1
|
Yamamoto F, Clausen H, White T, Marken J, Hakomori S. Molecular genetic basis of the histo-blood group ABO system. Nature 1990; 345:229-33. [PMID: 2333095 DOI: 10.1038/345229a0] [Citation(s) in RCA: 746] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The histo-blood group ABO, the major human alloantigen system, involves three carbohydrate antigens (ABH). A, B and AB individuals express glycosyltransferase activities converting the H antigen into A or B antigens, whereas O(H) individuals lack such activity. Here we present a molecular basis for the ABO genotypes. The A and B genes differ in a few single-base substitutions, changing four amino-acid residues that may cause differences in A and B transferase specificity. A critical single-base deletion was found in the O gene, which results in an entirely different, inactive protein incapable of modifying the H antigen.
Collapse
|
|
35 |
746 |
2
|
Brückner K, Perez L, Clausen H, Cohen S. Glycosyltransferase activity of Fringe modulates Notch-Delta interactions. Nature 2000; 406:411-5. [PMID: 10935637 DOI: 10.1038/35019075] [Citation(s) in RCA: 543] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Ligands that are capable of activating Notch family receptors are broadly expressed in animal development, but their activity is tightly regulated to allow formation of tissue boundaries. Members of the fringe gene family have been implicated in limiting Notch activation during boundary formation, but the mechanism of Fringe function has not been determined. Here we present evidence that Fringe acts in the Golgi as a glycosyltransferase enzyme that modifies the epidermal growth factor (EGF) modules of Notch and alters the ability of Notch to bind its ligand Delta. Fringe catalyses the addition of N-acetylglucosamine to fucose, which is consistent with a role in the elongation of O-linked fucose O-glycosylation that is associated with EGF repeats. We suggest that cell-type-specific modification of glycosylation may provide a general mechanism to regulate ligand-receptor interactions in vivo.
Collapse
|
|
25 |
543 |
3
|
Clausen H, Hakomori S. ABH and related histo-blood group antigens; immunochemical differences in carrier isotypes and their distribution. Vox Sang 1989; 56:1-20. [PMID: 2464874 DOI: 10.1111/j.1423-0410.1989.tb03040.x] [Citation(s) in RCA: 362] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This review summarizes present knowledge of the chemistry of histo-blood group ABH and related antigens. Recent advances in analytical carbohydrate chemistry (particularly mass spectrometry and NMR spectroscopy) and the introduction of monoclonal antibodies (MoAbs) have made it possible to distinguish structural variants of histo-blood group ABH antigens. Polymorphism of ABH antigens is induced by: (i) variations in peripheral core structure, of which four (type 1, 2, 3 and 4) are known in man; (ii) variation in inner core by branching process (blood group iI), leading to variation of unbranched vs. branched ABH determinants; (iii) biosynthetic interaction with other glycosyltransferases (Lewis, P. T/Tn blood systems) capable of acting on the same substrate as the ABH-defined transferases, and finally (iv) the nature of the glycoconjugate (glycolipid, glycoprotein of N- or O-linked type). ABH variants induced by item (i) above have been clearly distinguished qualitatively by MoAbs; e.g., at least six types of A determinants can be distinguished by qualitatively different classes of antibody. The variants induced by item (ii) create mono- vs. bivalent antigens which may be responsible for observed differences in antibody-binding affinity. Detailed studies of the chemistry of these antigens have increased our insight into blood groups, providing the basis for blood group iI and A subgrouping, as well as a relation between the ABH and Lewis, P, and T/Tn systems. A survey of the literature on distribution patterns of ABH variants is presented. It has been assumed that expression of histo-blood group antigens is developmentally regulated. Relationships between histo-blood group expression, development, differentiation and maturation, as well as malignant transformation, are discussed.
Collapse
|
Review |
36 |
362 |
4
|
Jacewicz M, Clausen H, Nudelman E, Donohue-Rolfe A, Keusch GT. Pathogenesis of shigella diarrhea. XI. Isolation of a shigella toxin-binding glycolipid from rabbit jejunum and HeLa cells and its identification as globotriaosylceramide. J Exp Med 1986; 163:1391-404. [PMID: 3519828 PMCID: PMC2188132 DOI: 10.1084/jem.163.6.1391] [Citation(s) in RCA: 303] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
A glycolipid that specifically binds shigella toxin was isolated from both HeLa cells and rabbit jejunal mucosa and identified as globotriaosylceramide (Gb3) by its identical mobility on HPTLC to authentic erythrocyte Gb3. Toxin also bound to a band tentatively identified as alpha-hydroxylated Gb3. In addition, toxin bound to P1 antigen present in group B human erythrocyte glycolipid extracts. The common feature of the three binding glycolipids is a terminal Gal alpha 1----4Gal disaccharide linked beta 1----4 to either Glc or GlcNAc. Globoisotriaosylceramide, which differs from Gb3 only in possessing a Gal alpha 1----3Gal terminal disaccharide, and LacCer, which lacks the terminal Gal residue of Gb3, were incapable of binding the toxin. Binding was shown to be mediated by the B subunit by the use of isolated toxin A and B subunits and monoclonal subunit-specific antibodies. Gb3-containing liposomes competitively inhibited the binding of toxin to HeLa cell monolayers but did not inhibit toxin-induced cytotoxicity. These studies show an identical carbohydrate-specific glycolipid receptor for shigella toxin in gut and in HeLa cells. The toxin B subunit that mediates this binding has also been shown to recognize a glycoprotein receptor with different sugar specificity. Thus, we have demonstrated that the same small (Mr 6,500) B subunit polypeptide has two distinctive carbohydrate-specific binding sites. The Gal alpha 1----4Gal disaccharide of the glycolipid toxin receptor is also recognized by the Gal-Gal pilus of uropathogenic E. coli. This suggests the possibility that the pilus and toxin B subunit contain homologous sequences. If this is true, it may be possible to use the purified Gal-Gal pilus to produce toxin-neutralizing antibodies.
