1
|
Abbott BP, Abbott R, Abbott TD, Abernathy MR, Acernese F, Ackley K, Adams C, Adams T, Addesso P, Adhikari RX, Adya VB, Affeldt C, Agathos M, Agatsuma K, Aggarwal N, Aguiar OD, Aiello L, Ain A, Ajith P, Allen B, Allocca A, Altin PA, Anderson SB, Anderson WG, Arai K, Arain MA, Araya MC, Arceneaux CC, Areeda JS, Arnaud N, Arun KG, Ascenzi S, Ashton G, Ast M, Aston SM, Astone P, Aufmuth P, Aulbert C, Babak S, Bacon P, Bader MKM, Baker PT, Baldaccini F, Ballardin G, Ballmer SW, Barayoga JC, Barclay SE, Barish BC, Barker D, Barone F, Barr B, Barsotti L, Barsuglia M, Barta D, Bartlett J, Barton MA, Bartos I, Bassiri R, Basti A, Batch JC, Baune C, Bavigadda V, Bazzan M, Behnke B, Bejger M, Belczynski C, Bell AS, Bell CJ, Berger BK, Bergman J, Bergmann G, Berry CPL, Bersanetti D, Bertolini A, Betzwieser J, Bhagwat S, Bhandare R, Bilenko IA, Billingsley G, Birch J, Birney R, Birnholtz O, Biscans S, Bisht A, Bitossi M, Biwer C, Bizouard MA, Blackburn JK, Blair CD, Blair DG, Blair RM, Bloemen S, Bock O, Bodiya TP, Boer M, Bogaert G, Bogan C, Bohe A, Bojtos P, Bond C, et alAbbott BP, Abbott R, Abbott TD, Abernathy MR, Acernese F, Ackley K, Adams C, Adams T, Addesso P, Adhikari RX, Adya VB, Affeldt C, Agathos M, Agatsuma K, Aggarwal N, Aguiar OD, Aiello L, Ain A, Ajith P, Allen B, Allocca A, Altin PA, Anderson SB, Anderson WG, Arai K, Arain MA, Araya MC, Arceneaux CC, Areeda JS, Arnaud N, Arun KG, Ascenzi S, Ashton G, Ast M, Aston SM, Astone P, Aufmuth P, Aulbert C, Babak S, Bacon P, Bader MKM, Baker PT, Baldaccini F, Ballardin G, Ballmer SW, Barayoga JC, Barclay SE, Barish BC, Barker D, Barone F, Barr B, Barsotti L, Barsuglia M, Barta D, Bartlett J, Barton MA, Bartos I, Bassiri R, Basti A, Batch JC, Baune C, Bavigadda V, Bazzan M, Behnke B, Bejger M, Belczynski C, Bell AS, Bell CJ, Berger BK, Bergman J, Bergmann G, Berry CPL, Bersanetti D, Bertolini A, Betzwieser J, Bhagwat S, Bhandare R, Bilenko IA, Billingsley G, Birch J, Birney R, Birnholtz O, Biscans S, Bisht A, Bitossi M, Biwer C, Bizouard MA, Blackburn JK, Blair CD, Blair DG, Blair RM, Bloemen S, Bock O, Bodiya TP, Boer M, Bogaert G, Bogan C, Bohe A, Bojtos P, Bond C, Bondu F, Bonnand R, Boom BA, Bork R, Boschi V, Bose S, Bouffanais Y, Bozzi A, Bradaschia C, Brady PR, Braginsky VB, Branchesi M, Brau JE, Briant T, Brillet A, Brinkmann M, Brisson V, Brockill P, Brooks AF, Brown DA, Brown DD, Brown NM, Buchanan CC, Buikema A, Bulik T, Bulten HJ, Buonanno A, Buskulic D, Buy C, Byer RL, Cabero M, Cadonati L, Cagnoli G, Cahillane C, Calderón Bustillo J, Callister T, Calloni E, Camp JB, Cannon KC, Cao J, Capano CD, Capocasa E, Carbognani F, Caride S, Casanueva Diaz J, Casentini C, Caudill S, Cavaglià M, Cavalier F, Cavalieri R, Cella G, Cepeda CB, Cerboni Baiardi L, Cerretani G, Cesarini E, Chakraborty R, Chalermsongsak T, Chamberlin SJ, Chan M, Chao S, Charlton P, Chassande-Mottin E, Chen HY, Chen Y, Cheng C, Chincarini A, Chiummo A, Cho HS, Cho M, Chow JH, Christensen N, Chu Q, Chua S, Chung S, Ciani G, Clara F, Clark JA, Cleva F, Coccia E, Cohadon PF, Colla A, Collette CG, Cominsky L, Constancio M, Conte A, Conti L, Cook D, Corbitt TR, Cornish N, Corsi A, Cortese S, Costa CA, Coughlin MW, Coughlin SB, Coulon JP, Countryman ST, Couvares P, Cowan EE, Coward DM, Cowart MJ, Coyne DC, Coyne R, Craig K, Creighton JDE, Creighton TD, Cripe J, Crowder SG, Cruise AM, Cumming A, Cunningham L, Cuoco E, Dal Canton T, Danilishin SL, D'Antonio S, Danzmann K, Darman NS, Da Silva Costa CF, Dattilo V, Dave I, Daveloza HP, Davier M, Davies GS, Daw EJ, Day R, De S, DeBra D, Debreczeni G, Degallaix J, De Laurentis M, Deléglise S, Del Pozzo W, Denker T, Dent T, Dereli H, Dergachev V, DeRosa RT, De Rosa R, DeSalvo R, Dhurandhar S, Díaz MC, Di Fiore L, Di Giovanni M, Di Lieto A, Di Pace S, Di Palma I, Di Virgilio A, Dojcinoski G, Dolique V, Donovan F, Dooley KL, Doravari S, Douglas R, Downes TP, Drago M, Drever RWP, Driggers JC, Du Z, Ducrot M, Dwyer SE, Edo TB, Edwards MC, Effler A, Eggenstein HB, Ehrens P, Eichholz J, Eikenberry SS, Engels W, Essick RC, Etzel T, Evans M, Evans TM, Everett R, Factourovich M, Fafone V, Fair H, Fairhurst S, Fan X, Fang Q, Farinon S, Farr B, Farr WM, Favata M, Fays M, Fehrmann H, Fejer MM, Feldbaum D, Ferrante I, Ferreira EC, Ferrini F, Fidecaro F, Finn LS, Fiori I, Fiorucci D, Fisher RP, Flaminio R, Fletcher M, Fong H, Fournier JD, Franco S, Frasca S, Frasconi F, Frede M, Frei Z, Freise A, Frey R, Frey V, Fricke TT, Fritschel P, Frolov VV, Fulda P, Fyffe M, Gabbard HAG, Gair JR, Gammaitoni L, Gaonkar SG, Garufi F, Gatto A, Gaur G, Gehrels N, Gemme G, Gendre B, Genin E, Gennai A, George J, Gergely L, Germain V, Ghosh A, Ghosh A, Ghosh S, Giaime JA, Giardina KD, Giazotto A, Gill K, Glaefke A, Gleason JR, Goetz E, Goetz R, Gondan L, González G, Gonzalez Castro JM, Gopakumar A, Gordon NA, Gorodetsky ML, Gossan SE, Gosselin M, Gouaty R, Graef C, Graff PB, Granata M, Grant A, Gras S, Gray C, Greco G, Green AC, Greenhalgh RJS, Groot P, Grote H, Grunewald S, Guidi GM, Guo X, Gupta A, Gupta MK, Gushwa KE, Gustafson EK, Gustafson R, Hacker JJ, Hall BR, Hall ED, Hammond G, Haney M, Hanke MM, Hanks J, Hanna C, Hannam MD, Hanson J, Hardwick T, Harms J, Harry GM, Harry IW, Hart MJ, Hartman MT, Haster CJ, Haughian K, Healy J, Heefner J, Heidmann A, Heintze MC, Heinzel G, Heitmann H, Hello P, Hemming G, Hendry M, Heng IS, Hennig J, Heptonstall AW, Heurs M, Hild S, Hoak D, Hodge KA, Hofman D, Hollitt SE, Holt K, Holz DE, Hopkins P, Hosken DJ, Hough J, Houston EA, Howell EJ, Hu YM, Huang S, Huerta EA, Huet D, Hughey B, Husa S, Huttner SH, Huynh-Dinh T, Idrisy A, Indik N, Ingram DR, Inta R, Isa HN, Isac JM, Isi M, Islas G, Isogai T, Iyer BR, Izumi K, Jacobson MB, Jacqmin T, Jang H, Jani K, Jaranowski P, Jawahar S, Jiménez-Forteza F, Johnson WW, Johnson-McDaniel NK, Jones DI, Jones R, Jonker RJG, Ju L, Haris K, Kalaghatgi CV, Kalogera V, Kandhasamy S, Kang G, Kanner JB, Karki S, Kasprzack M, Katsavounidis E, Katzman W, Kaufer S, Kaur T, Kawabe K, Kawazoe F, Kéfélian F, Kehl MS, Keitel D, Kelley DB, Kells W, Kennedy R, Keppel DG, Key JS, Khalaidovski A, Khalili FY, Khan I, Khan S, Khan Z, Khazanov EA, Kijbunchoo N, Kim C, Kim J, Kim K, Kim NG, Kim N, Kim YM, King EJ, King PJ, Kinzel DL, Kissel JS, Kleybolte L, Klimenko S, Koehlenbeck SM, Kokeyama K, Koley S, Kondrashov V, Kontos A, Koranda S, Korobko M, Korth WZ, Kowalska I, Kozak DB, Kringel V, Krishnan B, Królak A, Krueger C, Kuehn G, Kumar P, Kumar