1
|
Bastuji H, Daoud M, Magnin M, Garcia-Larrea L. REM sleep remains paradoxical: sub-states determined by thalamo-cortical and cortico-cortical functional connectivity. J Physiol 2024; 602:5269-5287. [PMID: 39315951 DOI: 10.1113/jp286074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 08/16/2024] [Indexed: 09/25/2024] Open
Abstract
During paradoxical sleep (PS, aka REM sleep) the cerebral cortex displays rapid electroencephalographic activity similar to that of wakefulness, whereas in the posterior associative thalamus, rapid activity is interrupted by frequent periods of slow-wave (delta) oscillations at 2-3 Hz, thereby dissociating the intrinsic frequency in thalamus and cortex. Here we studied the functional consequences of such a dissociation using intrathalamic and intracortical recordings in 21 epileptic patients, applying coherence analysis to examine changes in functional connectivity between the posterior thalamus (mainly medial pulvinar) and six cortical functional networks, and also between each cortical network with respect to the others. Periods of slow-wave thalamic activity ('delta PS') were more prevalent than phases of 'rapid PS,' and the delta/rapid thalamic alternance did not overlap with the classical tonic/phasic dichotomy based on rapid eye movements. Thalamo-cortical and cortico-cortical functional connectivity significantly decreased during delta PS, relative to both rapid PS periods and to wakefulness. The fact that delta thalamic activity and low thalamo-cortical binding coincided with a suppression of cortico-cortical connectivity supports a crucial role for the posterior associative thalamus, and particularly the medial pulvinar, in ensuring trans-thalamic communication between distant cortical areas. Disruption of such a trans-thalamic communication during delta PS compromises the functional binding between cortical areas, and consequently might contribute to the alteration of perceptual experiences commonly reported during dreams. KEY POINTS: During paradoxical, or REM, sleep (PS), rapid thalamic activity is interrupted by frequent periods of slow delta waves at 2-3 Hz. During these periods of thalamic delta activity there was a drastic drop of functional connectivity between associative thalamus and cortex, and also among different cortical networks. The delta/rapid alternance did not overlap with the classically defined 'tonic/phasic' periods and therefore suggests a distinct dichotomy of functional states in PS. Recurrent decrease in thalamo-cortical and cortico-cortical functional connectivity during PS may compromise the spatio-temporal binding between cortical areas, which in turn could hinder the formation of coherent mental content during dreams.
Collapse
|
2
|
Ricordeau F, Chouchou F, Pichot V, Roche F, Petitjean T, Gormand F, Bastuji H, Charbonnier E, Le Cam P, Stauffer E, Rheims S, Peter-Derex L. Impaired post-sleep apnea autonomic arousals in patients with drug-resistant epilepsy. Clin Neurophysiol 2024; 160:1-11. [PMID: 38367308 DOI: 10.1016/j.clinph.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/20/2023] [Accepted: 02/04/2024] [Indexed: 02/19/2024]
Abstract
OBJECTIVE Sudden and unexpected deaths in epilepsy (SUDEP) pathophysiology may involve an interaction between respiratory dysfunction and sleep/wake state regulation. We investigated whether patients with epilepsy exhibit impaired sleep apnea-related arousals. METHODS Patients with drug-resistant (N = 20) or drug-sensitive (N = 20) epilepsy and obstructive sleep apnea, as well as patients with sleep apnea but without epilepsy (controls, N = 20) were included. We explored (1) the respiratory arousal threshold based on nadir oxygen saturation, apnea-hypopnea index, and fraction of hypopnea among respiratory events; (2) the cardiac autonomic response to apnea/hypopnea quantified as percentages of changes from the baseline in RR intervals (RRI), high (HF) and low (LF) frequency powers, and LF/HF. RESULTS The respiratory arousal threshold did not differ between groups. At arousal onset, RRI decreased (-9.42%) and LF power (179%) and LF/HF ratio (190%) increased. This was followed by an increase in HF power (118%), p < 0.05. The RRI decrease was lower in drug-resistant (-7.40%) than in drug-sensitive patients (-9.94%) and controls (-10.91%), p < 0.05. LF and HF power increases were higher in drug-resistant (188%/126%) than in drug-sensitive patients (172%/126%) and controls (177%/115%), p < 0.05. CONCLUSIONS Cardiac reactivity following sleep apnea is impaired in drug-resistant epilepsy. SIGNIFICANCE This autonomic dysfunction might contribute to SUDEP pathophysiology.