Collapse
|
research-article |
39 |
303 |
5
|
Reis CA, Sørensen T, Mandel U, David L, Mirgorodskaya E, Roepstorff P, Kihlberg J, Hansen JE, Clausen H. Development and characterization of an antibody directed to an alpha-N-acetyl-D-galactosamine glycosylated MUC2 peptide. Glycoconj J 1998; 15:51-62. [PMID: 9530956 DOI: 10.1023/a:1006939432665] [Citation(s) in RCA: 244] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In an attempt to raise anti-Tn antibodies, an alpha-N-acetyl-D-galactosamine glycosylated peptide based on the tandem repeat of the intestinal mucin MUC2 was used as an immunogen. The MUC2 peptide (PTTTPISTTTMVTPTPTPTC) was glycosylated in vitro using concentrated alpha-N-acetylgalactosaminyltransferases activity from porcine submaxillary glands which resulted in the incorporation of 8-9 mol of Ga/NAc. Rabbits and mice developed specific anti-MUC2-GalNAc glycopeptide antibodies and no detectable anti-Tn antibodies. Anti-glycopeptide antibodies did not show reactivity with the unglycosylated MUC2 peptide or with other GalNAc glycosylated peptides. A mouse monoclonal antibody (PMH1) representative of the observed immune response was generated and its immunohistological reactivity analysed in normal tissues. PMH1 reacted similarly to other anti-MUC2 peptide antibodies. However, in some cells the staining was not restricted to the supranuclear area but extended to the entire cytoplasm. In addition, PMH1 reacted with purified colonic mucin by Western blot analysis suggesting that PMH1 reacted with some glycoforms of MUC2. The present work presents a useful approach for development of anti-mucin antibodies directed to different glycoforms of individual mucins.
Collapse
|
|
27 |
244 |
6
|
Wandall HH, Hassan H, Mirgorodskaya E, Kristensen AK, Roepstorff P, Bennett EP, Nielsen PA, Hollingsworth MA, Burchell J, Taylor-Papadimitriou J, Clausen H. Substrate specificities of three members of the human UDP-N-acetyl-alpha-D-galactosamine:Polypeptide N-acetylgalactosaminyltransferase family, GalNAc-T1, -T2, and -T3. J Biol Chem 1997; 272:23503-14. [PMID: 9295285 DOI: 10.1074/jbc.272.38.23503] [Citation(s) in RCA: 238] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Mucin-type O-glycosylation is initiated by UDP-N-acetylgalactosamine:polypeptide N-acetylgalactosaminyltransferases (GalNAc-transferases). The role each GalNAc-transferase plays in O-glycosylation is unclear. In this report we characterized the specificity and kinetic properties of three purified recombinant GalNAc-transferases. GalNAc-T1, -T2, and -T3 were expressed as soluble proteins in insect cells and purified to near homogeneity. The enzymes have distinct but partly overlapping specificities with short peptide acceptor substrates. Peptides specifically utilized by GalNAc-T2 or -T3, or preferentially by GalNAc-T1 were identified. GalNAc-T1 and -T3 showed strict donor substrate specificities for UDP-GalNAc, whereas GalNAc-T2 also utilized UDP-Gal with one peptide acceptor substrate. Glycosylation of peptides based on MUC1 tandem repeat showed that three of five potential sites in the tandem repeat were glycosylated by all three enzymes when one or five repeat peptides were analyzed. However, analysis of enzyme kinetics by capillary electrophoresis and mass spectrometry demonstrated that the three enzymes react at different rates with individual sites in the MUC1 repeat. The results demonstrate that individual GalNAc-transferases have distinct activities and the initiation of O-glycosylation in a cell is regulated by a repertoire of GalNAc-transferases.
Collapse
|
|
28 |
238 |
7
|
Amado M, Almeida R, Schwientek T, Clausen H. Identification and characterization of large galactosyltransferase gene families: galactosyltransferases for all functions. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1473:35-53. [PMID: 10580128 DOI: 10.1016/s0304-4165(99)00168-3] [Citation(s) in RCA: 220] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Enzymatic glycosylation of proteins and lipids is an abundant and important biological process. A great diversity of oligosaccharide structures and types of glycoconjugates is found in nature, and these are synthesized by a large number of glycosyltransferases. Glycosyltransferases have high donor and acceptor substrate specificities and are in general limited to catalysis of one unique glycosidic linkage. Emerging evidence indicates that formation of many glycosidic linkages is covered by large homologous glycosyltransferase gene families, and that the existence of multiple enzyme isoforms provides a degree of redundancy as well as a higher level of regulation of the glycoforms synthesized. Here, we discuss recent cloning strategies enabling the identification of these large glycosyltransferase gene families and exemplify the implication this has for our understanding of regulation of glycosylation by discussing two galactosyltransferase gene families.
