether local ischemia can cause the parallel release of norepinephrine and its cotransmitter, ATP, in the spleen. Ischemic-like conditions, simulated by transient (15 min) O(2) and glucose deprivation, elicited a reversible increase in the release of both norepinephrine and purines from superfused spleen strips preloaded with [3H]norepinephrine or [3H]adenosine. HPLC analysis of the released tritium label revealed a net increase in the amount of ATP, ADP, AMP, adenosine, inosine, hypoxanthine and xanthine in response to ischemic-like condition. Selective O(2) or glucose deprivation, and Ca(2+)-free conditions differentially affected the outflow of [3H]norepinephrine and [3H]purines, indicating that they derived from different sources. The ABC transporter inhibitors glibenclamide (100 microM) and verapamil (100 microM) as well as low-temperature inhibited [3H]purine release evoked by ischemic-like conditions. Surgical denervation of the spleen reduced endogenous catecholamine content and [3H]norepinephrine uptake of the spleen, but not that of [3H]adenosine. In summary, these results demonstrate the release of norepinephrine and purines in response to an ischemic-like condition in an immune organ. Although both could provide an important source of extracellular catecholamines and purines involved at various levels of immunomodulation, the source and mechanism of norepinephrine and purine efflux seem different.
Collapse
|
21
|
Haskó G, Kuhel DG, Chen JF, Schwarzschild MA, Deitch EA, Mabley JG, Marton A, Szabó C. Adenosine inhibits IL-12 and TNF-[alpha] production via adenosine A2a receptor-dependent and independent mechanisms. FASEB J 2000; 14:2065-74. [PMID: 11023991 DOI: 10.1096/fj.99-0508com] [Citation(s) in RCA: 389] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Interleukin 12 (IL-12) is a crucial cytokine in the regulation of T helper 1 vs. T helper 2 immune responses. In the present study, we investigated the effect of the endogenous purine nucleoside adenosine on the production of IL-12. In mouse macrophages, adenosine suppressed IL-12 production. Although the order of potency of adenosine receptor agonists suggested the involvement of A2a receptors, data obtained with A2a receptor-deficient mice showed that the adenosine suppression of IL-12 and even TNF-alpha production is only partly mediated by A2a receptor ligation. Studies with adenosine receptor antagonists or the adenosine uptake blocker dipyridamole showed that adenosine released endogenously also decreases IL-12. Although adenosine increases IL-10 production, the inhibition of IL-12 production is independent of the increased IL-10. The mechanism of action of adenosine was not associated with alterations of the activation of the p38 and p42/p44 mitogen-activated protein kinases or the phosphorylation of the c-Jun terminal kinase. Adenosine failed to affect steady-state levels of either IL-12 p35 or p40 mRNA, but augmented IL-10 mRNA levels. In summary, adenosine inhibits IL-12 production via various adenosine receptors. These results support the notion that adenosine-based therapies might be useful in certain autoimmune and/or inflammatory diseases.
Collapse
|
22
|
Haskó G, Kuhel DG, Marton A, Nemeth ZH, Deitch EA, Szabó C. Spermine differentially regulates the production of interleukin-12 p40 and interleukin-10 and suppresses the release of the T helper 1 cytokine interferon-gamma. Shock 2000; 14:144-9. [PMID: 10947158 DOI: 10.1097/00024382-200014020-00012] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Polyamines are endogenous immunomodulatory molecules. Recent studies revealed that polyamines suppress the production of proinflammatory cytokines and nitric oxide. In the present study, we investigated the effect of the polyamines spermine, spermidine, and putrescine on the production of interleukin (IL)-12 p40, IL-10, and interferon (IFN-gamma) in mouse peritoneal macrophages and spleen cell suspensions. Spermine, but not spermidine or putrescine, suppressed, in a concentration-dependent manner, the production of IL-12 p40 by lipopolysaccharide (LPS)-stimulated macrophages. The effect of spermine was post-transcriptional, because steady-state levels of messenger ribonucleic acid (mRNAs) for IL-12 (p35 and p40) were not affected. In contrast to its inhibitory effect on IL-12 p40, spermine (0.3-3 microM) augmented IL-10 production. The down-regulation of IL-12 p40 by spermine was independent of enhancement of IL-10 by this agent, for spermine retained its ability to suppress IL-12 production in peritoneal macrophages obtained from IL-10-deficient mice. The alterations in cytokine production by spermine did not involve an effect on early intracellular pathways of LPS signal transduction, including the p38 or p42/44 mitogen-activated protein kinases, or the c-jun terminal kinase. In spleen cell suspensions, spermine suppressed the release of IFN-gamma induced either by LPS or anti-CD3 antibody. In summary, spermine exerts anti-inflammatory effects by suppressing IL-12 and IFN-gamma and by augmenting the production of IL-10.