Collapse
|
3
|
Ruby P, Evangelista E, Bastuji H, Peter-Derex L. From physiological awakening to pathological sleep inertia: Neurophysiological and behavioural characteristics of the sleep-to-wake transition. Neurophysiol Clin 2024; 54:102934. [PMID: 38394921 DOI: 10.1016/j.neucli.2023.102934] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 02/25/2024] Open
Abstract
Sleep inertia refers to the transient physiological state of hypoarousal upon awakening, associated with various degrees of impaired neurobehavioral performance, confusion, a desire to return to sleep and often a negative emotional state. Scalp and intracranial electro-encephalography as well as functional imaging studies have provided evidence that the sleep inertia phenomenon is underpinned by an heterogenous cerebral state mixing local sleep and local wake patterns of activity, at the neuronal and network levels. Sleep inertia is modulated by homeostasis and circadian processes, sleep stage upon awakening, and individual factors; this translates into a huge variability in its intensity even under physiological conditions. In sleep disorders, especially in hypersomnolence disorders such as idiopathic hypersomnia, sleep inertia may be a daily, serious and long-lasting symptom leading to severe impairment. To date, few tools have been developed to assess sleep inertia in clinical practice. They include mainly questionnaires and behavioral tests such as the psychomotor vigilance task. Only one neurophysiological protocol has been evaluated in hypersomnia, the forced awakening test which is based on an event-related potentials paradigm upon awakening. This contrasts with the major functional consequences of sleep inertia and its potentially dangerous consequences in subjects required to perform safety-critical tasks soon after awakening. There is a great need to identify reproducible biomarkers correlated with sleep inertia-associated cognitive and behavioral impairment. These biomarkers will aim at better understanding and measuring sleep inertia in physiological and pathological conditions, as well as objectively evaluating wake-promoting treatments or non-pharmacological countermeasures to reduce this phenomenon.
Collapse
|
4
|
Bastuji H, Cadic-Melchior A, Ruelle-Le Glaunec L, Magnin M, Garcia-Larrea L. Functional connectivity between medial pulvinar and cortical networks as a predictor of arousal to noxious stimuli during sleep. Eur J Neurosci 2024; 59:570-583. [PMID: 36889675 DOI: 10.1111/ejn.15958] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/21/2023] [Accepted: 03/04/2023] [Indexed: 03/10/2023]
Abstract
The interruption of sleep by a nociceptive stimulus is favoured by an increase in the pre-stimulus functional connectivity between sensory and higher level cortical areas. In addition, stimuli inducing arousal also trigger a widespread electroencephalographic (EEG) response reflecting the coordinated activation of a large cortical network. Because functional connectivity between distant cortical areas is thought to be underpinned by trans-thalamic connections involving associative thalamic nuclei, we investigated the possible involvement of one principal associative thalamic nucleus, the medial pulvinar (PuM), in the sleeper's responsiveness to nociceptive stimuli. Intra-cortical and intra-thalamic signals were analysed in 440 intracranial electroencephalographic (iEEG) segments during nocturnal sleep in eight epileptic patients receiving laser nociceptive stimuli. The spectral coherence between the PuM and 10 cortical regions grouped in networks was computed during 5 s before and 1 s after the nociceptive stimulus and contrasted according to the presence or absence of an arousal EEG response. Pre- and post-stimulus phase coherence between the PuM and all cortical networks was significantly increased in instances of arousal, both during N2 and paradoxical (rapid eye movement [REM]) sleep. Thalamo-cortical enhancement in coherence involved both sensory and higher level cortical networks and predominated in the pre-stimulus period. The association between pre-stimulus widespread increase in thalamo-cortical coherence and subsequent arousal suggests that the probability of sleep interruption by a noxious stimulus increases when it occurs during phases of enhanced trans-thalamic transfer of information between cortical areas.
Collapse
|
5
|
Fauchon C, Bastuji H, Peyron R, Garcia-Larrea L. Fractal Similarity of Pain Brain Networks. ADVANCES IN NEUROBIOLOGY 2024; 36:639-657. [PMID: 38468056 DOI: 10.1007/978-3-031-47606-8_32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
The conscious perception of pain is the result of dynamic interactions of neural activities from local brain regions to distributed brain networks. Mapping out the networks of functional connections between brain regions that form and disperse when an experimental participant received nociceptive stimulations allow to characterize the pattern of network connections related to the pain experience.Although the pattern of intra- and inter-areal connections across the brain are incredibly complex, they appear also largely scale free, with "fractal" connectivity properties reproducing at short and long-time scales. Our results combining intracranial recordings and functional imaging in humans during pain indicate striking similarities in the activity and topological representation of networks at different orders of temporality, with reproduction of patterns of activation from the millisecond to the multisecond range. The connectivity analyzed using graph theory on fMRI data was organized in four sets of brain regions matching those identified through iEEG (i.e., sensorimotor, default mode, central executive, and amygdalo-hippocampal).Here, we discuss similarities in brain network organization at different scales or "orders," in participants as they feel pain. Description of this fractal-like organization may provide clues about how our brain regions work together to create the perception of pain and how pain becomes chronic when its organization is altered.
