1
|
Yulug B, Altay O, Li X, Hanoglu L, Cankaya S, Lam S, Velioglu HA, Yang H, Coskun E, Idil E, Nogaylar R, Ozsimsek A, Bayram C, Bolat I, Oner S, Tozlu OO, Arslan ME, Hacimuftuoglu A, Yildirim S, Arif M, Shoaie S, Zhang C, Nielsen J, Turkez H, Borén J, Uhlén M, Mardinoglu A. Combined metabolic activators improve cognitive functions in Alzheimer's disease patients: a randomised, double-blinded, placebo-controlled phase-II trial. Transl Neurodegener 2023; 12:4. [PMID: 36703196 PMCID: PMC9879258 DOI: 10.1186/s40035-023-00336-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/09/2023] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is associated with metabolic abnormalities linked to critical elements of neurodegeneration. We recently administered combined metabolic activators (CMA) to the AD rat model and observed that CMA improves the AD-associated histological parameters in the animals. CMA promotes mitochondrial fatty acid uptake from the cytosol, facilitates fatty acid oxidation in the mitochondria, and alleviates oxidative stress. METHODS Here, we designed a randomised, double-blinded, placebo-controlled phase-II clinical trial and studied the effect of CMA administration on the global metabolism of AD patients. One-dose CMA included 12.35 g L-serine (61.75%), 1 g nicotinamide riboside (5%), 2.55 g N-acetyl-L-cysteine (12.75%), and 3.73 g L-carnitine tartrate (18.65%). AD patients received one dose of CMA or placebo daily during the first 28 days and twice daily between day 28 and day 84. The primary endpoint was the difference in the cognitive function and daily living activity scores between the placebo and the treatment arms. The secondary aim of this study was to evaluate the safety and tolerability of CMA. A comprehensive plasma metabolome and proteome analysis was also performed to evaluate the efficacy of the CMA in AD patients. RESULTS We showed a significant decrease of AD Assessment Scale-cognitive subscale (ADAS-Cog) score on day 84 vs day 0 (P = 0.00001, 29% improvement) in the CMA group. Moreover, there was a significant decline (P = 0.0073) in ADAS-Cog scores (improvement of cognitive functions) in the CMA compared to the placebo group in patients with higher ADAS-Cog scores. Improved cognitive functions in AD patients were supported by the relevant alterations in the hippocampal volumes and cortical thickness based on imaging analysis. Moreover, the plasma levels of proteins and metabolites associated with NAD + and glutathione metabolism were significantly improved after CMA treatment. CONCLUSION Our results indicate that treatment of AD patients with CMA can lead to enhanced cognitive functions and improved clinical parameters associated with phenomics, metabolomics, proteomics and imaging analysis. Trial registration ClinicalTrials.gov NCT04044131 Registered 17 July 2019, https://clinicaltrials.gov/ct2/show/NCT04044131.
Collapse
|
Clinical Trial, Phase II |
2 |
45 |
2
|
Velioglu HA, Hanoglu L, Bayraktaroglu Z, Toprak G, Guler EM, Bektay MY, Mutlu-Burnaz O, Yulug B. Left lateral parietal rTMS improves cognition and modulates resting brain connectivity in patients with Alzheimer's disease: Possible role of BDNF and oxidative stress. Neurobiol Learn Mem 2021; 180:107410. [PMID: 33610772 DOI: 10.1016/j.nlm.2021.107410] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 01/11/2021] [Accepted: 02/14/2021] [Indexed: 12/22/2022]
Abstract
Repetitive Transcranial Magnetic Stimulation (rTMS) is a non-invasive neuromodulation technique which is increasingly used for cognitive impairment in Alzheimer's Disease (AD). Although rTMS has been shown to modify Brain-Derived Neurotrophic Factor (BDNF) and oxidative stress levels in many neurological and psychiatric diseases, there is still no study evaluating the relationship between memory performance, BDNF, oxidative stress, and resting brain connectivity following rTMS in Alzheimer's patients. Furthermore, there are increasing clinical data showing that the stimulation of strategic brain regions may lead to more robust improvements in memory functions compared to conventional rTMS. In this study, we aimed to evaluate the possible disease-modifying effects of rTMS on the lateral parietal cortex in AD patients who have the highest connectivity with the hippocampus. To fill the mentioned research gaps, we have evaluated the relationships between resting-state Functional Magnetic Resonance Imaging (fMRI), cognitive scores, blood BDNF levels, and total oxidative/antioxidant status to explain the therapeutic and potential disease-modifying effects of rTMS which has been applied at 20 Hz frequencies for two weeks. Our results showed significantly increased visual recognition memory functions and clock drawing test scores which were associated with elevated peripheral BDNF levels, and decreased oxidant status after two weeks of left lateral parietal TMS stimulation. Clinically our findings suggest that the left parietal region targeted rTMS application leads to significant improvement in familiarity-based cognition associated with the network connections between the left parietal region and the hippocampus.