Collapse
|
Review |
26 |
220 |
8
|
Clausen H, Bennett EP. A family of UDP-GalNAc: polypeptide N-acetylgalactosaminyl-transferases control the initiation of mucin-type O-linked glycosylation. Glycobiology 1996; 6:635-46. [PMID: 8922959 DOI: 10.1093/glycob/6.6.635] [Citation(s) in RCA: 186] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|
|
29 |
186 |
9
|
Almeida R, Levery SB, Mandel U, Kresse H, Schwientek T, Bennett EP, Clausen H. Cloning and expression of a proteoglycan UDP-galactose:beta-xylose beta1,4-galactosyltransferase I. A seventh member of the human beta4-galactosyltransferase gene family. J Biol Chem 1999; 274:26165-71. [PMID: 10473568 DOI: 10.1074/jbc.274.37.26165] [Citation(s) in RCA: 184] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A seventh member of the human beta4-galactosyltransferase family, beta4Gal-T7, was identified by BLAST analysis of expressed sequence tags. The coding region of beta4Gal-T7 depicts a type II transmembrane protein with sequence similarity to beta4-galactosyltransferases, but the sequence was distinct in known motifs and did not contain the cysteine residues conserved in the other six members of the beta4Gal-T family. The genomic organization of beta4Gal-T7 was different from previous beta4Gal-Ts. Expression of beta4Gal-T7 in insect cells showed that the gene product had beta1,4-galactosyltransferase activity with beta-xylosides, and the linkage formed was Galbeta1-4Xyl. Thus, beta4Gal-T7 represents galactosyltransferase I enzyme (xylosylprotein beta1, 4-galactosyltransferase; EC 2.4.1.133), which attaches the first galactose in the proteoglycan linkage region GlcAbeta1-3Galbeta1-3Galbeta1-4Xylbeta1-O-Ser. Sequence analysis of beta4Gal-T7 from a fibroblast cell line of a patient with a progeroid syndrome and signs of the Ehlers-Danlos syndrome, previously shown to exhibit reduced galactosyltransferase I activity (Quentin, E., Gladen, A., Rodén, L., and Kresse, H. (1990) Proc. Natl. Acad. Sci. U. S. A. 87, 1342-1346), revealed two inherited allelic variants, beta4Gal-T7(186D) and beta4Gal-T7(206P), each with a single missense substitution in the putative catalytic domain of the enzyme. beta4Gal-T7(186D) exhibited a 4-fold elevated K(m) for the donor substrate, whereas essentially no activity was demonstrated with beta4Gal-T7(206P). Molecular cloning of beta4Gal-T7 should facilitate general studies of its pathogenic role in progeroid syndromes and connective tissue disorders with affected proteoglycan biosynthesis.
Collapse
|
|
26 |
184 |
10
|
Röttger S, White J, Wandall HH, Olivo JC, Stark A, Bennett EP, Whitehouse C, Berger EG, Clausen H, Nilsson T. Localization of three human polypeptide GalNAc-transferases in HeLa cells suggests initiation of O-linked glycosylation throughout the Golgi apparatus. J Cell Sci 1998; 111 ( Pt 1):45-60. [PMID: 9394011 DOI: 10.1242/jcs.111.1.45] [Citation(s) in RCA: 175] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
O-glycosylation of proteins is initiated by a family of UDP-N-acetylgalactosamine:polypeptide N-acetylgalactos-aminyltransferases (GalNAc-T). In this study, we have localized endogenous and epitope-tagged human GalNAc-T1, -T2 and -T3 to the Golgi apparatus in HeLa cells by subcellular fractionation, immunofluorescence and immunoelectron microscopy. We show that all three GalNAc-transferases are concentrated about tenfold in Golgi stacks over Golgi associated tubular-vesicular membrane structures. Surprisingly, we find that GalNAc-T1, -T2 and -T3 are present throughout the Golgi stack suggesting that initiation of O-glycosylation may not be restricted to the cis Golgi, but occur at multiple sites within the Golgi apparatus. GalNAc-T1 distributes evenly across the Golgi stack whereas GalNAc-T2 and -T3 reside preferentially on the trans side and in the medial part of the Golgi stack, respectively. Moreover, we have investigated the possibility of O-glycan initiation in pre-Golgi compartments such as the ER. We could not detect endogenous polypeptide GalNAc-transferase activity in the ER of HeLa cells, neither by subcellular fractionation nor by situ glycosylation of an ER-retained form of CD8 (CD8/E19). However, upon relocation of chimeric GalNAc-T1 or -T2 to the ER, CD8/E19 is glycosylated with different efficiencies indicating that all components required for initiation of O-glycosylation are present in the ER except for polypeptide GalNAc-transferases.