Collapse
|
6
|
Gobert F, Corneyllie A, Bastuji H, Berthomier C, Thevenet M, Abernot J, Raverot V, Dailler F, Guérin C, Gronfier C, Luauté J, Perrin F. Twenty-four-hour rhythmicities in disorders of consciousness are associated with a favourable outcome. Commun Biol 2023; 6:1213. [PMID: 38030756 PMCID: PMC10687012 DOI: 10.1038/s42003-023-05588-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 11/15/2023] [Indexed: 12/01/2023] Open
Abstract
Fluctuations of consciousness and their rhythmicities have been rarely studied in patients with a disorder of consciousness after acute brain injuries. 24-h assessment of brain (EEG), behaviour (eye-opening), and circadian (clock-controlled hormones secretion from urine) functions was performed in acute brain-injured patients. The distribution, long-term predictability, and rhythmicity (circadian/ultradian) of various EEG features were compared with the initial clinical status, the functional outcome, and the circadian rhythmicities of behaviour and clock-controlled hormones. Here we show that more physiological and favourable patterns of fluctuations are associated with a higher 24 h predictability and sharp up-and-down shape of EEG switches, reminiscent of the Flip-Flop model of sleep. Multimodal rhythmic analysis shows that patients with simultaneous circadian rhythmicity for brain, behaviour, and hormones had a favourable outcome. Finally, both re-emerging EEG fluctuations and homogeneous 24-h cycles for EEG, eye-opening, and hormones appeared as surrogates for preserved functionality in brainstem and basal forebrain, which are key prognostic factors for later improvement. While the recovery of consciousness has previously been related to a high short-term complexity, we suggest in this exploratory study the importance of the high predictability of the 24 h long-term generation of brain rhythms and highlight the importance of circadian body-brain rhythms in awakening.
Collapse
|
7
|
Peter-Derex L, Berthomier C, Taillard J, Berthomier P, Bouet R, Mattout J, Brandewinder M, Bastuji H. Automatic analysis of single-channel sleep EEG in a large spectrum of sleep disorders. J Clin Sleep Med 2021; 17:393-402. [PMID: 33089777 DOI: 10.5664/jcsm.8864] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
STUDY OBJECTIVES To assess the performance of the single-channel automatic sleep staging (AS) software ASEEGA in adult patients diagnosed with various sleep disorders. METHODS Sleep recordings were included of 95 patients (38 women, 40.5 ± 13.7 years) diagnosed with insomnia (n = 23), idiopathic hypersomnia (n = 24), narcolepsy (n = 24), and obstructive sleep apnea (n = 24). Visual staging (VS) was performed by two experts (VS1 and VS2) according to the American Academy of Sleep Medicine rules. AS was based on the analysis of a single electroencephalogram channel (Cz-Pz), without any information from electro-oculography nor electromyography. The epoch-by-epoch agreement (concordance and Conger's coefficient [κ]) was compared pairwise (VS1-VS2, AS-VS1, AS-VS2) and between AS and consensual VS. Sleep parameters were also compared. RESULTS The pairwise agreements were: between AS and VS1, 78.6% (κ = 0.70); AS and VS2, 75.0% (0.65); and VS1 and VS2, 79.5% (0.72). Agreement between AS and consensual VS was 85.6% (0.80), with the following distribution: insomnia 85.5% (0.80), narcolepsy 83.8% (0.78), idiopathic hypersomnia 86.1% (0.68), and obstructive sleep disorder 87.2% (0.82). A significant low-amplitude scorer effect was observed for most sleep parameters, not always driven by the same scorer. Hypnograms obtained with AS and VS exhibited very close sleep organization, except for 80% of rapid eye movement sleep onset in the group diagnosed with narcolepsy missed by AS. CONCLUSIONS Agreement between AS and VS in sleep disorders is comparable to that reported in healthy individuals and to interexpert agreement in patients. ASEEGA could therefore be considered as a complementary sleep stage scoring tool in clinical practice, after improvement of rapid eye movement sleep onset detection.
Collapse
|
8
|
Peter-Derex L, Subtil F, Lemaitre G, Ricordeau F, Bastuji H, Bridoux A, Onen F, Onen SH. Observation and Interview-based Diurnal Sleepiness Inventory for measurement of sleepiness in patients referred for narcolepsy or idiopathic hypersomnia. J Clin Sleep Med 2021; 16:1507-1515. [PMID: 32406372 DOI: 10.5664/jcsm.8574] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
STUDY OBJECTIVES First, to determine whether the 3-item Observation and Interview-based Diurnal Sleepiness Inventory (ODSI) measures the degree of excessive daytime sleepiness in patients with suspected narcolepsy or idiopathic hypersomnia (IH). Second, to assess the correlation between the ODSI and the Epworth Sleepiness Scale (ESS) as well as objective polysomnographic measurements. Third, to test the accuracy of the ODSI to detect narcolepsy or IH (narcolepsy/IH) compared with the ESS. METHODS A total of 181 patients complaining of excessive daytime sleepiness filled in the ESS and the ODSI and underwent measurements including actigraphy, full-night polysomnography, Multiple Sleep Latency Test, and 24-hour bedrest sleep recording. RESULTS Narcolepsy or IH was diagnosed in 76 patients. The ODSI found excessive daytime sleepiness in 92.3% of all patients and in 98.7% of those diagnosed with narcolepsy/IH. In the whole population, the ODSI was significantly positively correlated with the ESS (R = .547; 95% confidence interval: .436, .642; P < .001) and weakly with 24-hour total sleep time on bedrest recording (R = .208; 95% confidence interval: .056, .350; P = .047) but not with the Multiple Sleep Latency Test. The ODSI offered a higher negative (92.9%) and positive (44.9%) predictive value to detect narcolepsy/IH than did the ESS (66.7% and 43.3%, respectively). In the IH group, the ODSI's third-item score (daily sleepiness duration) was significantly higher in patients with than without increased 24-hour total sleep time (P = .023). CONCLUSIONS The ODSI is a brief, simple first-line questionnaire that explores both intensity and duration of daytime sleepiness and offers a high sensitivity to detect narcolepsy and IH.