Collapse
|
Research Support, Non-U.S. Gov't |
4 |
29 |
3
|
Hanoglu L, Toplutas E, Saricaoglu M, Velioglu HA, Yildiz S, Yulug B. Therapeutic Role of Repetitive Transcranial Magnetic Stimulation in Alzheimer’s and Parkinson’s Disease: Electroencephalography Microstate Correlates. Front Neurosci 2022; 16:798558. [PMID: 35250446 PMCID: PMC8889013 DOI: 10.3389/fnins.2022.798558] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/07/2022] [Indexed: 11/26/2022] Open
Abstract
Introduction The microstate analysis is a method to convert the electrical potentials on the multi-channel electrode array to topographical electroencephalography (EEG) data. Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive method that can modulate brain networks. This study explores the pathophysiological changes through microstate analysis in two different neurodegenerative diseases, Alzheimer’s (AD) and Parkinson’s disease (PD), characterized by motor and cognitive symptoms and analysis the effect of rTMS on the impaired cognitive and motor functions. Materials and Methods We included 18 AD, 8 PD patients, and 13 age-matched controls. For both groups, we applied 5 Hz rTMS on the left pre-SMA in PD patients while 20 Hz rTMS on the left lateral parietal region in AD patients. Each patient was re-evaluated 1 week after the end of the sessions, which included a detailed clinical evaluation and measurement of EEG microstates. Results At the baseline, the common findings between our AD and PD patients were altered microstate (MS) B, MS D durations and transition frequencies between MS A–MS B, MS C–MS D while global explained variance (GEV) ratio and the extent and frequency of occurrence of MS A, MS B, and MS D were separately altered in AD patients. Although no specific microstate parameter adequately differentiated between AD and PD patients, we observed significant changes in MS B and MS D parameters in PD patients. Further, we observed that Mini-Mental State Examination (MMSE) performances were associated with the transition frequencies between MS A–MS B and MS C–MS D and GEV ratio. After left parietal rTMS application, we have observed significantly increased visual memory recognition and clock drawing scores after left parietal rTMS application associated with improved microstate conditions prominent, especially in the mean duration of MS C in AD patients. Also, pre-SMA rTMS resulted in significant improvement in motor scores and frequency of transitions from MS D to MS C in PD patients. Conclusion This study shows that PD and AD can cause different and similar microstate changes that can be modulated through rTMS, suggesting the role of MS parameters and rTMS as a possible combination in monitoring the treatment effect in neurodegenerative diseases.
Collapse
|
|
3 |
18 |
4
|
Turkez H, Altay O, Yildirim S, Li X, Yang H, Bayram C, Bolat I, Oner S, Tozlu OO, Arslan ME, Arif M, Yulug B, Hanoglu L, Cankaya S, Lam S, Velioglu HA, Coskun E, Idil E, Nogaylar R, Ozsimsek A, Hacimuftuoglu A, Shoaie S, Zhang C, Nielsen J, Borén J, Uhlén M, Mardinoglu A. Combined metabolic activators improve metabolic functions in the animal models of neurodegenerative diseases. Life Sci 2023; 314:121325. [PMID: 36581096 DOI: 10.1016/j.lfs.2022.121325] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/13/2022] [Accepted: 12/21/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND Neurodegenerative diseases (NDDs), including Alzheimer's disease (AD) and Parkinson's disease (PD), are associated with metabolic abnormalities. Integrative analysis of human clinical data and animal studies have contributed to a better understanding of the molecular and cellular pathways involved in the progression of NDDs. Previously, we have reported that the combined metabolic activators (CMA), which include the precursors of nicotinamide adenine dinucleotide and glutathione can be utilized to alleviate metabolic disorders by activating mitochondrial metabolism. METHODS We first analysed the brain transcriptomics data from AD patients and controls using a brain-specific genome-scale metabolic model (GEM). Then, we investigated the effect of CMA administration in animal models of AD and PD. We evaluated pathological and immunohistochemical findings of brain and liver tissues. Moreover, PD rats were tested for locomotor activity and apomorphine-induced rotation. FINDINGS Analysis of transcriptomics data with GEM revealed that mitochondrial dysfunction is involved in the underlying molecular pathways of AD. In animal models of AD and PD, we showed significant damage in the high-fat diet groups' brain and liver tissues compared to the chow diet. The histological analyses revealed that hyperemia, degeneration and necrosis in neurons were improved by CMA administration in both AD and PD animal models. These findings were supported by immunohistochemical evidence of decreased immunoreactivity in neurons. In parallel to the improvement in the brain, we also observed dramatic metabolic improvement in the liver tissue. CMA administration also showed a beneficial effect on behavioural functions in PD rats. INTERPRETATION Overall, we showed that CMA administration significantly improved behavioural scores in parallel with the neurohistological outcomes in the AD and PD animal models and is a promising treatment for improving the metabolic parameters and brain functions in NDDs.
Collapse
|
Retracted Publication |
2 |
8 |
5
|
Kayasandik CB, Velioglu HA, Hanoglu L. Predicting the Effects of Repetitive Transcranial Magnetic Stimulation on Cognitive Functions in Patients With Alzheimer's Disease by Automated EEG Analysis. Front Cell Neurosci 2022; 16:845832. [PMID: 35663423 PMCID: PMC9160828 DOI: 10.3389/fncel.2022.845832] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive, neurodegenerative brain disorder that generally affects the elderly. Today, after the limited benefit of the pharmacological treatment strategies, numerous noninvasive brain stimulation techniques have been developed. Transcranial magnetic stimulation (TMS), based on electromagnetic stimulation, is one of the most widely used methods. The main problem in the use of TMS is the existence of large individual variability in the results. This causes a waste of money, time, and more importantly, a burden for delicate patients. Hence, it is a necessity to form an efficient and personalized TMS application protocol. In this paper, we performed a machine-learning analysis to see whether it is possible to predict the responses of patients with AD to TMS by analyzing their electroencephalography (EEG) signals. For that purpose, we analyzed both the EEG signals collected before and after the TMS application (EEG1 and EEG2, respectively). Through correlating EEG1 and repetitive transcranial magnetic stimulation (rTMS) outcomes, we tried to see whether it is possible to predict patients' responses before the treatment application. On the other hand, by EEG2 analysis, we investigated TMS impacts on EEG, more importantly if this impact is correlated with patients' response to the treatment. We used the support vector machine (SVM) classifier due to its multiple advantages for the current task with feature selection processes by stepwise linear discriminant analysis (SWLDA) and SVM. However, to justify our numerical analysis framework, we examined and compared the performances of different feature selection and classification techniques. Since we have a limited sample number, we used the leave-one-out method for the validation with the Monte Carlo technique to eliminate bias by a small sample size. In the conclusion, we observed that the correlation between rTMS outcomes and EEG2 is stronger than EEG1, since we observed, respectively, 93 and 79% of accuracies during our data analysis. Besides the informative features of EEG2 are focused on theta band, it indicates that TMS is characterizing the theta band signals in patients with AD in direct relation to patients' response to rTMS. This shows that it is more possible to determine patients' benefit from the TMS at the early stages of the treatment, which would increase the efficiency of rTMS applications in patients with Alzheimer's disease.