Collapse
|
|
27 |
175 |
11
|
Bennett EP, Hassan H, Clausen H. cDNA cloning and expression of a novel human UDP-N-acetyl-alpha-D-galactosamine. Polypeptide N-acetylgalactosaminyltransferase, GalNAc-t3. J Biol Chem 1996; 271:17006-12. [PMID: 8663203 DOI: 10.1074/jbc.271.29.17006] [Citation(s) in RCA: 170] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The glycosylation of serine and threonine residues during mucin-type O-linked protein glycosylation is carried out by a family of UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferases (GalNAc-transferase). Previously two members, GalNAc-T1 and -T2, have been isolated and the genes cloned and characterized. Here we report the cDNA cloning and expression of a novel GalNAc-transferase termed GalNAc-T3. The gene was isolated and cloned based on the identification of a GalNAc-transferase motif (61 amino acids) that is shared between GalNAc-T1 and -T2 as well as a homologous Caenorhabditis elegans gene. The cDNA sequence has a 633-amino acid coding region indicating a protein of 72.5 kDa with a type II domain structure. The overall amino acid sequence similarity with GalNAc-T1 and -T2 is approximately 45%; 12 cysteine residues that are shared between GalNAc-T1 and -T2 are also found in GalNAc-T3. GalNAc-T3 was expressed as a soluble protein without the hydrophobic transmembrane domain in insect cells using a Baculo-virus vector, and the expressed GalNAc-transferase activity showed substrate specificity different from that previously reported for GalNAc-T1 and -T2. Northern analysis of human organs revealed a very restricted expression pattern of GalNAc-T3.
Collapse
|
Comparative Study |
29 |
170 |
12
|
Bennett EP, Hassan H, Mandel U, Mirgorodskaya E, Roepstorff P, Burchell J, Taylor-Papadimitriou J, Hollingsworth MA, Merkx G, van Kessel AG, Eiberg H, Steffensen R, Clausen H. Cloning of a human UDP-N-acetyl-alpha-D-Galactosamine:polypeptide N-acetylgalactosaminyltransferase that complements other GalNAc-transferases in complete O-glycosylation of the MUC1 tandem repeat. J Biol Chem 1998; 273:30472-81. [PMID: 9804815 DOI: 10.1074/jbc.273.46.30472] [Citation(s) in RCA: 169] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A fourth human UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase, designated GalNAc-T4, was cloned and expressed. The genomic organization of GalNAc-T4 is distinct from GalNAc-T1, -T2, and -T3, which contain multiple coding exons, in that the coding region is contained in a single exon. GalNAc-T4 was placed at human chromosome 12q21.3-q22 by in situ hybridization and linkage analysis. GalNAc-T4 expressed in Sf9 cells or in a stably transfected Chinese hamster ovary cell line exhibited a unique acceptor substrate specificity. GalNAc-T4 transferred GalNAc to two sites in the MUC1 tandem repeat sequence (Ser in GVTSA and Thr in PDTR) using a 24-mer glycopeptide with GalNAc residues attached at sites utilized by GalNAc-T1, -T2, and -T3 (TAPPAHGVTSAPDTRPAPGSTAPPA, GalNAc attachment sites underlined). Furthermore, GalNAc-T4 showed the best kinetic properties with an O-glycosylation site in the P-selectin glycoprotein ligand-1 molecule. Northern analysis of human organs revealed a wide expression pattern. Immunohistology with a monoclonal antibody showed the expected Golgi-like localization in salivary glands. A single base polymorphism, G1516A (Val to Ile), was identified (allele frequency 34%). The function of GalNAc-T4 complements other GalNAc-transferases in O-glycosylation of MUC1 showing that glycosylation of MUC1 is a highly ordered process and changes in the repertoire or topology of GalNAc-transferases will result in altered pattern of O-glycan attachments.
Collapse
|
|
27 |
169 |
13
|
White T, Bennett EP, Takio K, Sørensen T, Bonding N, Clausen H. Purification and cDNA cloning of a human UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase. J Biol Chem 1995; 270:24156-65. [PMID: 7592619 DOI: 10.1074/jbc.270.41.24156] [Citation(s) in RCA: 163] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
A UDP-GalNAc:polypeptide N-acetylgalactosaminyl-transferase (GalNAc-transferase) from human placenta was purified to apparent homogeneity using a synthetic acceptor peptide as affinity ligand. The purified GalNAc-transferase migrated as a single band with an approximate molecular weight of 52,000 by reducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Based on a partial amino acid sequence, the cDNA encoding the transferase was cloned and sequenced from a cDNA library of a human cancer cell line. The cDNA sequence has a 571-amino acid coding region indicating a protein of 64.7 kDa with a type II domain structure. The deduced protein sequence showed significant similarity to a recently cloned bovine polypeptide GalNAc-transferase (Homa, F.L., Hollanders, T., Lehman, D.J., Thomsen, D.R., and Elhammer, A.P. (1993) J. Biol. Chem. 268, 12609-12616). A polymerase chain reaction construct was expressed in insect cells using a baculovirus vector. Northern analysis of eight human tissues differed clearly from that of the bovine GalNAc-transferase. Polymerase chain reaction cloning and sequencing of the human version of the bovine transferase are presented, and 98% similarity at the amino acid level was found. The data suggest that the purified human GalNAc-transferase is a novel member of a family of polypeptide GalNAc-transferases, and a nomenclature GalNAc-T1 and GalNAc-T2 is introduced to distinguish the members.