Collapse
|
9
|
Fauchon C, Meunier D, Faillenot I, Pomares FB, Bastuji H, Garcia-Larrea L, Peyron R. The Modular Organization of Pain Brain Networks: An fMRI Graph Analysis Informed by Intracranial EEG. Cereb Cortex Commun 2020; 1:tgaa088. [PMID: 34296144 PMCID: PMC8152828 DOI: 10.1093/texcom/tgaa088] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/05/2020] [Accepted: 11/16/2020] [Indexed: 11/14/2022] Open
Abstract
Intracranial EEG (iEEG) studies have suggested that the conscious perception of pain builds up from successive contributions of brain networks in less than 1 s. However, the functional organization of cortico-subcortical connections at the multisecond time scale, and its accordance with iEEG models, remains unknown. Here, we used graph theory with modular analysis of fMRI data from 60 healthy participants experiencing noxious heat stimuli, of whom 36 also received audio stimulation. Brain connectivity during pain was organized in four modules matching those identified through iEEG, namely: 1) sensorimotor (SM), 2) medial fronto-cingulo-parietal (default mode-like), 3) posterior parietal-latero-frontal (central executive-like), and 4) amygdalo-hippocampal (limbic). Intrinsic overlaps existed between the pain and audio conditions in high-order areas, but also pain-specific higher small-worldness and connectivity within the sensorimotor module. Neocortical modules were interrelated via “connector hubs” in dorsolateral frontal, posterior parietal, and anterior insular cortices, the antero-insular connector being most predominant during pain. These findings provide a mechanistic picture of the brain networks architecture and support fractal-like similarities between the micro-and macrotemporal dynamics associated with pain. The anterior insula appears to play an essential role in information integration, possibly by determining priorities for the processing of information and subsequent entrance into other points of the brain connectome.
Collapse
|
10
|
Chapoutot M, Peter-Derex L, Schoendorff B, Faivre T, Bastuji H, Putois B. Telehealth-delivered CBT-I programme enhanced by acceptance and commitment therapy for insomnia and hypnotic dependence: A pilot randomized controlled trial. J Sleep Res 2020; 30:e13199. [PMID: 33020985 DOI: 10.1111/jsr.13199] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/24/2020] [Accepted: 09/01/2020] [Indexed: 12/22/2022]
Abstract
Cognitive behavioural therapy for insomnia is the recommended treatment for chronic insomnia. However, up to a quarter of patients dropout from cognitive behavioural therapy for insomnia programmes. Acceptance, mindfulness and values-based actions may constitute complementary therapeutic tools to cognitive behavioural therapy for insomnia. The current study sought to evaluate the efficacy of a remotely delivered programme combining the main components of cognitive behavioural therapy for insomnia (sleep restriction and stimulus control) with the third-wave cognitive behavioural therapy acceptance and commitment therapy in adults with chronic insomnia and hypnotic dependence on insomnia symptoms and quality of life. Thirty-two participants were enrolled in a pilot randomized controlled trial: half of them were assigned to a 3-month waiting list before receiving the four "acceptance and commitment therapy-enhanced cognitive behavioural therapy for insomnia" treatment sessions using videoconference. The primary outcome was sleep quality as measured by the Insomnia Severity Index and the Pittsburgh Sleep Quality Index. All participants also filled out questionnaires about quality of life, use of hypnotics, depression and anxiety, acceptance, mindfulness, thought suppression, as well as a sleep diary at baseline, post-treatment and 6-month follow-up. A large effect size was found for Insomnia Severity Index and Pittsburgh Sleep Quality Index, but also daytime improvements, with increased quality of life and acceptance at post-treatment endpoint in acceptance and commitment therapy-enhanced cognitive behavioural therapy for insomnia participants. Improvement in Insomnia Severity Index and Pittsburgh Sleep Quality Index was maintained at the 6-month follow-up. Wait-list participants increased their use of hypnotics, whereas acceptance and commitment therapy-enhanced cognitive behavioural therapy for insomnia participants evidenced reduced use of them. This pilot study suggests that web-based cognitive behavioural therapy for insomnia incorporating acceptance and commitment therapy processes may be an efficient option to treat chronic insomnia and hypnotic dependence.