Collapse
|
|
3 |
7 |
6
|
Hanoglu L, Velioglu HA, Hanoglu T, Yulug B. Neuroimaging-Guided Transcranial Magnetic and Direct Current Stimulation in MCI: Toward an Individual, Effective and Disease-Modifying Treatment. Clin EEG Neurosci 2023; 54:82-90. [PMID: 34751037 DOI: 10.1177/15500594211052815] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The therapeutic approaches currently applied in Alzheimer's disease (AD) and similar neurodegenerative diseases are essentially based on pharmacological strategies. However, despite intensive research, the effectiveness of these treatments is limited to transient symptomatic effects, and they are still far from exhibiting a true therapeutic effect capable of altering prognosis. The lack of success of such pharmacotherapy-based protocols may be derived from the cases in the majority of trials being too advanced to benefit significantly in therapeutic terms at the clinical level. For neurodegenerative diseases, mild cognitive impairment (MCI) may be an early stage of the disease continuum, including Alzheimer's. Noninvasive brain stimulation (NIBS) techniques have been developed to modulate plasticity in the human cortex in the last few decades. NIBS techniques have made it possible to obtain unique findings concerning brain functions, and design novel approaches to treat various neurological and psychiatric conditions. In addition, its synaptic and cellular neurobiological effects, NIBS is an attractive treatment option in the early phases of neurodegenerative diseases, such as MCI, with its beneficial modifying effects on cellular neuroplasticity. However, there is still insufficient evidence about the potential positive clinical effects of NIBS on MCI. Furthermore, the huge variability of the clinical effects of NIBS limits its use. In this article, we reviewed the combined approach of NIBS with various neuroimaging and electrophysiological methods. Such methodologies may provide a new horizon to the path for personalized treatment, including a more individualized pathophysiology approach which might even define new specific targets for specific symptoms of neurodegenerations.
Collapse
|
Review |
2 |
4 |
7
|
Yulug B, Ayyıldız B, Ayyıldız S, Sayman D, Salar AB, Cankaya S, Ozdemir Oktem E, Ozsimsek A, Kurt CC, Lakadamyalı H, Akturk A, Altay Ö, Hanoglu L, Velioglu HA, Mardinoglu A. Infection with COVID-19 is no longer a public emergency: But what about degenerative dementia? J Med Virol 2023; 95:e29072. [PMID: 37724347 DOI: 10.1002/jmv.29072] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/16/2023] [Accepted: 08/23/2023] [Indexed: 09/20/2023]
Abstract
Although no longer considered a public health threat, post-COVID cognitive syndrome continues to impact on a considerable proportion of individuals who were infected with COVID-19. Recent studies have also suggested that COVID may be represent a critical risk factor for the development of Alzheimer's disease (AD). We compared 17 COVID patients with 20 controls and evaluated the effects of COVID-19 on general cognitive performance, hippocampal volume, and connections using structural and seed-based connectivity analysis. We showed that COVID patients exhibited considerably worse cognitive functioning and increased hippocampal connectivity supported by the strong correlation between hippocampal connectivity and cognitive scores. Our findings of higher hippocampal connectivity with no observable hippocampal morphological changes even in mild COVID cases may be represent evidence of a prestructural compensatory mechanism for stimulating additional neuronal resources to combat cognitive dysfunction as recently shown for the prodromal stages of degenerative cognitive disorders. Our findings may be also important in light of recent data showing that other viral infections as well as COVID may constitute a critical risk factor for the development of AD. To our knowledge, this is the first study that investigated network differences in COVID patients, with a particular focus on compensatory hippocampal connectivity.
Collapse
|
|
2 |
3 |
8
|
Ayyildiz S, Velioglu HA, Ayyildiz B, Sutcubasi B, Hanoglu L, Bayraktaroglu Z, Yildirim S, Atasever A, Yulug B. Differentiation of claustrum resting-state functional connectivity in healthy aging, Alzheimer's disease, and Parkinson's disease. Hum Brain Mapp 2023; 44:1741-1750. [PMID: 36515182 PMCID: PMC9921234 DOI: 10.1002/hbm.26171] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/23/2022] [Indexed: 12/15/2022] Open
Abstract
The claustrum is a sheet-like of telencephalic gray matter structure whose function is poorly understood. The claustrum is considered a multimodal computing network due to its reciprocal connections with almost all cortical areas as well as subcortical structures. Although the claustrum has been involved in several neurodegenerative diseases, specific changes in connections of the claustrum remain unclear in Alzheimer's disease (AD), and Parkinson's disease (PD). Resting-state fMRI and T1-weighted structural 3D images from healthy elderly (n = 15), AD (n = 16), and PD (n = 12) subjects were analyzed. Seed-based FC analysis was performed using CONN FC toolbox and T1-weighted images were analyzed with the Computational Anatomy Toolbox for voxel-based morphometry analysis. While we observed a decreased FC between the left claustrum and sensorimotor cortex, auditory association cortex, and cortical regions associated with social cognition in PD compared with the healthy control group (HC), no significant difference was found in alterations in the FC of both claustrum comparing the HC and AD groups. In the AD group, high FC of claustrum with regions of sensorimotor cortex and cortical regions related to cognitive control, including cingulate gyrus, supramarginal gyrus, and insular cortex were demonstrated. In addition, the structural results show significantly decreased volume in bilateral claustrum in AD and PD compared with HC. There were no significant differences in the claustrum volumes between PD and AD groups so the FC may offer more precise findings in distinguishing changes for claustrum in AD and PD.