Collapse
|
23
|
Haskó G, Kuhel DG, Salzman AL, Szabó C. ATP suppression of interleukin-12 and tumour necrosis factor-alpha release from macrophages. Br J Pharmacol 2000; 129:909-14. [PMID: 10696089 PMCID: PMC1571917 DOI: 10.1038/sj.bjp.0703134] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Immune cell activation releases ATP into the extracellular space. ATP-sensitive P2 purinergic receptors are expressed on immune cells and activation of these receptors alters immune cell function. Furthermore, ATP is metabolized by ectonucleotidases to adenosine, which has also been shown to alter cytokine production. In the present study, we investigated how extracellular ATP affects interleukin (IL)-12 and tumour necrosis factor (TNF)-alpha production in bacterial lipopolysaccharide (LPS)-treated murine peritoneal macrophages and we also examined whether extracellular ATP alters the production of the T helper 1 cytokine interferon (IFN)-gamma. Pretreatment of the peritoneal macrophages with ATP or various ATP analogues decreased both IL-12 and TNF-alpha production induced by LPS (10 microgram ml(-1)). The effect of ATP was partially reversed by cotreatment with adenosine deaminase (0.1 - 1 u ml(-1)), suggesting that the suppressive effect of ATP on cytokine production is, in part, due to its degradation products. Immunoneutralization with an anti-IL-10 antibody demonstrated that although ATP increases IL-10 production, the inhibition of IL-12 and TNF-alpha production is independent of the increased IL-10. The effect of ATP was pretranslational, as it suppressed steady state levels of mRNAs for IL-12 (both p35 and p40). In spleen cells stimulated with either LPS (10 microgram ml(-1)) or anti-CD3 (2 microgram ml(-1)) antibody, ATP suppressed, in a concentration-dependent manner, the production of IFN-gamma. These results suggest that extracellular ATP has multiple anti-inflammatory effects and that release of ATP into the extracellular space may play a role in blunting the overactive immune response in autoimmune diseases.
Collapse
|
24
|
Haskó G, Kuhel DG, Németh ZH, Mabley JG, Stachlewitz RF, Virág L, Lohinai Z, Southan GJ, Salzman AL, Szabó C. Inosine inhibits inflammatory cytokine production by a posttranscriptional mechanism and protects against endotoxin-induced shock. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:1013-9. [PMID: 10623851 DOI: 10.4049/jimmunol.164.2.1013] [Citation(s) in RCA: 247] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Extracellular purines, including adenosine and ATP, are potent endogenous immunomodulatory molecules. Inosine, a degradation product of these purines, can reach high concentrations in the extracellular space under conditions associated with cellular metabolic stress such as inflammation or ischemia. In the present study, we investigated whether extracellular inosine can affect inflammatory/immune processes. In immunostimulated macrophages and spleen cells, inosine potently inhibited the production of the proinflammatory cytokines TNF-alpha, IL-1, IL-12, macrophage-inflammatory protein-1alpha, and IFN-gamma, but failed to alter the production of the anti-inflammatory cytokine IL-10. The effect of inosine did not require cellular uptake by nucleoside transporters and was partially reversed by blockade of adenosine A1 and A2 receptors. Inosine inhibited cytokine production by a posttranscriptional mechanism. The activity of inosine was independent of activation of the p38 and p42/p44 mitogen-activated protein kinases, the phosphorylation of the c-Jun terminal kinase, the degradation of inhibitory factor kappaB, and elevation of intracellular cAMP. Inosine suppressed proinflammatory cytokine production and mortality in a mouse endotoxemic model. Taken together, inosine has multiple anti-inflammatory effects. These findings, coupled with the fact that inosine has very low toxicity, suggest that this agent may be useful in the treatment of inflammatory/ischemic diseases.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/administration & dosage
- Anti-Inflammatory Agents, Non-Steroidal/pharmacology
- Chemokines/antagonists & inhibitors
- Chemokines/biosynthesis
- Cytokines/antagonists & inhibitors
- Cytokines/biosynthesis
- Enzyme Activation/drug effects
- Enzyme Activation/immunology
- I-kappa B Proteins/metabolism
- Immunosuppressive Agents/pharmacology
- Inflammation Mediators/antagonists & inhibitors
- Inflammation Mediators/metabolism