Collapse
|
|
30 |
163 |
14
|
Klumperman J, Schweizer A, Clausen H, Tang BL, Hong W, Oorschot V, Hauri HP. The recycling pathway of protein ERGIC-53 and dynamics of the ER-Golgi intermediate compartment. J Cell Sci 1998; 111 ( Pt 22):3411-25. [PMID: 9788882 DOI: 10.1242/jcs.111.22.3411] [Citation(s) in RCA: 156] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To establish recycling routes in the early secretory pathway we have studied the recycling of the ER-Golgi intermediate compartment (ERGIC) marker ERGIC-53 in HepG2 cells. Immunofluorescence microscopy showed progressive concentration of ERGIC-53 in the Golgi area at 15 degreesC. Upon rewarming to 37 degreesC ERGIC-53 redistributed into the cell periphery often via tubular processes that largely excluded anterograde transported albumin. Immunogold labeling of cells cultured at 37 degreesC revealed ERGIC-53 predominantly in characteristic beta-COP-positive tubulo-vesicular clusters both near the Golgi apparatus and in the cell periphery. Concentration of ERGIC-53 at 15 degreesC resulted from both accumulation of ERGIC-53 in the ERGIC and movement of ERGIC membranes closer to the Golgi apparatus. Upon rewarming to 37 degreesC the labeling of ERGIC-53 in the ERGIC rapidly returned to normal levels whereas ERGIC-53's labeling in the cis-Golgi was unchanged. Temperature manipulations had no effect on the average number of ERGIC-53 clusters. Density gradient centrifugation indicated that the surplus ERGIC-53 accumulating in the ERGIC at 15 degreesC was rapidly transported to the ER upon rewarming. These results suggest that the ERGIC is a dynamic membrane system composed of a constant average number of clusters and that the major recycling pathway of ERGIC-53 bypasses the Golgi apparatus.
Collapse
|
|
27 |
156 |
15
|
Bennett EP, Hassan H, Mandel U, Hollingsworth MA, Akisawa N, Ikematsu Y, Merkx G, van Kessel AG, Olofsson S, Clausen H. Cloning and characterization of a close homologue of human UDP-N-acetyl-alpha-D-galactosamine:Polypeptide N-acetylgalactosaminyltransferase-T3, designated GalNAc-T6. Evidence for genetic but not functional redundancy. J Biol Chem 1999; 274:25362-70. [PMID: 10464263 DOI: 10.1074/jbc.274.36.25362] [Citation(s) in RCA: 149] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase, designated GalNAc-T3, exhibits unique functions. Specific acceptor substrates are used by GalNAc-T3 and not by other GalNAc-transferases. The expression pattern of GalNAc-T3 is restricted, and loss of expression is a characteristic feature of poorly differentiated pancreatic tumors. In the present study, a sixth human UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase, designated GalNAc-T6, with high similarity to GalNAc-T3, was characterized. GalNAc-T6 exhibited high sequence similarity to GalNAc-T3 throughout the coding region, in contrast to the limited similarity that exists between homologous glycosyltransferase genes, which is usually restricted to the putative catalytic domain. The genomic organizations of GALNT3 and GALNT6 are identical with the coding regions placed in 10 exons, but the genes are localized differently at 2q31 and 12q13, respectively. Acceptor substrate specificities of GalNAc-T3 and -T6 were similar and different from other GalNAc-transferases. Northern analysis revealed distinct expression patterns, which were confirmed by immunocytology using monoclonal antibodies. In contrast to GalNAc-T3, GalNAc-T6 was expressed in WI38 fibroblast cells, indicating that GalNAc-T6 represents a candidate for synthesis of oncofetal fibronectin. The results demonstrate the existence of genetic redundancy of a polypeptide GalNAc-transferase that does not provide full functional redundancy.
Collapse
|
|
26 |
149 |
16
|
Almeida R, Amado M, David L, Levery SB, Holmes EH, Merkx G, van Kessel AG, Rygaard E, Hassan H, Bennett E, Clausen H. A family of human beta4-galactosyltransferases. Cloning and expression of two novel UDP-galactose:beta-n-acetylglucosamine beta1, 4-galactosyltransferases, beta4Gal-T2 and beta4Gal-T3. J Biol Chem 1997; 272:31979-91. [PMID: 9405390 DOI: 10.1074/jbc.272.51.31979] [Citation(s) in RCA: 149] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BLAST analysis of expressed sequence tags (ESTs) using the coding sequence of the human UDP-galactose:beta-N-acetylglucosamine beta1, 4-galactosyltransferase, designated beta4Gal-T1, revealed a large number of ESTs with identical as well as similar sequences. ESTs with sequences similar to that of beta4Gal-T1 could be grouped into at least two non-identical sequence sets. Analysis of the predicted amino acid sequence of the novel ESTs with beta4Gal-T1 revealed conservation of short sequence motifs as well as cysteine residues previously shown to be important for the function of beta4Gal-T1. The likelihood that the identified ESTs represented novel galactosyltransferase genes was tested by cloning and sequencing of the full coding region of two distinct genes, followed by expression. Expression of soluble secreted constructs in the baculovirus system showed that these genes represented genuine UDP-galactose:beta-N-acetylglucosamine beta1, 4-galactosyltransferases, thus designated beta4Gal-T2 and beta4Gal-T3. Genomic cloning of the genes revealed that they have identical genomic organizations compared with beta4Gal-T1. The two novel genes were located on 1p32-33 and 1q23. The results demonstrate the existence of a family of homologous galactosyltransferases with related functions. The existence of multiple beta4-galactosyltransferases with the same or overlapping functions may be relevant for interpretation of biological functions previously assigned to beta4Gal-T1.