Collapse
|
research-article |
2 |
3 |
9
|
Velioglu HA, Ayyildiz B, Ayyildiz S, Sutcubasi B, Hanoglu L, Bayraktaroglu Z, Yulug B. A structural and resting-state functional connectivity investigation of the pulvinar in elderly individuals and Alzheimer's disease patients. Alzheimers Dement 2022. [PMID: 36576157 DOI: 10.1002/alz.12850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/23/2022] [Accepted: 10/05/2022] [Indexed: 12/29/2022]
Abstract
In Alzheimer's disease (AD), structural and functional changes in the brain may give rise to disruption of specific cognitive functions. The aim of this study is to investigate the functional connectivity alterations in the pulvinar's subdivisions and total pulvinar voxel-based morphometry (VBM) changes in individuals with AD and healthy controls. A seed-based functional connectivity analysis was applied to the anterior, inferior, lateral, and medial pulvinar in each hemisphere. Furthermore, VBM analysis was carried out to compare gray matter (GM) volume differences in the pulvinar and thalamus between the two groups. Connectivity analysis revealed that the pulvinar subdivisions had decreased connectivity in individuals with AD. In addition, the pulvinar and thalamus in each hemisphere were significantly smaller in the AD group. The pulvinar may have a role in AD-related cognitive impairments and the intrinsic connectivity network changes and GM loss in pulvinar subdivisions suggest the cognitive deterioration occurring in those with AD. HIGHLIGHTS: The pulvinar may play a role in pathophysiology of cognitive impairments in those with Alzheimer's disease (AD). Decreased structural volume and functional connectivity were found in patients with AD. The inferior pulvinar is functionally the most affected subdivision by AD compared to the others.
Collapse
|
|
3 |
2 |
10
|
Cankaya S, Oktem EO, Saatci O, Velioglu HA, Uygur AB, Ozsimsek A, Hanoglu L, Yulug B. Paracetamol alters empathy scores in healthy and headache subjects: Functional MRI correlates. J Clin Neurosci 2020; 78:215-221. [PMID: 32376158 DOI: 10.1016/j.jocn.2020.04.053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/09/2020] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Although previous evidence suggest that paracetamol decreases psychological reactivity in healthy subjects, there is still no confirmed correlation between the empathy scores and brain activity in healthy and headache patients after paracetamol treatment. MATERIAL AND METHODS The study group included 16 patients with tension-type headache, and 12 healthy age-and sex-matched controls. After a detailed neurological examination Positive and Negative Affect Schedule (PANAS) and Empathy for Pain Scale (EPS) were applied to all subjects. Next, 1000 mg paracetamol tablet was administered orally, after administration of paracetamol, EPS were repeated, and fMRI was performed to all subjects. RESULTS We have revealed increased empathy scores in the headache group after the paracetamol treatment which were associated with significant alterations in brain regions which play a critical role in the processing of empathy. DISCUSSION The observed neuroimaging and clinical difference between healthy and headache subjects could be related to the fact that pain perception in healthy subjects might differ in some aspects from the mechanisms of empathy in headache-experienced patients. CONCLUSION To the best of our knowledge, this is the first study that evaluated the paracetamol treatment and neural networks' correlation with pain empathy in healthy and headache individuals.
Collapse
|
|
5 |
2 |
11
|
Uykur AB, Yıldız S, Velioglu HA, Ozsimsek A, Oktem EO, Bayraktaroglu Z, Ergun T, Lakadamyali H, Hanoglu L, Cankaya S, Saatçi Ö, Yulug B. Topological network mechanisms of clinical response to antidepressant treatment in drug-naive major depressive disorder. J Clin Neurosci 2020; 84:82-90. [PMID: 33358344 DOI: 10.1016/j.jocn.2020.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/25/2020] [Accepted: 12/06/2020] [Indexed: 12/28/2022]
Abstract
AIM There is rapidly increasing evidence that remission of MDD is associated with substantial changes in functional brain connectivity. These New data have provided a holistic view on the mechanism of antidepressants on multiple levels that goes beyond their conventional effects on neurotransmitters. METHOD The study was approved by the Local Ethics Committee of Istanbul Medipol University (10840098-604.01.01-E.65129) and followed the Helsinki Declaration principles. In our study, we have evaluated the effect of six weeks of treatment with antidepressants (escitalopram and duloxetine), and tested the underlying brain functional connectivity through a Graph analysis approach in a well-defined first-episode, drug-naive, and non-comorbid population with MDD. RESULTS Beyond indicating that there was a significant correlation between the antidepressant response and topological characteristics of the brain, our results suggested that global rather than regional network alterations may be implicated in the antidepressant effect. CONCLUSION Despite the small-sample size and non-controlled study design, our study provides important and relevant clinical data regarding the underlying mechanisms of the antidepressants on topological dynamics in the human brain.