R, Kuo L, Kutynia A, Kwee P, Lackey BD, Landry M, Lange J, Lantz B, Lasky PD, Lazzarini A, Lazzaro C, Leaci P, Leavey S, Lebigot EO, Lee CH, Lee HK, Lee HM, Lee K, Lenon A, Leonardi M, Leong JR, Leroy N, Letendre N, Levin Y, Levine BM, Li TGF, Libson A, Littenberg TB, Lockerbie NA, Logue J, Lombardi AL, London LT, Lord JE, Lorenzini M, Loriette V, Lormand M, Losurdo G, Lough JD, Lousto CO, Lovelace G, Lück H, Lundgren AP, Luo J, Lynch R, Ma Y, MacDonald T, Machenschalk B, MacInnis M, Macleod DM, Magaña-Sandoval F, Magee RM, Mageswaran M, Majorana E, Maksimovic I, Malvezzi V, Man N, Mandel I, Mandic V, Mangano V, Mansell GL, Manske M, Mantovani M, Marchesoni F, Marion F, Márka S, Márka Z, Markosyan AS, Maros E, Martelli F, Martellini L, Martin IW, Martin RM, Martynov DV, Marx JN, Mason K, Masserot A, Massinger TJ, Masso-Reid M, Matichard F, Matone L, Mavalvala N, Mazumder N, Mazzolo G, McCarthy R, McClelland DE, McCormick S, McGuire SC, McIntyre G, McIver J, McManus DJ, McWilliams ST, Meacher D, Meadors GD, Meidam J, Melatos A, Mendell G, Mendoza-Gandara D, Mercer RA, Merilh E, Merzougui M, Meshkov S, Messenger C, Messick C, Meyers PM, Mezzani F, Miao H, Michel C, Middleton H, Mikhailov EE, Milano L, Miller J, Millhouse M, Minenkov Y, Ming J, Mirshekari S, Mishra C, Mitra S, Mitrofanov VP, Mitselmakher G, Mittleman R, Moggi A, Mohan M, Mohapatra SRP, Montani M, Moore BC, Moore CJ, Moraru D, Moreno G, Morriss SR, Mossavi K, Mours B, Mow-Lowry CM, Mueller CL, Mueller G, Muir AW, Mukherjee A, Mukherjee D, Mukherjee S, Mukund N, Mullavey A, Munch J, Murphy DJ, Murray PG, Mytidis A, Nardecchia I, Naticchioni L, Nayak RK, Necula V, Nedkova K, Nelemans G, Neri M, Neunzert A, Newton G, Nguyen TT, Nielsen AB, Nissanke S, Nitz A, Nocera F, Nolting D, Normandin MEN, Nuttall LK, Oberling J, Ochsner E, O'Dell J, Oelker E, Ogin GH, Oh JJ, Oh SH, Ohme F, Oliver M, Oppermann P, Oram RJ, O'Reilly B, O'Shaughnessy R, Ott CD, Ottaway DJ, Ottens RS, Overmier H, Owen BJ, Pai A, Pai SA, Palamos JR, Palashov O, Palomba C, Pal-Singh A, Pan H, Pan Y, Pankow C, Pannarale F, Pant BC, Paoletti F, Paoli A, Papa MA, Paris HR, Parker W, Pascucci D, Pasqualetti A, Passaquieti R, Passuello D, Patricelli B, Patrick Z, Pearlstone BL, Pedraza M, Pedurand R, Pekowsky L, Pele A, Penn S, Perreca A, Pfeiffer HP, Phelps M, Piccinni O, Pichot M, Pickenpack M, Piergiovanni F, Pierro V, Pillant G, Pinard L, Pinto IM, Pitkin M, Poeld JH, Poggiani R, Popolizio P, Post A, Powell J, Prasad J, Predoi V, Premachandra SS, Prestegard T, Price LR, Prijatelj M, Principe M, Privitera S, Prix R, Prodi GA, Prokhorov L, Puncken O, Punturo M, Puppo P, Pürrer M, Qi H, Qin J, Quetschke V, Quintero EA, Quitzow-James R, Raab FJ, Rabeling DS, Radkins H, Raffai P, Raja S, Rakhmanov M, Ramet CR, Rapagnani P, Raymond V, Razzano M, Re V, Read J, Reed CM, Regimbau T, Rei L, Reid S, Reitze DH, Rew H, Reyes SD, Ricci F, Riles K, Robertson NA, Robie R, Robinet F, Rocchi A, Rolland L, Rollins JG, Roma VJ, Romano JD, Romano R, Romanov G, Romie JH, Rosińska D, Rowan S, Rüdiger A, Ruggi P, Ryan K, Sachdev S, Sadecki T, Sadeghian L, Salconi L, Saleem M, Salemi F, Samajdar A, Sammut L, Sampson LM, Sanchez EJ, Sandberg V, Sandeen B, Sanders GH, Sanders JR, Sassolas B, Sathyaprakash BS, Saulson PR, Sauter O, Savage RL, Sawadsky A, Schale P, Schilling R, Schmidt J, Schmidt P, Schnabel R, Schofield RMS, Schönbeck A, Schreiber E, Schuette D, Schutz BF, Scott J, Scott SM, Sellers D, Sengupta AS, Sentenac D, Sequino V, Sergeev A, Serna G, Setyawati Y, Sevigny A, Shaddock DA, Shaffer T, Shah S, Shahriar MS, Shaltev M, Shao Z, Shapiro B, Shawhan P, Sheperd A, Shoemaker DH, Shoemaker DM, Siellez K, Siemens X, Sigg D, Silva AD, Simakov D, Singer A, Singer LP, Singh A, Singh R, Singhal A, Sintes AM, Slagmolen BJJ, Smith JR, Smith MR, Smith ND, Smith RJE, Son EJ, Sorazu B, Sorrentino F, Souradeep T, Srivastava AK, Staley A, Steinke M, Steinlechner J, Steinlechner S, Steinmeyer D, Stephens BC, Stevenson SP, Stone R, Strain KA, Straniero N, Stratta G, Strauss NA, Strigin S, Sturani R, Stuver AL, Summerscales TZ, Sun L, Sutton PJ, Swinkels BL, Szczepańczyk MJ, Tacca M, Talukder D, Tanner DB, Tápai M, Tarabrin SP, Taracchini A, Taylor R, Theeg T, Thirugnanasambandam MP, Thomas EG, Thomas M, Thomas P, Thorne KA, Thorne KS, Thrane E, Tiwari S, Tiwari V, Tokmakov KV, Tomlinson C, Tonelli M, Torres CV, Torrie CI, Töyrä D, Travasso F, Traylor G, Trifirò D, Tringali MC, Trozzo L, Tse M, Turconi M, Tuyenbayev D, Ugolini D, Unnikrishnan CS, Urban AL, Usman SA, Vahlbruch H, Vajente G, Valdes G, Vallisneri M, van Bakel N, van Beuzekom M, van den Brand JFJ, Van Den Broeck C, Vander-Hyde DC, van der Schaaf L, van Heijningen JV, van Veggel AA, Vardaro M, Vass S, Vasúth M, Vaulin R, Vecchio A, Vedovato G, Veitch J, Veitch PJ, Venkateswara K, Verkindt D, Vetrano F, Viceré A, Vinciguerra S, Vine DJ, Vinet JY, Vitale S, Vo T, Vocca H, Vorvick C, Voss D, Vousden WD, Vyatchanin SP, Wade AR, Wade LE, Wade M, Waldman SJ, Walker M, Wallace L, Walsh S, Wang G, Wang H, Wang M, Wang X, Wang Y, Ward H, Ward RL, Warner J, Was M, Weaver B, Wei LW, Weinert M, Weinstein AJ, Weiss R, Welborn T, Wen L, Weßels P, Westphal T, Wette K, Whelan JT, Whitcomb SE, White DJ, Whiting BF, Wiesner K, Wilkinson C, Willems PA, Williams L, Williams RD, Williamson AR, Willis JL, Willke B, Wimmer MH, Winkelmann L, Winkler W, Wipf CC, Wiseman AG, Wittel H, Woan G, Worden J, Wright JL, Wu G, Yablon J, Yakushin I, Yam W, Yamamoto H, Yancey CC, Yap MJ, Yu H, Yvert M, Zadrożny A, Zangrando L, Zanolin M, Zendri JP, Zevin M, Zhang F, Zhang L, Zhang M, Zhang Y, Zhao C, Zhou M, Zhou Z, Zhu XJ, Zucker ME, Zuraw SE, Zweizig J. Observation of Gravitational Waves from a Binary Black Hole Merger. PHYSICAL REVIEW LETTERS 2016; 116:061102. [PMID: 26918975 DOI: 10.1103/physrevlett.116.061102] [Show More Authors] [Citation(s) in RCA: 1455] [Impact Index Per Article: 161.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Indexed: 05/04/2023]
Abstract
On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10(-21). It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ. The source lies at a luminosity distance of 410(-180)(+160) Mpc corresponding to a redshift z=0.09(-0.04)(+0.03). In the source frame, the initial black hole masses are 36(-4)(+5)M⊙ and 29(-4)(+4)M⊙, and the final black hole mass is 62(-4)(+4)M⊙, with 3.0(-0.5)(+0.5)M⊙c(2) radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.