Collapse
|
11
|
Bourdillon P, Hermann B, Guénot M, Bastuji H, Isnard J, King JR, Sitt J, Naccache L. Brain-scale cortico-cortical functional connectivity in the delta-theta band is a robust signature of conscious states: an intracranial and scalp EEG study. Sci Rep 2020; 10:14037. [PMID: 32820188 PMCID: PMC7441406 DOI: 10.1038/s41598-020-70447-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 07/22/2020] [Indexed: 11/17/2022] Open
Abstract
Long-range cortico-cortical functional connectivity has long been theorized to be necessary for conscious states. In the present work, we estimate long-range cortical connectivity in a series of intracranial and scalp EEG recordings experiments. In the two first experiments intracranial-EEG (iEEG) was recorded during four distinct states within the same individuals: conscious wakefulness (CW), rapid-eye-movement sleep (REM), stable periods of slow-wave sleep (SWS) and deep propofol anaesthesia (PA). We estimated functional connectivity using the following two methods: weighted Symbolic-Mutual-Information (wSMI) and phase-locked value (PLV). Our results showed that long-range functional connectivity in the delta-theta frequency band specifically discriminated CW and REM from SWS and PA. In the third experiment, we generalized this original finding on a large cohort of brain-injured patients. FC in the delta-theta band was significantly higher in patients being in a minimally conscious state (MCS) than in those being in a vegetative state (or unresponsive wakefulness syndrome). Taken together the present results suggest that FC of cortical activity in this slow frequency band is a new and robust signature of conscious states.
Collapse
|
12
|
Putois B, Peter-Derex L, Leslie W, Braboszcz C, El-Hage W, Bastuji H. Internet-Based Intervention for Posttraumatic Stress Disorder: Using Remote Imagery Rehearsal Therapy to Treat Nightmares. PSYCHOTHERAPY AND PSYCHOSOMATICS 2020; 88:315-316. [PMID: 31284286 DOI: 10.1159/000501105] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 05/22/2019] [Indexed: 11/19/2022]
|
13
|
Mazza S, Bastuji H, Rey AE. Objective and Subjective Assessments of Sleep in Children: Comparison of Actigraphy, Sleep Diary Completed by Children and Parents' Estimation. Front Psychiatry 2020; 11:495. [PMID: 32587532 PMCID: PMC7297917 DOI: 10.3389/fpsyt.2020.00495] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 05/15/2020] [Indexed: 11/13/2022] Open
Abstract
In research and clinical contexts, parents' report and sleep diary filled in by parents are often used to characterize sleep-wake rhythms in children. The current study aimed to investigate children self-perception of their sleep, by comparing sleep diaries filled in by themselves, actigraphic sleep recordings, and parental subjective estimation. Eighty children aged 8-9 years wore actigraph wristwatches and completed sleep diaries for 7 days, while their parents completed a sleep-schedule questionnaire about their child' sleep. The level of agreement and correlation between sleep parameters derived from these three methods were measured. Sleep parameters were considered for the whole week and school days and weekends separately and a comparison between children with high and low sleep efficiency was carried out. Compared to actigraphy, children overestimated their sleep duration by 92 min and demonstrated significant difficulty to assess the amount of time they spent awake during the night. The estimations were better in children with high sleep efficiency compared to those with low sleep efficiency. Parents estimated that their children went to bed 36 min earlier and obtained 36.5 min more sleep than objective estimations with actigraphy. Children and parents' accuracy to estimate sleep parameters was different during school days and weekends, supporting the importance of analyzing separately school days and weekends when measuring sleep in children. Actigraphy and sleep diaries showed good agreement for bedtime and wake-up time, but not for SOL and WASO. A satisfactory agreement for TST was observed during school days only, but not during weekends. Even if parents provided more accurate sleep estimation than children, parents' report, and actigraphic data were weakly correlated and levels of agreement were insufficient. These results suggested that sleep diary completed by children provides interesting measures of self-perception, while actigraphy may provide additional information about nocturnal wake times. Sleep diary associated with actigraphy could be an interesting tool to evaluate parameters that could contribute to adjust subjective perception to objective sleep values.