Collapse
|
|
5 |
1 |
12
|
Velioglu HA, Yıldız S, Ozdemir-Oktem E, Cankaya S, Lundmark AK, Ozsimsek A, Hanoglu L, Yulug B. Smoking affects global and regional brain entropy in depression patients regardless of depression: Preliminary findings. J Psychiatr Res 2024; 177:147-152. [PMID: 39018709 DOI: 10.1016/j.jpsychires.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/27/2024] [Accepted: 07/02/2024] [Indexed: 07/19/2024]
Abstract
OBJECTIVE This study examines the effect of smoking on global and regional brain entropy in patients with Major Depressive Disorder (MDD), aiming to elucidate the relationship between smoking habits and brain network complexity in depression. METHODS The study enrolled 24 MDD patients, divided into smokers and non-smokers, from Alanya Alaaddin Keykubat University and Istanbul Medipol University. Resting-state fMRI data were acquired and processed. The complexity of neuronal activity was assessed using dispersion entropy, with statistical significance determined by a suite of tests including Kolmogorov-Smirnov, Student's t-test, and Mann-Whitney U test. RESULTS The smoking cohort exhibited higher global brain entropy compared to the non-smoking group (p = 0.033), with significant differences in various brain networks, indicating that smoking may alter global brain activity and network dynamics in individuals with MDD. CONCLUSION The study provides evidence that smoking is associated with increased brain entropy in MDD patients, suggesting that chronic smoking may influence cognitive and emotional networks. This underscores the importance of considering smoking history in the treatment and prognosis of MDD. The findings call for further research to understand the mechanistic links between smoking, brain entropy, and depression.
Collapse
|
|
1 |
|
13
|
Yulug B, Ayyildiz S, Sayman D, Karaca R, Ipek L, Cankaya S, Salar AB, Ayyildiz B, Mikuta C, Yagci N, Oktem EO, Ozsimsek A, Velioglu HA, Hanoglu L. The functional role of the pulvinar in discriminating between objective and subjective cognitive impairment in major depressive disorder. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2024; 10:e12450. [PMID: 38356480 PMCID: PMC10865482 DOI: 10.1002/trc2.12450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/04/2023] [Accepted: 11/09/2023] [Indexed: 02/16/2024]
Abstract
INTRODUCTION Emotionally driven cognitive complaints represent a major diagnostic challenge for clinicians and indicate the importance of objective confirmation of the accuracy of depressive patients' descriptions of their cognitive symptoms. METHODS We compared cognitive status and structural and functional brain connectivity changes in the pulvinar and hippocampus between patients with total depression and healthy controls. The depressive group was also classified as "amnestic" or "nonamnestic," based on the members' subjective reports concerning their forgetfulness. We then sought to determine whether these patients would differ in terms of objective neuroimaging and cognitive findings. RESULTS The right pulvinar exhibited altered connectivity in individuals with depression with objective cognitive impairment, a finding which was not apparent in depressive patients with subjective cognitive impairment. DISCUSSION The pulvinar may play a role in depression-related cognitive impairments. Connectivity network changes may differ between objective and subjective cognitive impairment in depression and may play a role in the increased risk of dementia in patients with depression.
Collapse
|
research-article |
1 |
|
14
|
Toprak G, Hanoglu L, Cakir T, Guntekin B, Velioglu HA, Yulug B. DLPF Targeted Repetitive Transcranial Magnetic Stimulation Improves Brain Glucose Metabolism Along with the Clinical and Electrophysiological Parameters in CBD Patients. Endocr Metab Immune Disord Drug Targets 2022; 22:415-424. [PMID: 35100961 DOI: 10.2174/1871530322666220131120349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/24/2021] [Accepted: 07/14/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Corticobasal Degeneration (CBD) is a rare neurological disease caused by the pathological accumulation of tau protein. The primary pathological features of CBD include progressive neurodegenerative processes resulting in remarkable frontoparietal and basal ganglia atrophy. OBJECTIVE Like in many other neurodegenerative disorders, there is still no effective disease-modifying drug therapy in CBD. Therefore, the development of new treatment methods is of great importance. In this study, we aimed to assess the stimulating effects of high-frequency DLPFC rTMS on the motor, cognitive and behavioral disturbances in four CBD patients. METHODS Four (three females, one male) CBD patients who had been diagnosed as CBD were enrolled in this study. Patients were evaluated before and after the rTMS procedure regarding the motor, neuropsychometric and behavioral tests. The results of statistical analysis of behavioral and neuropsychometric evaluation were assessed via SPSS 18.0 package program. Data are expressed as mean, standard deviation. Before and after values of the groups were compared with the Wilcoxon sign rank test, and p<0.05 was considered significant. RESULTS We have provided strong preliminary evidence that the improvement in clinical parameters was associated with the normalizations of the theta activity and glucose metabolism. CONCLUSION Our current results are consistent with some previous trials showing a strong association between DLPFC targeted rTMS and electrophysiological normalizations in the left DLPFC.