Collapse
|
|
9 |
1455 |
2
|
Yu H, Rohan T. Role of the insulin-like growth factor family in cancer development and progression. J Natl Cancer Inst 2000; 92:1472-89. [PMID: 10995803 DOI: 10.1093/jnci/92.18.1472] [Citation(s) in RCA: 972] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The insulin-like growth factors (IGFs) are mitogens that play a pivotal role in regulating cell proliferation, differentiation, and apoptosis. The effects of IGFs are mediated through the IGF-I receptor, which is also involved in cell transformation induced by tumor virus proteins and oncogene products. Six IGF-binding proteins (IGFBPs) can inhibit or enhance the actions of IGFs. These opposing effects are determined by the structures of the binding proteins. The effects of IGFBPs on IGFs are regulated in part by IGFBP proteases. Laboratory studies have shown that IGFs exert strong mitogenic and antiapoptotic actions on various cancer cells. IGFs also act synergistically with other mitogenic growth factors and steroids and antagonize the effect of antiproliferative molecules on cancer growth. The role of IGFs in cancer is supported by epidemiologic studies, which have found that high levels of circulating IGF-I and low levels of IGFBP-3 are associated with increased risk of several common cancers, including those of the prostate, breast, colorectum, and lung. Evidence further suggests that certain lifestyles, such as one involving a high-energy diet, may increase IGF-I levels, a finding that is supported by animal experiments indicating that IGFs may abolish the inhibitory effect of energy restriction on cancer growth. Further investigation of the role of IGFs in linking high energy intake, increased cell proliferation, suppression of apoptosis, and increased cancer risk may provide new insights into the etiology of cancer and lead to new strategies for cancer prevention.
Collapse
|
Review |
25 |
972 |
3
|
Guan XM, Yu H, Palyha OC, McKee KK, Feighner SD, Sirinathsinghji DJ, Smith RG, Van der Ploeg LH, Howard AD. Distribution of mRNA encoding the growth hormone secretagogue receptor in brain and peripheral tissues. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1997; 48:23-9. [PMID: 9379845 DOI: 10.1016/s0169-328x(97)00071-5] [Citation(s) in RCA: 836] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Growth hormone release is under tight control by two hypothalamic hormones: growth hormone-releasing hormone and somatostatin. In addition, synthetic growth hormone secretagogues have also been shown to regulate growth hormone release through the growth hormone secretagogue receptor (GHS-R), suggesting the existence of an additional physiological regulator for growth hormone release. To understand the physiological role of the GHS-R in more detail, we mapped the expression of mRNA for the receptor by in situ hybridization and RNase protection assays using rat and human tissues. In the rat brain, the major signals were detected in multiple hypothalamic nuclei as well as in the pituitary gland. Intense signals were also observed in the dentate gyrus of the hippocampal formation. Other brain areas that displayed localized and discrete signals for the receptor include the CA2 and CA3 regions of the hippocampus, the substantia nigra, ventral tegmental area, and dorsal and median raphe nuclei. In resemblance to the results from rat brain, RNase protection assays using human tissues revealed specific signals in pituitary, hypothalamus and hippocampus. Moreover, a weak signal was noted in the pancreas. The demonstration of hypothalamic and pituitary localization of the GHS-R is consistent with its role in regulating growth hormone release. The expression of the receptor in other central and peripheral regions may implicate its involvement in additional as yet undefined physiological functions.
Collapse
|
|
28 |
836 |
4
|
Yu H, Chen JK, Feng S, Dalgarno DC, Brauer AW, Schreiber SL. Structural basis for the binding of proline-rich peptides to SH3 domains. Cell 1994; 76:933-45. [PMID: 7510218 DOI: 10.1016/0092-8674(94)90367-0] [Citation(s) in RCA: 801] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A common RXL motif was found in proline-rich ligands that were selected from a biased combinatorial peptide library on the basis of their ability to bind specifically to the SH3 domains from phosphatidylinositol 3-kinase (PI3K) or c-Src. The solution structure of the PI3K SH3 domain complexed to one of these ligands, RKLPPRPSK (RLP1), was determined. Structure-based mutations were introduced into the PI3K SH3 domain and the RLP1 ligand, and the influence of these mutations on binding was evaluated. We conclude that SH3 domains recognize proline-rich motifs possessing the left-handed type II polyproline (PPII) helix conformation. Two proline residues directly contact the receptor. Other prolines in the ligands appear to function as a molecular scaffold, promoting the formation of the PPII helix. Three nonproline residues consisting of combinations of arginine and leucine interact extensively with the SH3 domain and appear to confer ligand specificity.
Collapse
|
|
31 |
801 |
5
|
Trivedi P, Yu H, MacNeil DJ, Van der Ploeg LH, Guan XM. Distribution of orexin receptor mRNA in the rat brain. FEBS Lett 1998; 438:71-5. [PMID: 9821961 DOI: 10.1016/s0014-5793(98)01266-6] [Citation(s) in RCA: 766] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The expression pattern of mRNA encoding two orexin receptors (OX1R and OX2R) in the rat brain was examined. OX1R and OX2R exhibited marked differential distribution. Within the hypothalamus, OX1R mRNA is most abundant in the ventromedial hypothalamic nucleus whereas OX2R is predominantly expressed in the paraventricular nucleus. High levels of OX1R mRNA were also detected in tenia tecta, the hippocampal formation, dorsal raphe, and locus coeruleus. OX2R mRNA is mainly expressed in cerebral cortex, nucleus accumbens, subthalamic and paraventricular thalamic nuclei, anterior pretectal nucleus. The presence of orexin receptor mRNA in the hypothalamus is in support of its proposed role in feeding regulation. Broad central distribution of orexin receptors may indicate additional functions for orexins.
Collapse
|
|
27 |
766 |
6
|
Yu G, Nishimura M, Arawaka S, Levitan D, Zhang L, Tandon A, Song YQ, Rogaeva E, Chen F, Kawarai T, Supala A, Levesque L, Yu H, Yang DS, Holmes E, Milman P, Liang Y, Zhang DM, Xu DH, Sato C, Rogaev E, Smith M, Janus C, Zhang Y, Aebersold R, Farrer LS, Sorbi S, Bruni A, Fraser P, St George-Hyslop P. Nicastrin modulates presenilin-mediated notch/glp-1 signal transduction and betaAPP processing. Nature 2000; 407:48-54. [PMID: 10993067 DOI: 10.1038/35024009] [Citation(s) in RCA: 707] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nicastrin, a transmembrane glycoprotein, forms high molecular weight complexes with presenilin 1 and presenilin 2. Suppression of nicastrin expression in Caenorhabditis elegans embryos induces a subset of notch/glp-1 phenotypes similar to those induced by simultaneous null mutations in both presenilin homologues of C. elegans (sel-12 and hop-1). Nicastrin also binds carboxy-terminal derivatives of beta-amyloid precursor protein (betaAPP), and modulates the production of the amyloid beta-peptide (A beta) from these derivatives. Missense mutations in a conserved hydrophilic domain of nicastrin increase A beta42 and A beta40 peptide secretion. Deletions in this domain inhibit A beta production. Nicastrin and presenilins are therefore likely to be functional components of a multimeric complex necessary for the intramembranous proteolysis of proteins such as Notch/GLP-1 and betaAPP.
Collapse
|
|
25 |
707 |
7
|
Chen AS, Marsh DJ, Trumbauer ME, Frazier EG, Guan XM, Yu H, Rosenblum CI, Vongs A, Feng Y, Cao L, Metzger JM, Strack AM, Camacho RE, Mellin TN, Nunes CN, Min W, Fisher J, Gopal-Truter S, MacIntyre DE, Chen HY, Van der Ploeg LH. Inactivation of the mouse melanocortin-3 receptor results in increased fat mass and reduced lean body mass. Nat Genet 2000; 26:97-102. [PMID: 10973258 DOI: 10.1038/79254] [Citation(s) in RCA: 680] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Genetic and pharmacological studies have defined a role for the melanocortin-4 receptor (Mc4r) in the regulation of energy homeostasis. The physiological function of Mc3r, a melanocortin receptor expressed at high levels in the hypothalamus, has remained unknown. We evaluated the potential role of Mc3r in energy homeostasis by studying Mc3r-deficient (Mc3r(-/-)) mice and compared the functions of Mc3r and Mc4r in mice deficient for both genes. The 4-6-month Mc3r-/- mice have increased fat mass, reduced lean mass and higher feed efficiency than wild-type littermates, despite being hypophagic and maintaining normal metabolic rates. (Feed efficiency is the ratio of weight gain to food intake.) Consistent with increased fat mass, Mc3r(-/-) mice are hyperleptinaemic and male Mc3r(-/-) mice develop mild hyperinsulinaemia. Mc3r(-/-) mice did not have significantly altered corticosterone or total thyroxine (T4) levels. Mice lacking both Mc3r and Mc4r become significantly heavier than Mc4r(-/-) mice. We conclude that Mc3r and Mc4r serve non-redundant roles in the regulation of energy homeostasis.