Collapse
|
14
|
Bastuji H, Lamouroux P, Villalba M, Magnin M, Garcia‐Larrea L. Local sleep spindles in the human thalamus. J Physiol 2020; 598:2109-2124. [DOI: 10.1113/jp279045] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 02/20/2020] [Indexed: 12/30/2022] Open
|
15
|
Peter-Derex L, Berthomier C, Taillard J, Berthomier P, Mattout J, Brandewinder M, Bastuji H. Sleep autoscoring based on a single EEG Channel: comparison with visual scoring in patients. Sleep Med 2019. [DOI: 10.1016/j.sleep.2019.11.095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
Hagiwara K, Perchet C, Frot M, Bastuji H, Garcia-Larrea L. Cortical modulation of nociception by galvanic vestibular stimulation: A potential clinical tool? Brain Stimul 2019; 13:60-68. [PMID: 31636023 DOI: 10.1016/j.brs.2019.10.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 09/27/2019] [Accepted: 10/09/2019] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVE Vestibular afferents converge with nociceptive ones within the posterior insula, and can therefore modulate nociception. Consistent with this hypothesis, caloric vestibular stimulation (CVS) has been shown to reduce experimental and clinical pain. Since CVS can induce undesirable effects in a proportion of patients, here we explored an alternative means to activate non-invasively the vestibular pathways using innocuous bi-mastoid galvanic stimulation (GVS), and assessed its effects on experimental pain. METHODS Sixteen healthy volunteers participated in this study. Experimental pain was induced by noxious laser-heat stimuli to the left hand while recording pain ratings and related brain potentials (LEPs). We evaluated changes of these indices during left- or right-anodal GVS (cathode on contralateral mastoid), and contrasted them with those during sham GVS, optokinetic vestibular stimulation (OKS) using virtual reality, and attentional distraction to ascertain the vestibular-specific analgesic effects of GVS. RESULTS GVS elicited brief sensations of head/trunk deviation, inoffensive to all participants. Both active GVS conditions showed analgesic effects, greater for the right anodal stimulation. OKS was helpful to attain significant LEP reductions during the left-anodal stimulation. Neither sham-GVS nor the distraction task were able to modulate significantly pain ratings or LEPs. CONCLUSIONS GVS appeared as a well-tolerated and powerful procedure for the relief of experimental pain, probably through physiological interaction within insular nociceptive networks. Either isolated or in combination with other types of vestibular activation (e.g., optokinetic stimuli), GVS deserves being tested in clinical settings.
Collapse
|
17
|
White M, Charbotel B, Fort E, Bastuji H, Franco P, Putois B, Mazza S, Peter-Derex L. Academic and professional paths of narcoleptic patients: the Narcowork study. Sleep Med 2019; 65:96-104. [PMID: 31739232 DOI: 10.1016/j.sleep.2019.07.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/12/2019] [Accepted: 07/23/2019] [Indexed: 01/23/2023]
Abstract
OBJECTIVE/BACKGROUND To study educational and professional pathways of narcoleptic patients and examine demographic, disease-related and environmental factors associated with a better academic and professional prognosis. PATIENTS/METHODS In sum, 69 narcoleptic patients (51 narcolepsy type 1 and 18 narcolepsy type 2, age 42.5 ± 18.2 years) were enrolled in this pilot monocentric cross-sectional study with a comparison group (80 age- and sex-matched controls) between October 2017 and July 2018 in Lyon Center for Sleep Medicine. They completed questionnaires about their academic and professional trajectories and specific scales of quality of life (EuroQol quality of life scale EQ-5D-3L), depression (beck depression inventory, BDI), sleepiness (Epworth Sleepiness Scale, ESS) and narcoleptic symptoms severity (narcolepsy severity scale, NSS). RESULTS No difference in grade repetition or final obtained diploma was observed between patients and controls, but patients evaluated their academic curricula as more difficult (45.5% vs 16.9%, p = 0.0007), complained for more attentional deficits (75% vs 22.1%, p < 0.0001), and had needed more educational reorientation (28.6% vs 9.9%, p = 0.01). Even if no difference was observed in occupational category and professional status, patients expressed significantly less satisfaction about their work. Patients had more signs of depression [OR severe depression = 4.4 (1.6-12.6), p = 0.02] and their quality of life was significantly decreased (67.3 ± 18.4 vs 80.6 ± 13.2, p = 0.0007) as compared to controls. Multivariate analysis showed that a more favorable professional career was associated with a better quality of life. CONCLUSIONS Educational and professional pathways do not seem to be significantly impaired in narcoleptic patients, but their experience and quality of life are affected. These findings may allow to reassure patients and should lead to a more comprehensive management of the disease. CLINICAL TRIAL REGISTRATION Narcowork, https://clinicaltrials.gov/ct2/show/NCT03173378, N° NCT03173378.
Collapse
|
18
|
Garcia-Larrea L, Bastuji H. Pain and consciousness. Prog Neuropsychopharmacol Biol Psychiatry 2018; 87:193-199. [PMID: 29031510 DOI: 10.1016/j.pnpbp.2017.10.007] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 10/08/2017] [Accepted: 10/09/2017] [Indexed: 01/18/2023]
Abstract
The aversive experience we call "pain" results from the coordinated activation of multiple brain areas, commonly described as a "pain matrix". This is not a fixed arrangement of structures but rather a fluid system composed of several interacting networks: A 'nociceptive matrix' includes regions receiving input from ascending nociceptive systems, and ensures the bodily characteristics of physical pain. A further set of structures receiving secondary input supports the 'salience' attributes of noxious stimuli, triggers top-down cognitive controls, and -most importantly- ensures the passage from pre-conscious nociception to conscious pain. Expectations and beliefs can still modulate the conscious experience via activity in supramodal regions with widespread cortical projections such as the ventral tegmental area. Intracortical EEG responses in humans show that nociceptive cortical processing is initiated in parallel in sensory, motor and limbic areas; it progresses rapidly to the recruitment of anterior insular and fronto-parietal networks, and finally to the activation of perigenual, posterior cingulate and hippocampal structures. Functional connectivity between sensory and high-level networks increases during the first second post-stimulus, which may be determinant for access to consciousness. A model is described, progressing from unconscious sensori-motor and limbic processing of spinothalamic and spino-parabrachial input, to an immediate sense of awareness supported by coordinated activity in sensorimotor and fronto-parieto-insular networks, and leading to full declarative consciousness through integration with autobiographical memories and self-awareness, involving posterior cingulate and medial temporal areas. This complete sequence is only present during full vigilance states. We contend, however, that even in unconscious subjects, repeated limbic and vegetative activation by painful stimuli via spino-amygdalar pathways can generate implicit memory traces and stimulus-response abnormal sequences, possibly contributing to long-standing anxiety or hyperalgesic syndromes in patients surviving coma.