Collapse
|
|
28 |
149 |
17
|
Amado M, Almeida R, Carneiro F, Levery SB, Holmes EH, Nomoto M, Hollingsworth MA, Hassan H, Schwientek T, Nielsen PA, Bennett EP, Clausen H. A family of human beta3-galactosyltransferases. Characterization of four members of a UDP-galactose:beta-N-acetyl-glucosamine/beta-nacetyl-galactosamine beta-1,3-galactosyltransferase family. J Biol Chem 1998; 273:12770-8. [PMID: 9582303 DOI: 10.1074/jbc.273.21.12770] [Citation(s) in RCA: 148] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
BLAST analysis of expressed sequence tags (ESTs) using the coding sequence of a human UDP-galactose:beta-N-acetyl-glucosamine beta-1, 3-galactosyltransferase, designated beta3Gal-T1, revealed no ESTs with identical sequences but a large number with similarity. Three different sets of overlapping ESTs with sequence similarities to beta3Gal-T1 were compiled, and complete coding regions of these genes were obtained. Expression of two of these genes in the Baculo virus system showed that one represented a UDP-galactose:beta-N-acetyl-glucosamine beta-1, 3-galactosyltransferase (beta3Gal-T2) with similar kinetic properties as beta3Gal-T1. Another gene represented a UDP-galactose:beta-N-acetyl-galactosamine beta-1, 3-galactosyltransferase (beta3Gal-T4) involved in GM1/GD1 ganglioside synthesis, and this gene was highly similar to a recently reported rat GD1 synthase (Miyazaki, H., Fukumoto, S., Okada, M., Hasegawa, T., and Furukawa, K. (1997) J. Biol. Chem. 272, 24794-24799). Northern analysis of mRNA from human organs with the four homologous cDNA revealed different expression patterns. beta3Gal-T1 mRNA was expressed in brain, beta3Gal-T2 was expressed in brain and heart, and beta3Gal-T3 and -T4 were more widely expressed. The coding regions for each of the four genes were contained in single exons. beta3Gal-T2, -T3, and -T4 were localized to 1q31, 3q25, and 6p21.3, respectively, by EST mapping. The results demonstrate the existence of a family of homologous beta3-galactosyltransferase genes.
Collapse
|
|
27 |
148 |
18
|
Fenderson BA, Andrews PW, Nudelman E, Clausen H, Hakomori S. Glycolipid core structure switching from globo- to lacto- and ganglio-series during retinoic acid-induced differentiation of TERA-2-derived human embryonal carcinoma cells. Dev Biol 1987; 122:21-34. [PMID: 3297853 DOI: 10.1016/0012-1606(87)90328-9] [Citation(s) in RCA: 145] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We have analyzed the glycolipid markers of a recently cloned human embryonal carcinoma (EC) cell line, NTERA-2, which differentiates extensively into a variety of somatic cell types when exposed to retinoic acid. These tumor cells provide a model system that can be used to study the ontogeny of glycolipid diversity during human embryonic development. Glycolipid antigens were identified by cell surface immunofluorescence and thin-layer chromatography immunostaining using a comprehensive set of anticarbohydrate monoclonal antibodies. Undifferentiated NTERA-2 cells were found to express predominantly globo-series glycolipids, including Gb3, Gb5 (IV3GalGb4), globo-ganglioside (IV3NeuAc alpha 2----3GalGb4), globo-H (IV3Fuc alpha 1----2GalGb4), and globo-A (IV3GalNAc alpha 1----3[Fuc alpha 1----2]GalGb4). When NTERA-2 cells were induced to differentiate by culturing in the presence of 10(-5) M retinoic acid, a remarkable shift of cellular glycolipids from globo-series to lacto- and ganglio-series was observed: Globo-series structures declined, particularly during the period 7-20 days after first exposure to retinoic acid, while lacto-series structures, including fucosyl alpha 1----3 type 2 chain (Lex) and sialosyl type 2 chain, and ganglio-series structures, including GM3, GD3, 9-O-acetyl-GD3, GM2, GD2, and GT3, increased. The presence of globo-A and globo-H as the major ABH blood group antigens in undifferentiated NTERA-2 cells suggests that globo-series blood group antigens are embryonic antigens, synthesis of which switches to lacto-series during human development. Two-color immunofluorescence analysis indicated preferential expression of several ganglio- and lacto-series antigens on different subsets of differentiated cells and permitted the relationship of these subsets to the development of neurons in NTERA-2 cultures to be determined. The results suggest that glycosyltransferase, particularly those involved in controlling glycoconjugate core structure assembly, are key enzymes regulated during the differentiation of human EC cells and, by implication, during human embryogenesis.
