1
|
Kar S, Shahshahan HR, Hackfort BT, Yadav SK, Yadav R, Kambis TN, Lefer DJ, Mishra PK. Exercise Training Promotes Cardiac Hydrogen Sulfide Biosynthesis and Mitigates Pyroptosis to Prevent High-Fat Diet-Induced Diabetic Cardiomyopathy. Antioxidants (Basel) 2019; 8:antiox8120638. [PMID: 31835893 PMCID: PMC6943713 DOI: 10.3390/antiox8120638] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/06/2019] [Accepted: 12/09/2019] [Indexed: 12/30/2022] Open
Abstract
Obesity increases the risk of developing diabetes and subsequently, diabetic cardiomyopathy (DMCM). Reduced cardioprotective antioxidant hydrogen sulfide (H2S) and increased inflammatory cell death via pyroptosis contribute to adverse cardiac remodeling and DMCM. Although exercise training (EX) has cardioprotective effects, it is unclear whether EX mitigates obesity-induced DMCM by increasing H₂S biosynthesis and mitigating pyroptosis in the heart. C57BL6 mice were fed a high-fat diet (HFD) while undergoing treadmill EX for 20 weeks. HFD mice developed obesity, hyperglycemia, and insulin resistance, which were reduced by EX. Left ventricle pressure-volume measurement revealed that obese mice developed reduced diastolic function with preserved ejection fraction, which was improved by EX. Cardiac dysfunction was accompanied by increased cardiac pyroptosis signaling, structural remodeling, and metabolic remodeling, indicated by accumulation of lipid droplets in the heart. Notably, EX increased cardiac H₂S concentration and expression of H₂S biosynthesis enzymes. HFD-induced obesity led to features of type 2 diabetes (T2DM), and subsequently DMCM. EX during the HFD regimen prevented the development of DMCM, possibly by promoting H₂S-mediated cardioprotection and alleviating pyroptosis. This is the first report of EX modulating H₂S and pyroptotic signaling in the heart.
Collapse
|
Journal Article |
6 |
56 |
2
|
Nandi SS, Zheng H, Sharma NM, Shahshahan HR, Patel KP, Mishra PK. Lack of miR-133a Decreases Contractility of Diabetic Hearts: A Role for Novel Cross Talk Between Tyrosine Aminotransferase and Tyrosine Hydroxylase. Diabetes 2016; 65:3075-90. [PMID: 27411382 PMCID: PMC5033264 DOI: 10.2337/db16-0023] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 07/01/2016] [Indexed: 01/21/2023]
Abstract
MicroRNAs (miRNAs) have a fundamental role in diabetic heart failure. The cardioprotective miRNA-133a (miR-133a) is downregulated, and contractility is decreased in diabetic hearts. Norepinephrine (NE) is a key catecholamine that stimulates contractility by activating β-adrenergic receptors (β-AR). NE is synthesized from tyrosine by the rate-limiting enzyme, tyrosine hydroxylase (TH), and tyrosine is catabolized by tyrosine aminotransferase (TAT). However, the cross talk/link between TAT and TH in the heart is unclear. To determine whether miR-133a plays a role in the cross talk between TH and TAT and regulates contractility by influencing NE biosynthesis and/or β-AR levels in diabetic hearts, Sprague-Dawley rats and miR-133a transgenic (miR-133aTg) mice were injected with streptozotocin to induce diabetes. The diabetic rats were then treated with miR-133a mimic or scrambled miRNA. Our results revealed that miR-133a mimic treatment improved the contractility of the diabetic rat's heart concomitant with upregulation of TH, cardiac NE, β-AR, and downregulation of TAT and plasma levels of NE. In miR-133aTg mice, cardiac-specific miR-133a overexpression prevented upregulation of TAT and suppression of TH in the heart after streptozotocin was administered. Moreover, miR-133a overexpression in CATH.a neuronal cells suppressed TAT with concomitant upregulation of TH, whereas knockdown and overexpression of TAT demonstrated that TAT inhibited TH. Luciferase reporter assay confirmed that miR-133a targets TAT. In conclusion, miR-133a controls the contractility of diabetic hearts by targeting TAT, regulating NE biosynthesis, and consequently, β-AR and cardiac function.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Diabetes Mellitus, Experimental/metabolism
- HEK293 Cells
- Hemodynamics/physiology
- Humans
- Immunohistochemistry
- Male
- Mice, Transgenic
- MicroRNAs/genetics
- MicroRNAs/metabolism
- MicroRNAs/physiology
- Myocardial Contraction/genetics
- Myocardial Contraction/physiology
- Myocardium/metabolism
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/physiology
- Norepinephrine/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, Adrenergic, beta/genetics
- Receptors, Adrenergic, beta/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Tyrosine 3-Monooxygenase/genetics
- Tyrosine 3-Monooxygenase/metabolism
- Tyrosine Transaminase/genetics
- Tyrosine Transaminase/metabolism
Collapse
|
Research Support, N.I.H., Extramural |
9 |
46 |
3
|