- Injections, Intraperitoneal
- Inosine/administration & dosage
- Inosine/pharmacology
- Interferon-gamma/antagonists & inhibitors
- Interferon-gamma/biosynthesis
- JNK Mitogen-Activated Protein Kinases
- Lipopolysaccharides/toxicity
- Macrophage Activation/drug effects
- Macrophages, Peritoneal/drug effects
- Macrophages, Peritoneal/enzymology
- Macrophages, Peritoneal/immunology
- Macrophages, Peritoneal/metabolism
- Male
- Mice
- Mice, Inbred BALB C
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3
- Mitogen-Activated Protein Kinases/metabolism
- Protein Processing, Post-Translational/drug effects
- Protein Processing, Post-Translational/immunology
- Purinergic P1 Receptor Agonists
- Receptors, Purinergic P1/physiology
- Shock, Septic/etiology
- Shock, Septic/immunology
- Shock, Septic/pathology
- Shock, Septic/prevention & control
- Th1 Cells/drug effects
- Th1 Cells/metabolism
Collapse
|
25
|
Zingarelli B, Haskó G, Salzman AL, Szabó C. Effects of a novel guanylyl cyclase inhibitor on the vascular actions of nitric oxide and peroxynitrite in immunostimulated smooth muscle cells and in endotoxic shock. Crit Care Med 1999; 27:1701-7. [PMID: 10507586 DOI: 10.1097/00003246-199909000-00001] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Nitric oxide (NO), produced by the inducible isoform of NO synthase (NOS) in circulatory shock exerts cytotoxic and vasodilator effects. Part of these effects are mediated by formation of peroxynitrite, a toxic oxidant produced by the rapid reaction of NO and superoxide. Other parts of the vascular actions of NO in shock are thought to be mediated by the action of NO on the soluble guanylyl cyclase (GC) in the smooth muscle and subsequent decrease in the intracellular calcium levels. Using 1H-(1,2,4)oxadiazolo(4,3-alpha)quinoxalin-1 -one (ODQ), a potent inhibitor of GC, we studied the role of GC activation in the NO- and peroxynitrite-related vascular alterations. DESIGN In vitro: Controlled experiment using cultured rat aortic smooth muscle cells. In vivo: Prospective, randomized, controlled animal study. SETTING Experimental laboratory. SUBJECTS Male Wistar rats and male Swiss mice. INTERVENTIONS In vitro: a) Stimulation of rat aortic smooth muscle cells with bacterial lipopolysaccharide (LPS) and gamma-interferon, measurement of the production of nitrite and nitrate (breakdown products of NO), and suppression of mitochondrial respiration for 24 to 48 hrs, in the presence or absence of ODQ; and b) in norepinephrine-precontracted endothelium-denuded thoracic aortic rings, exposure to LPS (10 ng/mL) in the presence or absence of ODQ. In vivo: Rats treated in vivo with LPS (10 mg/kg iv for 3 hrs) and mice challenged with 60 mg/kg LPS ip, in the presence or absence of ODQ. MEASUREMENTS AND MAIN RESULTS Stimulation of rat aortic smooth muscle cells with bacterial LPS and gamma-interferon induced the production of nitrite and nitrate (breakdown products of NO) and suppression of mitochondrial respiration for 24 to 48 hrs. The amount of NO produced was slightly enhanced with ODQ (10-100 EM), whereas the suppression of mitochondrial respiration was not affected by ODQ (1-100 microM). ODQ did not affect the degree of suppression of mitochondrial respiration in response to NO donor agents or to peroxynitrite. Exposure to LPS (10 ng/mL) for 6 hrs caused a time-dependent relaxation of norepinephrine-precontracted endothelium-denuded thoracic aortic rings. This response was caused by the expression of inducible NOS and could be blocked by pharmacologic inhibitors of NOS such as N(G)-methylL-arginine. ODQ (1 microM) prevented the LPS-induced loss of vascular tone in this experimental system. Similar to the in vitro responses, there was a significant suppression of the norepinephrine-induced contractions in ex vivo experiments, in which rings were taken from animals treated in vivo with LPS (10 mg/kg for 3 hrs). ODQ treatment in vitro (1 microM) caused a complete restoration of the contractile responses. In mice challenged with 60 mg/kg LPS ip, ODQ (20 mg/kg), given either as a pretreatment or as a 4-hr posttreatment, improved survival at 24-144 hrs. CONCLUSION These studies indicate that GC activation does not contribute to NO- or peroxynitrite-induced cytotoxicity but does contribute to the vascular hyporeactivity induced by endotoxin in vitro and in vivo. GC inhibition alone is sufficient to influence survival in a murine model of severe sepsis.
Collapse
|