Collapse
|
|
38 |
145 |
19
|
Reis CA, David L, Nielsen PA, Clausen H, Mirgorodskaya K, Roepstorff P, Sobrinho-Simões M. Immunohistochemical study of MUC5AC expression in human gastric carcinomas using a novel monoclonal antibody. Int J Cancer 1997; 74:112-21. [PMID: 9036879 DOI: 10.1002/(sici)1097-0215(19970220)74:1<112::aid-ijc19>3.0.co;2-h] [Citation(s) in RCA: 143] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In order to investigate the expression of MUC5AC mucin in normal gastric mucosa and gastric carcinomas, we produced 3 monoclonal antibodies (MAbs) using a MUC5AC synthetic peptide. The immunohistochemical study was performed using one of these MAbs (CLH2) which reacted with the different designs of peptides based on the MUC5AC tandem repeat and with native and deglycosylated mucin extracted from gastric tissues. CLH2 immunoreactivity was restricted to foveolar and mucopeptic neck cells in normal gastric mucosa. No reactivity was observed in type-I intestinal metaplasia. Out of 66 gastric carcinomas, 42 (63.6%) expressed MUC5AC. Most diffuse carcinomas were positive (83.3%), whereas only 59.3% of intestinal and 40.0% of atypical carcinomas expressed MUC5AC (p < 0.05). Gastric carcinomas with mixed pattern showed immunoreactivity in diffuse areas and decreased immunoreactivity in intestinal areas. Every early gastric carcinoma expressed MUC5AC, in contrast to 58.6% of advanced carcinomas (p < 0.05). A trend toward decreased immunoreactivity was observed in deep areas of advanced carcinomas in comparison with the respective superficial areas. Taking together the specific staining of foveolar and mucopeptic neck cells and the absence of immunoreactivity in intestinal metaplasia, we conclude that MUC5AC expression may be used as a marker of gastric differentiation. This assumption is further supported by the finding of MUC5AC immunoreactivity in most diffuse carcinomas, which usually display morphologic and histochemical signs of gastric differentiation. The expression of MUC5AC in early gastric carcinomas, regardless of their histologic type, suggests that all gastric carcinomas retain at least some cells with a gastric phenotype during the first steps of neoplastic development.
Collapse
|
|
28 |
143 |
20
|
Yamamoto F, Marken J, Tsuji T, White T, Clausen H, Hakomori S. Cloning and characterization of DNA complementary to human UDP-GalNAc: Fuc alpha 1----2Gal alpha 1----3GalNAc transferase (histo-blood group A transferase) mRNA. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)40170-1] [Citation(s) in RCA: 140] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
|
35 |
140 |
21
|
Dalziel M, Whitehouse C, McFarlane I, Brockhausen I, Gschmeissner S, Schwientek T, Clausen H, Burchell JM, Taylor-Papadimitriou J. The relative activities of the C2GnT1 and ST3Gal-I glycosyltransferases determine O-glycan structure and expression of a tumor-associated epitope on MUC1. J Biol Chem 2001; 276:11007-15. [PMID: 11118434 DOI: 10.1074/jbc.m006523200] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
In breast cancer, the O-glycans added to the MUC1 mucin are core 1- rather than core 2-based. We have analyzed whether competition by the glycosyltransferase, ST3Gal-I, which transfers sialic acid to galactose in the core 1 substrate, is key to this switch in MUC1 glycosylation that results in the expression of the cancer-associated SM3 epitope. Of the three enzymes known to convert core 1 to core 2, by the addition of GlcNAc to GalNAc in core1 C2GnT1 is the dominant enzyme expressed in normal breast tissue. Expression of C2GnT1 is low or absent in around 50% of breast cancers, whereas expression of ST3Gal-I is consistently increased. Mapping of ST3Gal-I and C2GnT1 within the Golgi pathway showed some overlap. To examine functional competition, the enzymes were overexpressed in T47D cells, which normally make core 1-based structures, have no detectable C2GnT1 activity and express the SM3 epitope. Overexpression of C2GnT1 resulted in loss of binding of SM3 to MUC1, accompanied by a decrease in the GalNAc/GlcNAc ratio, indicative of a switch to core 2 structures. Transfection of a C2GnT1 expressing line with ST3Gal-I restored SM3 binding and reduced GlcNAc incorporation into MUC1 O-glycans. Thus, even when C2GnT1 is expressed, the O-glycans added to MUC1 become core 1-dominated structures, provided expression of ST3Gal-I is increased as it is in breast cancer.