Collapse
MESH Headings
- Adipose Tissue/metabolism
- Age Factors
- Animals
- Blotting, Southern
- Body Temperature
- Body Weight
- Calorimetry
- Corticosterone/biosynthesis
- Feeding Behavior
- Female
- Genotype
- Glucose/biosynthesis
- Humans
- Hyperinsulinism/genetics
- In Situ Hybridization
- Insulin/biosynthesis
- Leptin/biosynthesis
- Male
- Mice
- Mice, Knockout
- Models, Genetic
- Motor Activity
- Obesity/genetics
- Oligopeptides/pharmacology
- Phenotype
- Protein Isoforms
- Receptor, Melanocortin, Type 3
- Receptor, Melanocortin, Type 4
- Receptors, Corticotropin/chemistry
- Receptors, Corticotropin/genetics
- Receptors, Corticotropin/physiology
- Receptors, Peptide/genetics
- Receptors, Peptide/metabolism
- Recombination, Genetic
- Thyroxine/biosynthesis
- Time Factors
- Tissue Distribution
- alpha-MSH/analogs & derivatives
Collapse
|
|
25 |
680 |
8
|
Ito H, Tomooka T, Sakai N, Yu H, Higashino Y, Fujii K, Masuyama T, Kitabatake A, Minamino T. Lack of myocardial perfusion immediately after successful thrombolysis. A predictor of poor recovery of left ventricular function in anterior myocardial infarction. Circulation 1992; 85:1699-705. [PMID: 1572028 DOI: 10.1161/01.cir.85.5.1699] [Citation(s) in RCA: 666] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND We investigated myocardial perfusion dynamics after thrombolysis and its clinical implications. METHODS AND RESULTS We studied 39 patients with acute anterior myocardial infarction (AMI). Myocardial contrast echocardiography (MCE) was performed before and immediately after successful reflow with intracoronary injection of sonicated Ioxaglate. The average segmental score by two-dimensional echocardiography (graded 0, normal, to 3, akinetic/dyskinetic) and global ejection fraction (left ventricular ejection fraction, LVEF%) by left ventriculography were measured at 1 day and at 4 weeks after reflow. Hypokinesis in the infarct region was assessed by the centerline method and expressed in terms of standard deviations (regional wall motion [RWM]: SD/chord) of normal. Immediately after reflow, 30 of 39 patients (group A) showed significant contrast enhancement within the risk area. The other nine patients (23%, group B), however, showed the residual contrast defect in the risk area (myocardial no reflow). There were no significant differences in the elapsed time, angiographic collateral grade, and degree of residual stenosis between group A and group B. Before reflow, both groups exhibited similar levels of global and regional left ventricular function. Improvement in global (LVEF, average segmental score) and regional left ventricular function was greater in group A than in group B (average segmental score, 0.44 +/- 0.41 versus 0.97 +/- 0.36, p less than 0.01; LVEF, 56.4 +/- 13.4 versus 42.7 +/- 8.9, p less than 0.05; RWM, -1.87 +/- 0.85 versus -3.18 +/- 0.52, p less than 0.005). CONCLUSIONS MCE demonstrates that angiographically successful reflow cannot be used as an indicator of successful myocardial reperfusion in AMI patients. The residual contrast defect in the risk area demonstrated immediately after reflow is a predictor of poor functional recovery of the postischemic myocardium.
Collapse
|
|
33 |
666 |
9
|
Feng S, Chen JK, Yu H, Simon JA, Schreiber SL. Two binding orientations for peptides to the Src SH3 domain: development of a general model for SH3-ligand interactions. Science 1994; 266:1241-7. [PMID: 7526465 DOI: 10.1126/science.7526465] [Citation(s) in RCA: 645] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Solution structures of two Src homology 3 (SH3) domain-ligand complexes have been determined by nuclear magnetic resonance. Each complex consists of the SH3 domain and a nine-residue proline-rich peptide selected from a large library of ligands prepared by combinatorial synthesis. The bound ligands adopt a left-handed polyproline type II (PPII) helix, although the amino to carboxyl directionalities of their helices are opposite. The peptide orientation is determined by a salt bridge formed by the terminal arginine residues of the ligands and the conserved aspartate-99 of the SH3 domain. Residues at positions 3, 4, 6, and 7 of both peptides also intercalate into the ligand-binding site; however, the respective proline and nonproline residues show exchanged binding positions in the two complexes. These structural results led to a model for the interactions of SH3 domains with proline-rich peptides that can be used to predict critical residues in complexes of unknown structure. The model was used to identify correctly both the binding orientation and the contact and noncontact residues of a peptide derived from the nucleotide exchange factor Sos in association with the amino-terminal SH3 domain of the adaptor protein Grb2.
Collapse
|
|
31 |
645 |
10
|
Garcia R, Bowman TL, Niu G, Yu H, Minton S, Muro-Cacho CA, Cox CE, Falcone R, Fairclough R, Parsons S, Laudano A, Gazit A, Levitzki A, Kraker A, Jove R. Constitutive activation of Stat3 by the Src and JAK tyrosine kinases participates in growth regulation of human breast carcinoma cells. Oncogene 2001; 20:2499-513. [PMID: 11420660 DOI: 10.1038/sj.onc.1204349] [Citation(s) in RCA: 587] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2000] [Revised: 02/01/2001] [Accepted: 02/05/2001] [Indexed: 01/13/2023]
Abstract
Constitutive activation of signal transducer and activator of transcription (STAT) proteins has been detected in a wide variety of human primary tumor specimens and tumor cell lines including blood malignancies, head and neck cancer, and breast cancer. We have previously demonstrated a high frequency of Stat3 DNA-binding activity that is constitutively-induced by an unknown mechanism in human breast cancer cell lines possessing elevated EGF receptor (EGF-R) and c-Src kinase activities. Using tyrosine kinase selective inhibitors, we show here that Src and JAK family tyrosine kinases cooperate to mediate constitutive Stat3 activation in the absence of EGF stimulation in model human breast cancer cell lines. Inhibition of Src or JAKs results in dose-dependent suppression of Stat3 DNA-binding activity, which is accompanied by growth inhibition and induction of programmed cell death. In addition, transfection of a dominant-negative form of Stat3 leads to growth inhibition involving apoptosis of breast cancer cells. These results indicate that the biological effects of the Src and JAK tyrosine kinase inhibitors are at least partially mediated by blocking Stat3 signaling. While EGF-R kinase activity is not required for constitutive Stat3 activation in breast cancer cells, EGF stimulation further increases STAT DNA-binding activity, consistent with an important role for EGF-R in STAT signaling and malignant progression. Analysis of primary breast tumor specimens from patients with advanced disease revealed that the majority exhibit elevated STAT DNA-binding activity compared to adjacent non-tumor tissues. Our findings, taken together, suggest that tyrosine kinases transduce signals through Stat3 protein that contribute to the growth and survival of human breast cancer cells in culture and potentially in vivo.
Collapse
|
|
24 |
587 |
11
|
Rivera P, Seyler KL, Yu H, Schaibley JR, Yan J, Mandrus DG, Yao W, Xu X. Valley-polarized exciton dynamics in a 2D semiconductor heterostructure. Science 2016; 351:688-91. [DOI: 10.1126/science.aac7820] [Citation(s) in RCA: 501] [Impact Index Per Article: 55.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
|
9 |
501 |
12
|
Fang G, Yu H, Kirschner MW. The checkpoint protein MAD2 and the mitotic regulator CDC20 form a ternary complex with the anaphase-promoting complex to control anaphase initiation. Genes Dev 1998; 12:1871-83. [PMID: 9637688 PMCID: PMC316912 DOI: 10.1101/gad.12.12.1871] [Citation(s) in RCA: 465] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/1998] [Accepted: 04/17/1998] [Indexed: 11/25/2022]
Abstract
The spindle assembly checkpoint mechanism delays anaphase initiation until all chromosomes are aligned at the metaphase plate. Activation of the anaphase-promoting complex (APC) by binding of CDC20 and CDH1 is required for exit from mitosis, and APC has been implicated as a target for the checkpoint intervention. We show that the human checkpoint protein hMAD2 prevents activation of APC by forming a hMAD2-CDC20-APC complex. When injected into Xenopus embryos, hMAD2 arrests cells at mitosis with an inactive APC. The recombinant hMAD2 protein exists in two-folded states: a tetramer and a monomer. Both the tetramer and the monomer bind to CDC20, but only the tetramer inhibits activation of APC and blocks cell cycle progression. Thus, hMAD2 binding is not sufficient for inhibition, and a change in hMAD2 structure may play a role in transducing the checkpoint signal. There are at least three different forms of mitotic APC that can be detected in vivo: an inactive hMAD2-CDC20-APC ternary complex present at metaphase, a CDC20-APC binary complex active in degrading specific substrates at anaphase, and a CDH1-APC complex active later in mitosis and in G1. We conclude that the checkpoint-mediated cell cycle arrest involves hMAD2 receiving an upstream signal to inhibit activation of APC.