Collapse
|
19
|
Gonzalez CE, Mak-McCully RA, Rosen BQ, Cash SS, Chauvel PY, Bastuji H, Rey M, Halgren E. Theta Bursts Precede, and Spindles Follow, Cortical and Thalamic Downstates in Human NREM Sleep. J Neurosci 2018; 38:9989-10001. [PMID: 30242045 PMCID: PMC6234298 DOI: 10.1523/jneurosci.0476-18.2018] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 08/10/2018] [Accepted: 08/28/2018] [Indexed: 01/03/2023] Open
Abstract
Since their discovery, slow oscillations have been observed to group spindles during non-REM sleep. Previous studies assert that the slow-oscillation downstate (DS) is preceded by slow spindles (10-12 Hz) and followed by fast spindles (12-16 Hz). Here, using both direct transcortical recordings in patients with intractable epilepsy (n = 10, 8 female), as well as scalp EEG recordings from a healthy cohort (n = 3, 1 female), we find in multiple cortical areas that both slow and fast spindles follow the DS. Although discrete oscillations do precede DSs, they are theta bursts (TBs) centered at 5-8 Hz. TBs were more pronounced for DSs in NREM stage 2 (N2) sleep compared with N3. TB with similar properties occur in the thalamus, but unlike spindles they have no clear temporal relationship with cortical TB. These differences in corticothalamic dynamics, as well as differences between spindles and theta in coupling high-frequency content, are consistent with NREM theta having separate generative mechanisms from spindles. The final inhibitory cycle of the TB coincides with the DS peak, suggesting that in N2, TB may help trigger the DS. Since the transition to N1 is marked by the appearance of theta, and the transition to N2 by the appearance of DS and thus spindles, a role of TB in triggering DS could help explain the sequence of electrophysiological events characterizing sleep. Finally, the coordinated appearance of spindles and DSs are implicated in memory consolidation processes, and the current findings redefine their temporal coupling with theta during NREM sleep.SIGNIFICANCE STATEMENT Sleep is characterized by large slow waves which modulate brain activity. Prominent among these are downstates (DSs), periods of a few tenths of a second when most cells stop firing, and spindles, oscillations at ∼12 times a second lasting for ∼a second. In this study, we provide the first detailed description of another kind of sleep wave: theta bursts (TBs), a brief oscillation at ∼six cycles per second. We show, recording during natural sleep directly from the human cortex and thalamus, as well as on the scalp, that TBs precede, and spindles follow DSs. TBs may help trigger DSs in some circumstances, and could organize cortical and thalamic activity so that memories can be consolidated during sleep.
Collapse
|
20
|
Hagiwara K, Perchet C, Frot M, Bastuji H, Garcia-Larrea L. Insular-limbic dissociation to intra-epidermal electrical Aδ activation: A comparative study with thermo-nociceptive laser stimulation. Eur J Neurosci 2018; 48:3186-3198. [PMID: 30203624 DOI: 10.1111/ejn.14146] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/17/2018] [Accepted: 08/31/2018] [Indexed: 01/12/2023]
Abstract
Intra-epidermal electrical stimulation (IEES) has been shown to activate selectively Aδ fibers subserving spinothalamic-mediated sensations. Owing to electrically induced highly synchronous afferent volleys, IEES induces Aδ-mediated evoked potentials at nonpainful intensities, contrasting with thermo-nociceptive laser pulses which entail painful pricking sensations. Here, we recorded intracortical responses from sensory and limbic-cognitive regions of human subjects in response to IEE and laser stimuli, in order to test the hypothesis that IEES could dissociate the sensory from nonsensory networks of nociceptive processing. Intracortical evoked potentials were obtained in 11 epileptic patients with stereotactically implanted electrodes in sensory regions receiving spinothalamic afferents (posterior insula), limbic regions receiving spino-parabrachial input (amygdalar nucleus), and high-order affective-cognitive regions (anteromedial frontal cortex, including perigenual anterior cingulate and rostromedial prefrontal areas). Responses in the sensory posterior insula were of similar amplitude and latency to IEE and laser stimuli (after accounting for heat-transduction time of laser), and consistent in both cases with spinothalamic activation. However, responses to IEES in the amygdala and the anteromedial frontal regions were inconsistent and significantly smaller compared to those evoked to the laser stimulation. Thus, IEES can effectively activate the spinothalamic-sensory system with little recruitment of affective-motivational networks, including those triggered by spino-parabrachio-amygdalar projections. The fact that identical sensory responses were associated to either painful or nonpainful percepts underscores that subjective pain perception is not solely dependent on the sensory recruitment, but rather on the combined activation of sensory, limbic and cognitive areas with precise spatiotemporal relations.