Collapse
|
|
3 |
|
15
|
Gokce M, Velioglu HA, Bektay MY, Guler EM. Evaluating the Clinical Significance of Diazepam Binding Inhibitor in Alzheimer's Disease: A Comparison with Inflammatory, Oxidative, and Neurodegenerative Biomarkers. Gerontology 2023; 69:1104-1112. [PMID: 37607528 DOI: 10.1159/000531849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 06/26/2023] [Indexed: 08/24/2023] Open
Abstract
INTRODUCTION Alzheimer's disease (AD) is one of the pathologies that the scientific world is still desperate for. The aim of this study was the investigation of diazepam binding inhibitor (DBI) as a prognostic factor for AD prognosis. METHODS A total of 120 participants were divided into 3 groups. Forty new diagnosed Alzheimer patients (NDG) who have been diagnosed but have not started AD treatment, 40 patients who diagnosed 5 years ago (D5YG), and 40 healthy control groups (CG) were included in the study. Levels of DBI, oxidative stress, inflammatory, and neurodegenerative biomarkers were compared between 3 groups. RESULTS Plasma levels of DBI, oligomeric Aβ, total tau, glial fibrillary acidic protein, α-synuclein, interleukin (IL) 1β, IL6, tumor necrosis factor α, oxidative stress index, high-sensitive C-reactive protein, and DNA damage were found higher in D5YG and NDG as compared to CG (p < 0.001). On the contrary, plasma levels of total thiol, native thiol, vitamin D and vitamin B12 were lower in D5YG and NDG as compared to CG (p < 0.001). DISCUSSION DBI may be a potential plasma biomarker and promising drug target for AD. It could help physicians make a comprehensive evaluation with cognitive and neurodegenerative tests.
Collapse
|
|
2 |
|
16
|
Turkez H, Altay O, Yildirim S, Li X, Yang H, Bayram C, Bolat I, Oner S, Tozlu OO, Arslan ME, Arif M, Yulug B, Hanoglu L, Cankaya S, Lam S, Velioglu HA, Coskun E, Idil E, Nogaylar R, Ozsimsek A, Hacimuftuoglu A, Shoaie S, Zhang C, Nielsen J, Borén J, Uhlén M, Mardinoglu A. Retraction notice to "Combined metabolic activators improve metabolic functions in the animal models of neurodegenerative diseases" [Life Sci. 314 (2023) 121325]. Life Sci 2024; 349:122712. [PMID: 38762436 DOI: 10.1016/j.lfs.2024.122712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
|
Retraction Notice |
1 |
|
17
|
Avnioglu S, Sahin C, Cankaya S, Ozen O, Dikici R, Yilmaz H, Velioglu HA, Yulug B. Decreased frontal and orbital volumes and increased cerebellar volumes in patients with anosmia Of Unknown origin: A subtle connection? J Psychiatr Res 2023; 160:86-92. [PMID: 36791532 DOI: 10.1016/j.jpsychires.2023.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/03/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
PURPOSE Neuroimaging studies have shown that anosmia is accompanied by a decreased olfactory bulb volume, yet little is known about alterations in cerebral and cerebellar lobule volumes. The purpose of this study was to investigate structural brain alterations in anosmic patients. METHODS Sixteen anosmic patients (mean age 42.62 ± 16.57 years; 6 women and 10 men) and 16 healthy controls (mean age 43.37 ± 18.98 years; 9 women and 7 men) were included in this retrospective study. All subjects who underwent magnetic resonance imaging scans were analyzed using VolBrain and voxel-based morphometry after olfactory testing. RESULTS Despite being statistically insignificant, analysis using VBM revealed greater gray matter (GM) and white matter in the anosmia group compared to the healthy subjects. However, decreased GM (p < 0.001) and increased cerebellar (p = 0.046) volumes were observed in the anosmic patients. CONCLUSIONS The study revealed structural brain alterations in specific areas beyond the olfactory bulb. Our results indicate that the cerebellum may play an exceptional role in the olfactory process and that this will be worth evaluating with further dynamic neuroimaging studies.
Collapse
|
|
2 |
|
18
|
Sahin S, Velioglu HA, Yulug B, Bayraktaroglu Z, Yildirim S, Hanoglu L. Parietal memory network and memory encoding versus retrieval impairments in PD-MCI patients: A hippocampal volume and cortical thickness study. CNS Neurosci Ther 2024; 30:e70062. [PMID: 39380180 PMCID: PMC11461280 DOI: 10.1111/cns.70062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/04/2024] [Accepted: 09/11/2024] [Indexed: 10/10/2024] Open
Abstract
OBJECTIVE The pathophysiology behind memory impairment in Parkinson's Disease Mild Cognitive Impairment (PD-MCI) is unclear. This study aims to investigate the hippocampal and cortical atrophy patterns in PD-MCI patients with different types of memory impairments, categorized as Retrieval Failure (RF) and Encoding Failure (EF). METHODS The study included 16 healthy controls (HC) and 34 PD-MCI patients, divided into RF (N = 18) and EF (N = 16) groups based on their Verbal Memory Processes Test (VMPT) scores, including spontaneous recall, recognition, and Index of Sensitivity to Cueing (ISC). Hippocampal subfields and cortical thicknesses were measured using the FreeSurfer software for automatic segmentation. RESULTS Compared to the HC group, the EF group exhibited significant atrophy in the left lateral occipital region and the right caudal middle frontal, superior temporal, and inferior temporal regions (p⟨0.05). The RF group displayed significant atrophy in the left lateral occipital, middle temporal, and precentral regions, as well as the right pars orbitalis and superior frontal regions (p⟨0.05). Hippocampal subfield analysis revealed distinct volume differences between HC-EF and RF-EF groups, with significant reductions in the CA1, CA3, and CA4 subregions in the EF group, but no differences between HC and RF groups (p > 0.05). CONCLUSION Gray matter atrophy patterns differ in PD-MCI patients with encoding and retrieval memory impairments. The significant hippocampal atrophy in the EF group, particularly in the CA subregions, highlights its potential role in disease progression and memory decline. Additionally, the convergence of atrophy in the lateral occipital cortex across both RF and EF groups suggests the involvement of the Parietal Memory Network (PMN) in PD-related memory impairment.