Collapse
|
research-article |
27 |
465 |
13
|
Zhang J, Wang X, Jia X, Li J, Hu K, Chen G, Wei J, Gong Z, Zhou C, Yu H, Yu M, Lei H, Cheng F, Zhang B, Xu Y, Wang G, Dong W. Risk factors for disease severity, unimprovement, and mortality in COVID-19 patients in Wuhan, China. Clin Microbiol Infect 2020; 26:767-772. [PMID: 32304745 PMCID: PMC7159868 DOI: 10.1016/j.cmi.2020.04.012] [Citation(s) in RCA: 405] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/07/2020] [Accepted: 04/12/2020] [Indexed: 01/08/2023]
Abstract
OBJECTIVE In December 2019, coronavirus disease (COVID-19) emerged in Wuhan. However, the characteristics and risk factors associated with disease severity, unimprovement and mortality are unclear and our objective is to throw some light on these. METHODS All consecutive patients diagnosed with COVID-19 admitted to the Renmin Hospital of Wuhan University from January 11 to February 6, 2020, were enrolled in this retrospective cohort study. RESULTS A total of 663 COVID-19 patients were included in this study. Among these, 247 (37.3%) had at least one kind of chronic disease; 0.5% of the patients (n = 3) were diagnosed with mild COVID-19, while 37.8% (251/663), 47.5% (315/663), and 14.2% (94/663) were in moderate, severe, and critical conditions, respectively. In our hospital, during follow-up 251 of 663 patients (37.9%) improved and 25 patients died, a mortality rate of 3.77%. Older patients (>60 years old) and those with chronic diseases were prone to have a severe to critical COVID-19 condition, to show unimprovement, and to die (p <0.001, <0.001). Multivariate logistic regression analysis identified being male (OR = 0.486, 95%CI 0.311-0.758; p 0.001), having a severe COVID-19 condition (OR = 0.129, 95%CI 0.082-0.201; p <0.001), expectoration (OR = 1.796, 95%CI 1.062-3.036; p 0.029), muscle ache (OR = 0.309, 95%CI 0.153-0.626; p 0.001), and decreased albumin (OR = 1.929, 95%CI 1.199-3.104; p 0.007) as being associated with unimprovement in COVID-19 patients. CONCLUSION Male sex, a severe COVID-19 condition, expectoration, muscle ache, and decreased albumin were independent risk factors which influence the improvement of COVID-19 patients.
Collapse
|
research-article |
5 |
405 |
14
|
Abbott BP, Abbott R, Abbott TD, Abernathy MR, Acernese F, Ackley K, Adams C, Adams T, Addesso P, Adhikari RX, Adya VB, Affeldt C, Agathos M, Agatsuma K, Aggarwal N, Aguiar OD, Aiello L, Ain A, Ajith P, Allen B, Allocca A, Altin PA, Anderson SB, Anderson WG, Arai K, Araya MC, Arceneaux CC, Areeda JS, Arnaud N, Arun KG, Ascenzi S, Ashton G, Ast M, Aston SM, Astone P, Aufmuth P, Aulbert C, Babak S, Bacon P, Bader MKM, Baker PT, Baldaccini F, Ballardin G, Ballmer SW, Barayoga JC, Barclay SE, Barish BC, Barker D, Barone F, Barr B, Barsotti L, Barsuglia M, Barta D, Bartlett J, Bartos I, Bassiri R, Basti A, Batch JC, Baune C, Bavigadda V, Bazzan M, Bejger M, Bell AS, Berger BK, Bergmann G, Berry CPL, Bersanetti D, Bertolini A, Betzwieser J, Bhagwat S, Bhandare R, Bilenko IA, Billingsley G, Birch J, Birney R, Birnholtz O, Biscans S, Bisht A, Bitossi M, Biwer C, Bizouard MA, Blackburn JK, Blair CD, Blair DG, Blair RM, Bloemen S, Bock O, Boer M, Bogaert G, Bogan C, Bohe A, Bond C, Bondu F, Bonnand R, Boom BA, Bork R, Boschi V, Bose S, Bouffanais Y, Bozzi A, et alAbbott BP, Abbott R, Abbott TD, Abernathy MR, Acernese F, Ackley K, Adams C, Adams T, Addesso P, Adhikari RX, Adya VB, Affeldt C, Agathos M, Agatsuma K, Aggarwal N, Aguiar OD, Aiello L, Ain A, Ajith P, Allen B, Allocca A, Altin PA, Anderson SB, Anderson WG, Arai K, Araya MC, Arceneaux CC, Areeda JS, Arnaud N, Arun KG, Ascenzi S, Ashton G, Ast M, Aston SM, Astone P, Aufmuth P, Aulbert C, Babak S, Bacon P, Bader MKM, Baker PT, Baldaccini F, Ballardin G, Ballmer SW, Barayoga JC, Barclay SE, Barish BC, Barker D, Barone F, Barr B, Barsotti L, Barsuglia M, Barta D, Bartlett J, Bartos I, Bassiri R, Basti A, Batch JC, Baune C, Bavigadda V, Bazzan M, Bejger M, Bell AS, Berger BK, Bergmann G, Berry CPL, Bersanetti D, Bertolini A, Betzwieser J, Bhagwat S, Bhandare R, Bilenko IA, Billingsley G, Birch J, Birney R, Birnholtz O, Biscans S, Bisht A, Bitossi M, Biwer C, Bizouard MA, Blackburn JK, Blair CD, Blair DG, Blair RM, Bloemen S, Bock O, Boer M, Bogaert G, Bogan C, Bohe A, Bond C, Bondu F, Bonnand R, Boom BA, Bork R, Boschi V, Bose S, Bouffanais Y, Bozzi A, Bradaschia C, Brady PR, Braginsky VB, Branchesi M, Brau JE, Briant T, Brillet A, Brinkmann M, Brisson V, Brockill P, Broida JE, Brooks AF, Brown DA, Brown DD, Brown NM, Brunett S, Buchanan CC, Buikema A, Bulik T, Bulten HJ, Buonanno A, Buskulic D, Buy C, Byer RL, Cabero M, Cadonati L, Cagnoli G, Cahillane C, Calderón Bustillo J, Callister T, Calloni E, Camp JB, Cannon KC, Cao J, Capano CD, Capocasa E, Carbognani F, Caride S, Casanueva Diaz J, Casentini C, Caudill S, Cavaglià M, Cavalier F, Cavalieri R, Cella G, Cepeda CB, Cerboni Baiardi L, Cerretani G, Cesarini E, Chamberlin SJ, Chan M, Chao S, Charlton P, Chassande-Mottin E, Cheeseboro BD, Chen HY, Chen Y, Cheng C, Chincarini A, Chiummo A, Cho HS, Cho M, Chow JH, Christensen N, Chu Q, Chua S, Chung S, Ciani G, Clara F, Clark JA, Cleva F, Coccia E, Cohadon PF, Colla A, Collette CG, Cominsky L, Constancio M, Conte A, Conti L, Cook D, Corbitt TR, Cornish N, Corsi A, Cortese S, Costa CA, Coughlin MW, Coughlin SB, Coulon JP, Countryman ST, Couvares P, Cowan EE, Coward DM, Cowart MJ, Coyne DC, Coyne R, Craig K, Creighton JDE, Cripe J, Crowder SG, Cumming A, Cunningham L, Cuoco E, Dal Canton T, Danilishin SL, D'Antonio S, Danzmann K, Darman NS, Dasgupta A, Da Silva Costa CF, Dattilo V, Dave I, Davier M, Davies GS, Daw EJ, Day R, De S, DeBra D, Debreczeni G, Degallaix J, De Laurentis M, Deléglise S, Del Pozzo W, Denker T, Dent T, Dergachev V, De Rosa R, DeRosa RT, DeSalvo R, Devine RC, Dhurandhar S, Díaz MC, Di Fiore L, Di Giovanni M, Di Girolamo T, Di Lieto A, Di Pace S, Di Palma I, Di Virgilio A, Dolique V, Donovan F, Dooley KL, Doravari S, Douglas R, Downes TP, Drago M, Drever RWP, Driggers JC, Ducrot M, Dwyer SE, Edo TB, Edwards MC, Effler A, Eggenstein HB, Ehrens P, Eichholz J, Eikenberry SS, Engels W, Essick RC, Etzel T, Evans M, Evans TM, Everett R, Factourovich M, Fafone V, Fair H, Fairhurst S, Fan X, Fang Q, Farinon S, Farr B, Farr WM, Favata M, Fays M, Fehrmann H, Fejer MM, Fenyvesi E, Ferrante I, Ferreira EC, Ferrini F, Fidecaro F, Fiori I, Fiorucci D, Fisher RP, Flaminio R, Fletcher M, Fong H, Fournier JD, Frasca S, Frasconi F, Frei Z, Freise A, Frey R, Frey V, Fritschel P, Frolov VV, Fulda P, Fyffe M, Gabbard HAG, Gair JR, Gammaitoni L, Gaonkar SG, Garufi F, Gaur G, Gehrels N, Gemme G, Geng P, Genin E, Gennai A, George J, Gergely L, Germain V, Ghosh A, Ghosh A, Ghosh S, Giaime JA, Giardina KD, Giazotto A, Gill K, Glaefke A, Goetz E, Goetz R, Gondan L, González G, Gonzalez Castro JM, Gopakumar A, Gordon NA, Gorodetsky ML, Gossan SE, Gosselin M, Gouaty R, Grado A, Graef C, Graff PB, Granata M, Grant A, Gras S, Gray C, Greco G, Green AC, Groot P, Grote H, Grunewald S, Guidi GM, Guo X, Gupta A, Gupta MK, Gushwa KE, Gustafson EK, Gustafson R, Hacker JJ, Hall BR, Hall ED, Hamilton H, Hammond G, Haney M, Hanke MM, Hanks J, Hanna C, Hannam MD, Hanson J, Hardwick T, Harms J, Harry GM, Harry IW, Hart MJ, Hartman MT, Haster CJ, Haughian K, Healy J, Heidmann A, Heintze MC, Heitmann H, Hello P, Hemming G, Hendry M, Heng IS, Hennig J, Henry J, Heptonstall AW, Heurs M, Hild S, Hoak D, Hofman D, Holt K, Holz DE, Hopkins P, Hough J, Houston EA, Howell EJ, Hu YM, Huang S, Huerta EA, Huet D, Hughey B, Husa S, Huttner SH, Huynh-Dinh T, Indik N, Ingram DR, Inta R, Isa HN, Isac JM, Isi M, Isogai T, Iyer