Collapse
|
21
|
Bastuji H, Frot M, Perchet C, Hagiwara K, Garcia-Larrea L. Convergence of sensory and limbic noxious input into the anterior insula and the emergence of pain from nociception. Sci Rep 2018; 8:13360. [PMID: 30190593 PMCID: PMC6127143 DOI: 10.1038/s41598-018-31781-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 08/22/2018] [Indexed: 01/19/2023] Open
Abstract
Two parallel di-synaptic routes convey nociceptive input to the telencephalon: the spino-thalamic system projecting principally to the posterior insula, and the spino-parabrachial pathway reaching the amygdalar nucleus. Interplay between the two systems underlies the sensory and emotional aspects of pain, and was explored here in humans with simultaneous recordings from the amygdala, posterior and anterior insulae. Onsets of thermo-nociceptive responses were virtually identical in the posterior insula and the amygdalar complex, but no significant functional connectivity was detected between them using coherence analysis. Anterior insular sectors responded with ~30 ms delay relative to both the posterior insula and the amygdala. While intra-insular functional correlation was significant during the whole analysis period, coherence between the anterior insula and the amygdala became significant after 700 ms of processing. Phase lags indicated information transfer initially directed from the amygdalar complex to the insula. Parallel but independent activation of sensory and limbic nociceptive networks appear to converge in the anterior insula in less than one second. While the anterior insula is often considered as providing input into the limbic system, our results underscore its reverse role, i.e., receiving and integrating very rapidly limbic with sensory input, to initiate a perceptual decision on the stimulus 'painfulness'.
Collapse
|
22
|
Bastuji H. How ‘REM sleep’ is paradoxical in human. Neurophysiol Clin 2018. [DOI: 10.1016/j.neucli.2018.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
23
|
Bastuji H. Michel Jouvet as a clinical neurophysiologist and neurologist. Sleep Med 2018; 49:73-77. [PMID: 30145123 DOI: 10.1016/j.sleep.2018.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
While the world reputation of Michel Jouvet in sleep research is based on his huge work on sleep and paradoxical sleep, especially in cats, a far less-known part of his activity was dedicated to investigate and take care of patients with neurological diseases. Indeed, he was also a physician, specialized in neurophysiology and working at the neurological hospital of Lyon. He was most interested first in patients with disorders of consciousness and secondly in those with sleep/wake disorders, and especially in modafinil for the treatment of patients with narcolepsy and idiopathic hypersomnia.
Collapse
|
24
|
Peter-Derex L, Berthomier C, Brandewinder M, Mattout J, Berthomier P, Bastuji H. 1092 Evaluation Of A Single-channel Automatic Sleep Analysis Software In Sleep Disorders. Sleep 2018. [DOI: 10.1093/sleep/zsy061.1091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
25
|
Bradley C, Bastuji H, Garcia-Larrea L. Evidence-based source modeling of nociceptive cortical responses: A direct comparison of scalp and intracranial activity in humans. Hum Brain Mapp 2017; 38:6083-6095. [PMID: 28925006 DOI: 10.1002/hbm.23812] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 08/27/2017] [Accepted: 09/05/2017] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Source modeling of EEG traditionally relies on interplay between physiological hypotheses and mathematical estimates. We propose to optimize the process by using evidence gathered from brain imaging and intracortical recordings. METHODS We recorded laser-evoked potentials in 18 healthy participants, using high-density EEG. Brain sources were modeled during the first second poststimulus, constraining their initial position to regions where nociceptive-related activity has been ascertained by intracranial EEG. These comprised the two posterior operculo-insular regions, primary sensorimotor, posterior parietal, anterior cingulate/supplementary motor (ACC/SMA), bilateral frontal/anterior insular, and posterior cingulate (PCC) cortices. RESULTS The model yielded an average goodness of fit of 91% for individual and 95.8% for grand-average data. When compared with intracranial recordings from 27 human subjects, no significant difference in peak latencies was observed between modeled and intracranial data for 5 of the 6 assessable regions. Morphological match was excellent for operculo-insular, frontal, ACC/SMA and PCC regions (cross-correlation > 0.7) and fair for sensori-motor and posterior parietal cortex (c-c ∼ 0.5). CONCLUSIONS Multiple overlapping activities evoked by nociceptive input can be disentangled from high-density scalp EEG guided by intracranial data. Modeled sources accurately described the timing and morphology of most activities recorded with intracranial electrodes, including those coinciding with the emergence of stimulus awareness. Hum Brain Mapp 38:6083-6095, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
|