Collapse
|
research-article |
1 |
|
19
|
Sumbul‐Sekerci B, Velioglu HA, Sekerci A. Diabetes-related clinical and microstructural white matter changes in patients with Alzheimer's disease. Brain Behav 2024; 14:e3533. [PMID: 38715429 PMCID: PMC11077244 DOI: 10.1002/brb3.3533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024] Open
Abstract
AIM Although there exists substantial epidemiological evidence indicating an elevated risk of dementia in individuals with diabetes, our understanding of the neuropathological underpinnings of the association between Type-2 diabetes mellitus (T2DM) and Alzheimer's disease (AD) remains unclear. This study aims to unveil the microstructural brain changes associated with T2DM in AD and identify the clinical variables contributing to these changes. METHODS In this retrospective study involving 64 patients with AD, 31 individuals had concurrent T2DM. The study involved a comparative analysis of diffusion tensor imaging (DTI) images and clinical features between patients with and without T2DM. The FSL FMRIB software library was used for comprehensive preprocessing and tractography analysis of DTI data. After eddy current correction, the "bedpost" model was utilized to model diffusion parameters. Linear regression analysis with a stepwise method was used to predict the clinical variables that could lead to microstructural white matter changes. RESULTS We observed a significant impairment in the left superior longitudinal fasciculus (SLF) among patients with AD who also had T2DM. This impairment in patients with AD and T2DM was associated with an elevation in creatine levels. CONCLUSION The white matter microstructure in the left SLF appears to be sensitive to the impairment of kidney function associated with T2DM in patients with AD. The emergence of AD in association with T2DM may be driven by mechanisms distinct from the typical AD pathology. Compromised renal function in AD could potentially contribute to impaired white matter integrity.
Collapse
|
research-article |
1 |
|
20
|
Oktem EO, Sayman D, Ayyildiz S, Oktem Ç, Ipek L, Ayyildiz B, Aslan F, Altindal EU, Yagci N, Dikici R, Karaca R, Cankaya Ş, Avnioglu S, Velioglu HA, Yulug B. Cognitive Function Deficits Associated With Type 2 Diabetes and Retinopathy: Volumetric Brain MR Imaging Study. Brain Behav 2025; 15:e70387. [PMID: 40022286 PMCID: PMC11870829 DOI: 10.1002/brb3.70387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/10/2025] [Accepted: 02/13/2025] [Indexed: 03/03/2025] Open
Abstract
INTRODUCTION Type 2 diabetes mellitus is a ubiquitous chronic inflammatory disease with deleterious effects on various tissues, including the kidney, retina, and peripheral nerves. Studies using histopathology and magnetic resonance imaging have revealed that diabetes-related chronic hyperglycemia may impact the brain's essential functioning by causing microvascular damage. The aim of this study was to examine the cognitive functioning of type 2 diabetic individuals with and without retinopathy by evaluating their morphological, structural, and biochemical differences. METHODS Demographic characteristics, education level, type of diabetes mellitus (DM), disease duration, treatment received, other diabetic complications, such as nephropathy and neuropathy, and detailed medical histories were recorded. All participants underwent an extensive neuropsychological examination with Montreal Cognitive Assessment (MoCA) testing. Brain magnetic resonance imaging was performed to evaluate gray matter volume differences between the groups. RESULTS Gray matter volume differences between the groups were observed. Differences were observed after multiple corrections (age, education, and total intracranial volume [TIV]). First, the diabetic retinopathy group exhibited a significantly smaller gray matter volume in the right inferior temporal gyrus than the diabetic group (p = 0.032). In addition, the diabetic retinopathy group exhibited a significantly smaller gray matter volume than the control group in the right insula (lateral and central part) (p = 0.011). In addition, MoCA scores exhibited significant correlation with the two regions emerging as statistically significant in our analyses (the right inferior temporal gyrus and right insula) (p = 0.003, p = 0.002, respectively). CONCLUSION Our results suggest the presence of a neurodegenerative process associated with cognitive dysfunction that is particularly prominent in the retinopathy stage of DM.
Collapse
|
research-article |
1 |
|
21
|
Cankaya S, Ayyildiz B, Sayman D, Duran U, Ucak D, Karaca R, Ayyildiz S, Oktem EO, Lakadamyalı H, Sayman C, Ozsimsek A, Yalçınkaya A, Hanoglu L, Velioglu HA, Yulug B. Hippocampal connectivity dynamics and volumetric alterations predict cognitive status in migraine: A resting-state fMRI study. Neuroimage 2025; 305:120961. [PMID: 39675538 DOI: 10.1016/j.neuroimage.2024.120961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 12/17/2024] Open
Abstract
The etiology of cognitive decline linked to migraine remains unclear, with a growing recurrence rate and potential increased dementia risk among sufferers. Cognitive dysfunction has recently gained attention as a significant problem among migraine sufferers that can be related to alterations in hippocampal function and structure. This study explores hippocampal subfield connectivity and volume changes in migraine patients. We recruited 90 individuals from Alanya University's Neurology Department, including 49 migraine patients and 41 controls, for functional and anatomical imaging. Using the CONN toolbox and FreeSurfer, we assessed functional connectivity and subfield volumes, respectively. Montreal Cognitive Assessment (MOCA) was used to assess cognition in the entire sample. As a result, migraine patients exhibited significantly lower MOCA scores compared to controls (p<.001). Also, we found significant differences in hippocampal subfields between migraine patients and control groups in terms of functional connectivity after adjusting for years of education; here we showed that the left CA3 showed higher connectivity with right MFG and right occipitolateral cortex. Furthermore, the connectivity of left fimbria with the left temporal lobe and hippocampus and the connectivity of the right hippocampal-tail with right insula, heschl's gyrus, and frontorbital cortex were lower in the migraineurs. Additionally, volumes of specific hippocampal subfields were significantly lower in the migraineurs (whole hippocampus p = 0.004, whole hippocampus head p = 0.003, right CA1 head p = 0.006, and right HATA p = 0.005) compared to controls. In conclusion, these findings indicate that migraine-associated cognitive impairment involves significant functional and structural brain changes, particularly in the hippocampus, which may heighten dementia risk. This pioneering study unveils critical hippocampal alterations linked to cognitive function in migraine sufferers, underscoring the potential for these changes to impact dementia development.