Collapse
|
|
24 |
140 |
22
|
Hannibal J, Mikkelsen JD, Clausen H, Holst JJ, Wulff BS, Fahrenkrug J. Gene expression of pituitary adenylate cyclase activating polypeptide (PACAP) in the rat hypothalamus. REGULATORY PEPTIDES 1995; 55:133-48. [PMID: 7754101 DOI: 10.1016/0167-0115(94)00099-j] [Citation(s) in RCA: 138] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP) isolated from ovine hypothalamus is considered to be a member of the vasoactive intestinal peptide/glucagon/secretin/growth hormone-releasing hormone family of peptides. Two forms of PACAP, PACAP38 and PACAP27, have been demonstrated in the rat hypothalamus. The PACAP precursor contains another peptide called PACAP-related peptide (PRP), but so far no information on this peptide in tissue exists. We have developed three radioimmunoassays specific for PACAP38, PACAP27 and PRP and demonstrate that all three preproPACAP peptides are expressed in the rat hypothalamus, the PACAP38/PACAP27 ratio being around 60 and the PACAP38/PRP ratio being around 10. HPLC analysis of hypothalamic extract showed that PACAP38 and PACAP27 are found in only one form corresponding to the respective synthetic peptides, whereas PRP eluted in two peaks, the predominant form corresponding to synthetic PRP1-29. The cellular distribution of PACAP38, PACAP27, and PRP and corresponding mRNA in the hypothalamus was determined with immunohistochemistry and in situ hybridization histochemistry. PACAP- and PRP-immunoreactive neuronal perikarya were observed in the medial parvocellular part of the paraventricular nucleus (PVN) in colchicine pretreated rats. Some cell bodies of magnocellular variety were found in the PVN. PACAP mRNA containing cells were observed in moderate numbers in the same parts of the paraventricular nucleus. PACAP- and PRP immunoreactive fibres and varicosities were distributed in the PVN and in the periventricular nucleus. These data show that PACAP38, PACAP27 and PRP are expressed in the parvocellular part of the PVN, implying roles as hypothalamic regulatory peptides.
Collapse
|
|
30 |
138 |
23
|
Burchell J, Poulsom R, Hanby A, Whitehouse C, Cooper L, Clausen H, Miles D, Taylor-Papadimitriou J. An alpha2,3 sialyltransferase (ST3Gal I) is elevated in primary breast carcinomas. Glycobiology 1999; 9:1307-11. [PMID: 10561455 DOI: 10.1093/glycob/9.12.1307] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The MUC1 mucin is expressed on the luminal surface of most simple epithelial cells but in carcinomas, especially those of the breast and ovary, MUC1 is upregulated and aberrantly glycosylated. MUC1 contains a large amount of O-linked glycans which, in the mucin expressed by normal mammary epithelial cells, consist mainly of core 2 based structures carrying polylactosamine chains. However, the mucin expressed by breast carcinomas has shorter side-chains, often consisting of sialylated core 1 (Galbeta1-3GalNAc). in situ hybridization of primary breast tissue showed that a sialyltransferase (ST3Gal I), responsible for adding sialic acid to core 1 thereby terminating chain extension, is elevated in primary breast carcinomas when compared to normal or benign tissue. Furthermore, the level of mRNA expression encoding ST3Gal I is correlated to the intensity of staining seen with the antibody SM3, which specifically recognises underglycosylated, tumour associated MUC1. Thus, the aberrant glycosylation of MUC1 seen in breast carcinomas appears to be due, at least in part, to the elevation of ST3Gal I.
Collapse
|
|
26 |
138 |
24
|
White JWC, Barlow LK, Fisher D, Grootes P, Jouzel J, Johnsen SJ, Stuiver M, Clausen H. The climate signal in the stable isotopes of snow from Summit, Greenland: Results of comparisons with modern climate observations. ACTA ACUST UNITED AC 1997. [DOI: 10.1029/97jc00162] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
|
28 |
127 |
25
|
Hassan H, Reis CA, Bennett EP, Mirgorodskaya E, Roepstorff P, Hollingsworth MA, Burchell J, Taylor-Papadimitriou J, Clausen H. The lectin domain of UDP-N-acetyl-D-galactosamine: polypeptide N-acetylgalactosaminyltransferase-T4 directs its glycopeptide specificities. J Biol Chem 2000; 275:38197-205. [PMID: 10984485 DOI: 10.1074/jbc.m005783200] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The initiation step of mucin-type O-glycosylation is controlled by a large family of homologous UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferases (GalNAc-transferases). Differences in kinetic properties, substrate specificities, and expression patterns of these isoenzymes provide for differential regulation of O-glycan attachment sites and density. Recently, it has emerged that some GalNAc-transferase isoforms in vitro selectively function with partially GalNAc O-glycosylated acceptor peptides rather than with the corresponding unglycosylated peptides. O-Glycan attachment to selected sites, most notably two sites in the MUC1 tandem repeat, is entirely dependent on the glycosylation-dependent function of GalNAc-T4. Here we present data that a putative lectin domain found in the C terminus of GalNAc-T4 functions as a GalNAc lectin and confers its glycopeptide specificity. A single amino acid substitution in the lectin domain of a secreted form of GalNAc-T4 selectively blocked GalNAc-glycopeptide activity, while the general activity to peptides exerted by this enzyme was unaffected. Furthermore, the GalNAc-glycopeptide activity of wild-type secreted GalNAc-T4 was selectively inhibited by free GalNAc, while the activity with peptides was unaffected.
Collapse
|
|
25 |
125 |