BR, Izumi K, Jacqmin T, Jang H, Jani K, Jaranowski P, Jawahar S, Jian L, Jiménez-Forteza F, Johnson WW, Johnson-McDaniel NK, Jones DI, Jones R, Jonker RJG, Ju L, K H, Kalaghatgi CV, Kalogera V, Kandhasamy S, Kang G, Kanner JB, Kapadia SJ, Karki S, Karvinen KS, Kasprzack M, Katsavounidis E, Katzman W, Kaufer S, Kaur T, Kawabe K, Kéfélian F, Kehl MS, Keitel D, Kelley DB, Kells W, Kennedy R, Key JS, Khalili FY, Khan I, Khan S, Khan Z, Khazanov EA, Kijbunchoo N, Kim CW, Kim C, Kim J, Kim K, Kim N, Kim W, Kim YM, Kimbrell SJ, King EJ, King PJ, Kissel JS, Klein B, Kleybolte L, Klimenko S, Koehlenbeck SM, Koley S, Kondrashov V, Kontos A, Korobko M, Korth WZ, Kowalska I, Kozak DB, Kringel V, Krishnan B, Królak A, Krueger C, Kuehn G, Kumar P, Kumar R, Kuo L, Kutynia A, Lackey BD, Landry M, Lange J, Lantz B, Lasky PD, Laxen M, Lazzarini A, Lazzaro C, Leaci P, Leavey S, Lebigot EO, Lee CH, Lee HK, Lee HM, Lee K, Lenon A, Leonardi M, Leong JR, Leroy N, Letendre N, Levin Y, Lewis JB, Li TGF, Libson A, Littenberg TB, Lockerbie NA, Lombardi AL, London LT, Lord JE, Lorenzini M, Loriette V, Lormand M, Losurdo G, Lough JD, Lousto CO, Lück H, Lundgren AP, Lynch R, Ma Y, Machenschalk B, MacInnis M, Macleod DM, Magaña-Sandoval F, Magaña Zertuche L, Magee RM, Majorana E, Maksimovic I, Malvezzi V, Man N, Mandel I, Mandic V, Mangano V, Mansell GL, Manske M, Mantovani M, Marchesoni F, Marion F, Márka S, Márka Z, Markosyan AS, Maros E, Martelli F, Martellini L, Martin IW, Martynov DV, Marx JN, Mason K, Masserot A, Massinger TJ, Masso-Reid M, Mastrogiovanni S, Matichard F, Matone L, Mavalvala N, Mazumder N, McCarthy R, McClelland DE, McCormick S, McGuire SC, McIntyre G, McIver J, McManus DJ, McRae T, McWilliams ST, Meacher D, Meadors GD, Meidam J, Melatos A, Mendell G, Mercer RA, Merilh EL, Merzougui M, Meshkov S, Messenger C, Messick C, Metzdorff R, Meyers PM, Mezzani F, Miao H, Michel C, Middleton H, Mikhailov EE, Milano L, Miller AL, Miller A, Miller BB, Miller J, Millhouse M, Minenkov Y, Ming J, Mirshekari S, Mishra C, Mitra S, Mitrofanov VP, Mitselmakher G, Mittleman R, Moggi A, Mohan M, Mohapatra SRP, Montani M, Moore BC, Moore CJ, Moraru D, Moreno G, Morriss SR, Mossavi K, Mours B, Mow-Lowry CM, Mueller G, Muir AW, Mukherjee A, Mukherjee D, Mukherjee S, Mukund N, Mullavey A, Munch J, Murphy DJ, Murray PG, Mytidis A, Nardecchia I, Naticchioni L, Nayak RK, Nedkova K, Nelemans G, Nelson TJN, Neri M, Neunzert A, Newton G, Nguyen TT, Nielsen AB, Nissanke S, Nitz A, Nocera F, Nolting D, Normandin MEN, Nuttall LK, Oberling J, Ochsner E, O'Dell J, Oelker E, Ogin GH, Oh JJ, Oh SH, Ohme F, Oliver M, Oppermann P, Oram RJ, O'Reilly B, O'Shaughnessy R, Ottaway DJ, Overmier H, Owen BJ, Pai A, Pai SA, Palamos JR, Palashov O, Palomba C, Pal-Singh A, Pan H, Pankow C, Pannarale F, Pant BC, Paoletti F, Paoli A, Papa MA, Paris HR, Parker W, Pascucci D, Pasqualetti A, Passaquieti R, Passuello D, Patricelli B, Patrick Z, Pearlstone BL, Pedraza M, Pedurand R, Pekowsky L, Pele A, Penn S, Perreca A, Perri LM, Pfeiffer HP, Phelps M, Piccinni OJ, Pichot M, Piergiovanni F, Pierro V, Pillant G, Pinard L, Pinto IM, Pitkin M, Poe M, Poggiani R, Popolizio P, Post A, Powell J, Prasad J, Predoi V, Prestegard T, Price LR, Prijatelj M, Principe M, Privitera S, Prix R, Prodi GA, Prokhorov L, Puncken O, Punturo M, Puppo P, Pürrer M, Qi H, Qin J, Qiu S, Quetschke V, Quintero EA, Quitzow-James R, Raab FJ, Rabeling DS, Radkins H, Raffai P, Raja S, Rajan C, Rakhmanov M, Rapagnani P, Raymond V, Razzano M, Re V, Read J, Reed CM, Regimbau T, Rei L, Reid S, Reitze DH, Rew H, Reyes SD, Ricci F, Riles K, Rizzo M, Robertson NA, Robie R, Robinet F, Rocchi A, Rolland L, Rollins JG, Roma VJ, Romano JD, Romano R, Romanov G, Romie JH, Rosińska D, Rowan S, Rüdiger A, Ruggi P, Ryan K, Sachdev S, Sadecki T, Sadeghian L, Sakellariadou M, Salconi L, Saleem M, Salemi F, Samajdar A, Sammut L, Sanchez EJ, Sandberg V, Sandeen B, Sanders JR, Sassolas B, Sathyaprakash BS, Saulson PR, Sauter OES, Savage RL, Sawadsky A, Schale P, Schilling R, Schmidt J, Schmidt P, Schnabel R, Schofield RMS, Schönbeck A, Schreiber E, Schuette D, Schutz BF, Scott J, Scott SM, Sellers D, Sengupta AS, Sentenac D, Sequino V, Sergeev A, Setyawati Y, Shaddock DA, Shaffer T, Shahriar MS, Shaltev M, Shapiro B, Shawhan P, Sheperd A, Shoemaker DH, Shoemaker DM, Siellez K, Siemens X, Sieniawska M, Sigg D, Silva AD, Singer A, Singer LP, Singh A, Singh R, Singhal A, Sintes AM, Slagmolen BJJ, Smith JR, Smith ND, Smith RJE, Son EJ, Sorazu B, Sorrentino F, Souradeep T, Srivastava AK, Staley A, Steinke M, Steinlechner J, Steinlechner S, Steinmeyer D, Stephens BC, Stevenson SP, Stone R, Strain KA, Straniero N, Stratta G, Strauss NA, Strigin S, Sturani R, Stuver AL, Summerscales TZ, Sun L, Sunil S, Sutton PJ, Swinkels BL, Szczepańczyk MJ, Tacca M, Talukder D, Tanner DB, Tápai M, Tarabrin SP, Taracchini A, Taylor R, Theeg T, Thirugnanasambandam MP, Thomas EG, Thomas M, Thomas P, Thorne KA, Thrane E, Tiwari S, Tiwari V, Tokmakov KV, Toland K, Tomlinson C, Tonelli M, Tornasi Z, Torres CV, Torrie CI, Töyrä D, Travasso F, Traylor G, Trifirò D, Tringali MC, Trozzo L, Tse M, Turconi M, Tuyenbayev D, Ugolini D, Unnikrishnan CS, Urban AL, Usman SA, Vahlbruch H, Vajente G, Valdes G, Vallisneri M, van Bakel N, van Beuzekom M, van den Brand JFJ, Van Den Broeck C, Vander-Hyde DC, van der Schaaf L, van Heijningen JV, van Veggel AA, Vardaro M, Vass S, Vasúth M, Vaulin R, Vecchio A, Vedovato G, Veitch J, Veitch PJ, Venkateswara K, Verkindt D, Vetrano F, Viceré A, Vinciguerra S, Vine DJ, Vinet JY, Vitale S, Vo T, Vocca H, Vorvick C, Voss DV, Vousden WD, Vyatchanin SP, Wade AR, Wade LE, Wade M, Walker M, Wallace L, Walsh S, Wang G, Wang H, Wang M, Wang X, Wang Y, Ward RL, Warner J, Was M, Weaver B, Wei LW, Weinert M, Weinstein AJ, Weiss R, Wen L, Weßels P, Westphal T, Wette K, Whelan JT, Whiting BF, Williams RD, Williamson AR, Willis JL, Willke B, Wimmer MH, Winkler W, Wipf CC, Wittel H, Woan G, Woehler J, Worden J, Wright JL, Wu DS, Wu G, Yablon J, Yam W, Yamamoto H, Yancey CC, Yu H, Yvert M, Zadrożny A, Zangrando L, Zanolin M, Zendri JP, Zevin M, Zhang L, Zhang M, Zhang Y, Zhao C, Zhou M, Zhou Z, Zhu XJ, Zucker ME, Zuraw SE, Zweizig J, Boyle M, Hemberger D, Kidder LE, Lovelace G, Ossokine S, Scheel M, Szilagyi B, Teukolsky S. GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence. PHYSICAL REVIEW LETTERS 2016; 116:241103. [PMID: 27367379 DOI: 10.1103/physrevlett.116.241103] [Show More Authors] [Citation(s) in RCA: 397] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Indexed: 05/21/2023]
Abstract
We report the observation of a gravitational-wave signal produced by the coalescence of two stellar-mass black holes. The signal, GW151226, was observed by the twin detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) on December 26, 2015 at 03:38:53 UTC. The signal was initially identified within 70 s by an online matched-filter search targeting binary coalescences. Subsequent off-line analyses recovered GW151226 with a network signal-to-noise ratio of 13 and a significance greater than 5σ. The signal persisted in the LIGO frequency band for approximately 1 s, increasing in frequency and amplitude over about 55 cycles from 35 to 450 Hz, and reached a peak gravitational strain of 3.4_{-0.9}^{+0.7}×10^{-22}. The inferred source-frame initial black hole masses are 14.2_{-3.7}^{+8.3}M_{⊙} and 7.5_{-2.3}^{+2.3}M_{⊙}, and the final black hole mass is 20.8_{-1.7}^{+6.1}M_{⊙}. We find that at least one of the component black holes has spin greater than 0.2. This source is located at a luminosity distance of 440_{-190}^{+180} Mpc corresponding to a redshift of 0.09_{-0.04}^{+0.03}. All uncertainties define a 90% credible interval. This second gravitational-wave observation provides improved constraints on stellar populations and on deviations from general relativity.