Collapse
|
|
1 |
|
22
|
Velioglu HA, Dudukcu EZ, Hanoglu L, Guntekin B, Akturk T, Yulug B. rTMS reduces delta and increases theta oscillations in Alzheimer's disease: A visual-evoked and event-related potentials study. CNS Neurosci Ther 2024; 30:e14564. [PMID: 38287520 PMCID: PMC10805393 DOI: 10.1111/cns.14564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/11/2023] [Accepted: 11/30/2023] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Repetitive transcranial magnetic stimulation (rTMS) has emerged as a promising alternative therapy for Alzheimer's disease (AD) due to its ability to modulate neural networks and enhance cognitive function. This treatment offers the unique advantage of enabling real-time monitoring of immediate cognitive effects and dynamic brain changes through electroencephalography (EEG). OBJECTIVE This study focused on exploring the effects of left parietal rTMS stimulation on visual-evoked potentials (VEP) and visual event-related potentials (VERP) in AD patients. METHODS Sixteen AD patients were recruited for this longitudinal study. EEG data were collected within a Faraday cage both pre- and post-rTMS to evaluate its impact on potentials. RESULTS Significant alterations were found in both VEP and VERP oscillations. Specifically, delta power in VEP decreased, while theta power in VERP increased post-rTMS, indicating a modulation of brain activities. DISCUSSION These findings confirm the positive modulatory impact of rTMS on brain activities in AD, evidenced by improved cognitive scores. They align with previous studies highlighting the potential of rTMS in managing hyperexcitability and oscillatory disturbances in the AD cortex. CONCLUSION Cognitive improvements post-rTMS endorse its potential as a promising neuromodulatory treatment for cognitive enhancement in AD, thereby providing critical insights into the neurophysiological anomalies in AD and possible therapeutic avenues.
Collapse
|
research-article |
1 |
|
23
|
Ozkan BN, Bozali K, Boylu ME, Velioglu HA, Aktas S, Kirpinar I, Guler EM. Altered blood parameters in "major depression" patients receiving repetitive transcranial magnetic stimulation (rTMS) therapy: a randomized case-control study. Transl Psychiatry 2024; 14:264. [PMID: 38918365 PMCID: PMC11199570 DOI: 10.1038/s41398-024-02942-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 05/10/2024] [Accepted: 05/17/2024] [Indexed: 06/27/2024] Open
Abstract
Major depressive disorder (MDD) is a debilitating illness that includes depressive mood. Repetitive Transcranial Magnetic Stimulation (rTMS) is a therapy method used in the treatment of MDD. The purpose of this study was to assess neurotrophic factors, and oxidative stress levels in MDD patients and evaluate the changes in these parameters as a result of rTMS therapy. Twenty-five patients with MDD and twenty-six healthy volunteers with the same demographic characteristics were included in the study. Brain-derived neurotrophic factors were measured photometrically with commercial kits. Oxidative stress parameters were measured by the photometric method. Oxidative stress index (OSI) and disulfide (DIS) levels were calculated with mathematical formulas. In this study, total antioxidant status (TAS), total thiol (TT), and native thiol (NT) antioxidant parameters and brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), and allopregnanolone (ALLO) levels were reduced in pre-rTMS with regard to the healthy control group; TOS, OSI, DIS, and S100 calcium-binding protein B (S100B) levels were increased statistically significantly (p < 0.01). Moreover, owing to TMS treatment; TAS, TT, NT, BDNF, GDNF, and ALLO levels were increased compared to pre-rTMS, while DIS, TOS, OSI, and S100B levels were decreased significantly (p < 0.01). The rTMS treatment reduces oxidative stress and restores thiol-disulfide balance in MDD patients. Additionally, rTMS modulates neurotrophic factors and neuroactive steroids, suggesting its potential as an antidepressant therapy. The changes in the biomarkers evaluated may help determine a more specific approach to treating MDD with rTMS therapy.
Collapse
|
Randomized Controlled Trial |
1 |
|
24
|
Ozkan BN, Bozali K, Boylu ME, Velioglu HA, Aktas S, Kirpinar I, Guler EM. Correction: Altered blood parameters in "major depression" patients receiving repetitive transcranial magnetic stimulation (rTMS) therapy: a randomized case-control study. Transl Psychiatry 2024; 14:282. [PMID: 38992017 PMCID: PMC11239947 DOI: 10.1038/s41398-024-02999-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/13/2024] Open
|
Published Erratum |
1 |
|
25
|
Mutlu-Burnaz O, Yulug B, Oncul M, Celik E, Atasoy NS, Cankaya S, Hanoglu L, Velioglu HA. Chemogenetic inhibition of MCH neurons does not alter memory performance in mice. Biomed Pharmacother 2022; 155:113771. [DOI: 10.1016/j.biopha.2022.113771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
|
|
3 |
|