Collapse
|
|
9 |
397 |
15
|
Fang G, Yu H, Kirschner MW. Direct binding of CDC20 protein family members activates the anaphase-promoting complex in mitosis and G1. Mol Cell 1998; 2:163-71. [PMID: 9734353 DOI: 10.1016/s1097-2765(00)80126-4] [Citation(s) in RCA: 396] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Activation of the anaphase-promoting complex (APC) is required for anaphase initiation and for exit from mitosis. We show that APC is activated during mitosis and G1 by two regulatory factors, hCDC20 and hCDH1. These proteins directly bind to APC and activate its cyclin ubiquitination activity. hCDC20 confers a strict destruction-box (D-box) dependence on APC, while hCDH1 shows a much more relaxed specificity for the D-box. In HeLa cells, the protein levels of hCDC20 as well as its binding to APC peak in mitosis and decrease drastically at early G1. Thus, hCDC20 is the mitotic activator of APC and directs the degradation of substrates containing the D-box. The hCDH1 protein level remains constant during the cell cycle and may target specific substrates lacking the D-box in G1, such as polo-like kinase, for ubiquitination.
Collapse
|
|
27 |
396 |
16
|
Wang JT, Savinell R, Wainright J, Litt M, Yu H. A fuel cell using acid doped polybenzimidazole as polymer electrolyte. Electrochim Acta 1996. [DOI: 10.1016/0013-4686(95)00313-4] [Citation(s) in RCA: 394] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
|
29 |
394 |
17
|
Yu H, Spitz MR, Mistry J, Gu J, Hong WK, Wu X. Plasma levels of insulin-like growth factor-I and lung cancer risk: a case-control analysis. J Natl Cancer Inst 1999; 91:151-6. [PMID: 9923856 DOI: 10.1093/jnci/91.2.151] [Citation(s) in RCA: 377] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Insulin-like growth factors (IGFs), in particular IGF-I and IGF-II, strongly stimulate the proliferation of a variety of cancer cells, including those from lung cancer. To examine the possible causal role of IGFs in lung cancer development, we compared plasma levels of IGF-I, IGF-II, and an IGF-binding protein (IGFBP-3) in patients with newly diagnosed lung cancer and in control subjects. METHODS From an ongoing hospital-based, case-control study, we selected 204 consecutive patients with histologically confirmed, primary lung cancer and 218 control subjects who were matched to the case patients by age, sex, race, and smoking status. IGF-I, IGF-II, and IGFBP-3 plasma levels were measured by enzyme-linked immunosorbent assay and then divided into quartiles, based on their distribution in the control subjects. Associations between the IGF variables and lung cancer risk were estimated by use of odds ratios (ORs). Reported P values are two-sided. RESULTS IGF and IGFBP-3 levels were positively correlated (all r>.27; all P<.001). High plasma levels of IGF-I were associated with an increased risk of lung cancer (OR = 2.06; 95% confidence interval [CI] = 1.19-3.56; P = .01), and this association was dose dependent in both univariate and multivariate analyses. Plasma IGFBP-3 showed no association with lung cancer risk unless adjusted for IGF-I level; when both of these variables were analyzed together, high plasma levels of IGFBP-3 were associated with reduced risk of lung cancer (OR = 0.48; 95% CI = 0.25-0.92; P = .03). IGF-II was not associated with lung cancer risk. CONCLUSIONS Plasma levels of IGF-I are higher and plasma levels of IGFBP-3 are lower in patients with lung cancer than in control subjects. If these findings can be confirmed in prospective studies, measuring levels of IGF-I and IGFBP-3 in blood may prove useful in assessing lung cancer risk.
Collapse
|
|
26 |
377 |
18
|
Stoll B, Henry J, Reeds PJ, Yu H, Jahoor F, Burrin DG. Catabolism dominates the first-pass intestinal metabolism of dietary essential amino acids in milk protein-fed piglets. J Nutr 1998; 128:606-14. [PMID: 9482771 DOI: 10.1093/jn/128.3.606] [Citation(s) in RCA: 376] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
To investigate the extent of first-pass intestinal metabolism of dietary amino acids, seven female pigs (28 d old, 8.0 kg) were implanted with arterial, venous, portal and gastric catheters and with an ultrasonic portal blood flow probe. The pigs were fed a milk-based diet once hourly and infused intragastrically with [U-13C]algal protein. On average, 56% of the essential amino acid (EAA) intake appeared in the portal blood. However, the net portal balance of methionine (48% of intake) and threonine (38% of intake) tended (P = 0.08) to be lower than the mean of all EAA. The net portal balance (expressed as a percentage of intake) of alanine (205%), tyrosine (167%) and arginine (137%) exceeded their intake. Net portal outflow of ammonia accounted for 18% of total amino acid nitrogen intake. As a percentage of the enteral tracer input, there was substantial first-pass metabolism of lysine (35%), leucine (32%), phenylalanine (35%) and threonine (61%). However, only 18, 21, 18 and 12% of the total first-pass metabolism of lysine, leucine, phenylalanine and threonine, respectively, were recovered in mucosal protein. We conclude that roughly one third of dietary intake of EAA is consumed in first-pass metabolism by the intestine and that amino acid catabolism by the mucosal cells is quantitatively greater than amino acid incorporation into mucosal protein.
Collapse
|
|
27 |
376 |
19
|
Moser KL, Neas BR, Salmon JE, Yu H, Gray-McGuire C, Asundi N, Bruner GR, Fox J, Kelly J, Henshall S, Bacino D, Dietz M, Hogue R, Koelsch G, Nightingale L, Shaver T, Abdou NI, Albert DA, Carson C, Petri M, Treadwell EL, James JA, Harley JB. Genome scan of human systemic lupus erythematosus: evidence for linkage on chromosome 1q in African-American pedigrees. Proc Natl Acad Sci U S A 1998; 95:14869-74. [PMID: 9843982 PMCID: PMC24542 DOI: 10.1073/pnas.95.25.14869] [Citation(s) in RCA: 346] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/1998] [Accepted: 09/10/1998] [Indexed: 11/18/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disorder characterized by production of autoantibodies against intracellular antigens including DNA, ribosomal P, Ro (SS-A), La (SS-B), and the spliceosome. Etiology is suspected to involve genetic and environmental factors. Evidence of genetic involvement includes: associations with HLA-DR3, HLA-DR2, Fcgamma receptors (FcgammaR) IIA and IIIA, and hereditary complement component deficiencies, as well as familial aggregation, monozygotic twin concordance >20%, lambdas > 10, purported linkage at 1q41-42, and inbred mouse strains that consistently develop lupus. We have completed a genome scan in 94 extended multiplex pedigrees by using model-based linkage analysis. Potential [log10 of the odds for linkage (lod) > 2.0] SLE loci have been identified at chromosomes 1q41, 1q23, and 11q14-23 in African-Americans; 14q11, 4p15, 11q25, 2q32, 19q13, 6q26-27, and 12p12-11 in European-Americans; and 1q23, 13q32, 20q13, and 1q31 in all pedigrees combined. An effect for the FcgammaRIIA candidate polymorphism) at 1q23 (lod = 3.37 in African-Americans) is syntenic with linkage in a murine model of lupus. Sib-pair and multipoint nonparametric analyses also support linkage (P < 0.05) at nine loci detected by using two-point lod score analysis (lod > 2.0). Our results are consistent with the presumed complexity of genetic susceptibility to SLE and illustrate racial origin is likely to influence the specific nature of these genetic effects.
Collapse
|
research-article |
27 |
346 |
20
|
Tang Z, Bharadwaj R, Li B, Yu H. Mad2-Independent inhibition of APCCdc20 by the mitotic checkpoint protein BubR1. Dev Cell 2001; 1:227-37. [PMID: 11702782 DOI: 10.1016/s1534-5807(01)00019-3] [Citation(s) in RCA: 328] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The mitotic checkpoint blocks the activation of the anaphase-promoting complex (APC) until all sister chromatids have achieved bipolar attachment to the spindle. A checkpoint complex containing BubR1 and Bub3 has been purified from mitotic human cells. Upon checkpoint activation, the BubR1-Bub3 complex interacts with Cdc20. In the absence of Mad2, BubR1 inhibits the activity of APC by blocking the binding of Cdc20 to APC. Surprisingly, the kinase activity of BubR1 is not required for the inhibition of APCCdc20. BubR1 also prevents the activation of APCCdc20 in Xenopus egg extracts, and restores the mitotic arrest in Cdc20-overexpressing cells treated with nocodazole. Because BubR1 also interacts with the mitotic motor CENP-E, the ability of BubR1 to inhibit APC may be regulated by kinetochore tension or occupancy.
Collapse
|
|
24 |
328 |
21
|
Howard AD, Wang R, Pong SS, Mellin TN, Strack A, Guan XM, Zeng Z, Williams DL, Feighner SD, Nunes CN, Murphy B, Stair JN, Yu H, Jiang Q, Clements MK, Tan CP, McKee KK, Hreniuk DL, McDonald TP, Lynch KR, Evans JF, Austin CP, Caskey CT, Van der Ploeg LH, Liu Q. Identification of receptors for neuromedin U and its role in feeding. Nature 2000; 406:70-4. [PMID: 10894543 DOI: 10.1038/35017610] [Citation(s) in RCA: 310] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Neuromedin U (NMU) is a neuropeptide with potent activity on smooth muscle which was isolated first from porcine spinal cord and later from other species. It is widely distributed in the gut and central nervous system. Peripheral activities of NMU include stimulation of smooth muscle, increase of blood pressure, alteration of ion transport in the gut, control of local blood flow and regulation of adrenocortical function. An NMU receptor has not been molecularly identified. Here we show that the previously described orphan G-protein-coupled receptor FM-3 (ref. 15) and a newly discovered one (FM-4) are cognate receptors for NMU. FM-3, designated NMU1R, is abundantly expressed in peripheral tissues whereas FM-4, designated NMU2R, is expressed in specific regions of the brain. NMU is expressed in the ventromedial hypothalamus in the rat brain, and its level is significantly reduced following fasting. Intracerebroventricular administration of NMU markedly suppresses food intake in rats. These findings provide a molecular basis for the biochemical activities of NMU and may indicate that NMU is involved in the central control of feeding.
Collapse
|
|
25 |
310 |
22
|
Cullen TW, Schofield WB, Barry NA, Putnam EE, Rundell EA, Trent MS, Degnan PH, Booth CJ, Yu H, Goodman AL. Gut microbiota. Antimicrobial peptide resistance mediates resilience of prominent gut commensals during inflammation. Science 2015; 347:170-5. [PMID: 25574022 DOI: 10.1126/science.1260580] [Citation(s) in RCA: 304] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Resilience to host inflammation and other perturbations is a fundamental property of gut microbial communities, yet the underlying mechanisms are not well understood. We have found that human gut microbes from all dominant phyla are resistant to high levels of inflammation-associated antimicrobial peptides (AMPs) and have identified a mechanism for lipopolysaccharide (LPS) modification in the phylum Bacteroidetes that increases AMP resistance by four orders of magnitude. Bacteroides thetaiotaomicron mutants that fail to remove a single phosphate group from their LPS were displaced from the microbiota during inflammation triggered by pathogen infection. These findings establish a mechanism that determines the stability of prominent members of a healthy microbiota during perturbation.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
10 |
304 |
23
|
Dixon JE, Shi W, Wang HS, McDonald C, Yu H, Wymore RS, Cohen IS, McKinnon D. Role of the Kv4.3 K+ channel in ventricular muscle. A molecular correlate for the transient outward current. Circ Res 1996; 79:659-68. [PMID: 8831489 DOI: 10.1161/01.res.79.4.659] [Citation(s) in RCA: 289] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The expression of 15 different K+ channels in canine heart was examined, and a new K+ channel gene (Kv4.3), which encodes a rapidly inactivating K+ current, is described. The Kv4.3 channel was found to have biophysical and pharmacological properties similar to the native canine transient outward current (I(to)). The Kv4.3 gene is also expressed in human and rat heart. It is concluded that the Kv4.3 channel underlies the bulk of the I(to) in canine ventricular myocytes, and probably in human myocytes. Both the Kv4.3 and Kv4.2 channels are likely to contribute to the I(to) in rat heart, and differential expression of these two channels can account for observed differences in the kinetic properties of the I(to) in different regions of rat ventricle. There are significant differences in the pattern of K+ channel expression in canine heart, compared with rat heart, and these differences may be an adaptation to the different requirements for cardiac function in mammals of markedly different sizes. It is possible that the much longer ventricular action potential duration observed in canine heart compared with rat heart is due, in part, to the lower levels of Kv1.2, Kv2.1, and Kv4.2 gene expression in canine heart.
Collapse
|
|
29 |
289 |
24
|
Bosetti C, Lucenteforte E, Silverman DT, Petersen G, Bracci PM, Ji BT, Negri E, Li D, Risch HA, Olson SH, Gallinger S, Miller AB, Bueno-de-Mesquita HB, Talamini R, Polesel J, Ghadirian P, Baghurst PA, Zatonski W, Fontham E, Bamlet WR, Holly EA, Bertuccio P, Gao YT, Hassan M, Yu H, Kurtz RC, Cotterchio M, Su J, Maisonneuve P, Duell EJ, Boffetta P, La Vecchia C. Cigarette smoking and pancreatic cancer: an analysis from the International Pancreatic Cancer Case-Control Consortium (Panc4). Ann Oncol 2012; 23:1880-8. [PMID: 22104574 PMCID: PMC3387822 DOI: 10.1093/annonc/mdr541] [Citation(s) in RCA: 282] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 10/06/2011] [Accepted: 10/10/2011] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND To evaluate the dose-response relationship between cigarette smoking and pancreatic cancer and to examine the effects of temporal variables. METHODS We analyzed data from 12 case-control studies within the International Pancreatic Cancer Case-Control Consortium (PanC4), including 6507 pancreatic cases and 12 890 controls. We estimated summary odds ratios (ORs) by pooling study-specific ORs using random-effects models. RESULTS Compared with never smokers, the OR was 1.2 (95% confidence interval [CI] 1.0-1.3) for former smokers and 2.2 (95% CI 1.7-2.8) for current cigarette smokers, with a significant increasing trend in risk with increasing number of cigarettes among current smokers (OR=3.4 for ≥35 cigarettes per day, P for trend<0.0001). Risk increased in relation to duration of cigarette smoking up to 40 years of smoking (OR=2.4). No trend in risk was observed for age at starting cigarette smoking, whereas risk decreased with increasing time since cigarette cessation, the OR being 0.98 after 20 years. CONCLUSIONS This uniquely large pooled analysis confirms that current cigarette smoking is associated with a twofold increased risk of pancreatic cancer and that the risk increases with the number of cigarettes smoked and duration of smoking. Risk of pancreatic cancer reaches the level of never smokers ∼20 years after quitting.
Collapse
|
Research Support, N.I.H., Extramural |
13 |
282 |
25
|
Oxnard G, Yang JH, Yu H, Kim SW, Saka H, Horn L, Goto K, Ohe Y, Mann H, Thress K, Frigault M, Vishwanathan K, Ghiorghiu D, Ramalingam S, Ahn MJ. TATTON: a multi-arm, phase Ib trial of osimertinib combined with selumetinib, savolitinib, or durvalumab in EGFR-mutant lung cancer. Ann Oncol 2020; 31:507-516. [DOI: 10.1016/j.annonc.2020.01.013] [Citation(s) in RCA: 282] [Impact Index Per Article: 56.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 01/06/2020] [Accepted: 01/15/2020] [Indexed: 01/18/2023] Open
|
|
5 |
282 |