Kar S, Shahshahan HR, Kambis TN, Yadav SK, Li Z, Lefer DJ, Mishra PK. Hydrogen Sulfide Ameliorates Homocysteine-Induced Cardiac Remodeling and Dysfunction. Front Physiol 2019; 10:598. [PMID: 31178749 PMCID: PMC6544124 DOI: 10.3389/fphys.2019.00598] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 04/26/2019] [Indexed: 12/13/2022] Open
Abstract
Patients with diabetes, a methionine-rich meat diet, or certain genetic polymorphisms show elevated levels of homocysteine (Hcy), which is strongly associated with the development of cardiovascular disease including diabetic cardiomyopathy. However, reducing Hcy levels with folate shows no beneficial cardiac effects. We have previously shown that a hydrogen sulfide (H2S), a by-product of Hcy through transsulfuration by cystathionine beta synthase (CBS), donor mitigates Hcy-induced hypertrophy in cardiomyocytes. However, the in vivo cardiac effects of H2S in the context of hyperhomocysteinemia (HHcy) have not been studied. We tested the hypothesis that HHcy causes cardiac remodeling and dysfunction in vivo, which is ameliorated by H2S. Twelve-week-old male CBS+/− (a model of HHcy) and sibling CBS+/+ (WT) mice were treated with SG1002 (a slow release H2S donor) diet for 4 months. The left ventricle of CBS+/− mice showed increased expression of early remodeling signals c-Jun and c-Fos, increased interstitial collagen deposition, and increased cellular hypertrophy. Notably, SG1002 treatment slightly reduced c-Jun and c-Fos expression, decreased interstitial fibrosis, and reduced cellular hypertrophy. Pressure volume loop analyses in CBS+/− mice revealed increased end systolic pressure with no change in stroke volume (SV) suggesting increased afterload, which was abolished by SG1002 treatment. Additionally, SG1002 treatment increased end-diastolic volume and SV in CBS+/− mice, suggesting increased ventricular filling. These results demonstrate SG1002 treatment alleviates cardiac remodeling and afterload in HHcy mice. H2S may be cardioprotective in conditions where H2S is reduced and Hcy is elevated.
Collapse
|
Journal Article |
6 |
34 |
4
|
Kambis TN, Shahshahan HR, Kar S, Yadav SK, Mishra PK. Transgenic Expression of miR-133a in the Diabetic Akita Heart Prevents Cardiac Remodeling and Cardiomyopathy. Front Cardiovasc Med 2019; 6:45. [PMID: 31069235 PMCID: PMC6491745 DOI: 10.3389/fcvm.2019.00045] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/25/2019] [Indexed: 01/22/2023] Open
Abstract
Advanced diabetes mellitus (DM) may have both insulin resistance and deficiency (double DM) that accelerates diabetic cardiomyopathy (DMCM), a cardiac muscle disorder. Reduced cardiac miR-133a, a cardioprotective miRNA, is associated with DMCM. However, it is unclear whether increasing miR-133a levels in the double DM heart could prevent DMCM. We hypothesized that increasing cardiac levels of miR-133a could prevent DMCM in Akita, a mouse model of double DM. To test the hypothesis, we created Akita/miR-133aTg mice, a new strain of Akita where miR-133a is overexpressed in the heart, by crossbreeding male Akita with female cardiac-specific miR-133a transgenic mice. We validated Akita/miR-133aTg mice by genotyping and phenotyping (miR-133a levels in the heart). To determine whether miR-133a overexpression could prevent cardiac remodeling and cardiomyopathy, we evaluated cardiac fibrosis, hypertrophy, and dysfunction (P-V loop) in 13-15 week male WT, Akita, Akita/miR-133aTg, and miR-133aTg mice. Our results revealed that miR-133a overexpression in the Akita heart prevents DM-induced cardiac fibrosis (reduced collagen deposition), hypertrophy (decreased beta-myosin heavy chain), and impaired contractility (downregulated calcium handling protein sarco-endoplasmic reticulum-ATPase-2a). These results demonstrate that increased levels of miR-133a in the DM heart could prevent cardiac remodeling. Our P-V loop analysis showed a trend of decreased cardiac output, stroke volume, and ± dp/dt in Akita, which were blunted in Akita/miR-133aTg heart. These findings suggest that 13-15 week Akita heart undergoes adverse remodeling toward cardiomyopathy, which is prevented by miR-133a overexpression. In addition, increased cardiac miR-133a in the Akita heart did not change blood glucose levels but decreased lipid accumulation in the heart, suggesting inhibition of metabolic remodeling in the heart. Thus, miR-133a could be a promising therapeutic candidate to prevent DMCM.
Collapse
|
Journal Article |
6 |
28 |
5
|
Kesherwani V, Nandi SS, Sharawat SK, Shahshahan HR, Mishra PK. Hydrogen sulfide mitigates homocysteine-mediated pathological remodeling by inducing miR-133a in cardiomyocytes. Mol Cell Biochem 2015; 404:241-50. [PMID: 25763715 DOI: 10.1007/s11010-015-2383-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 03/05/2015] [Indexed: 12/13/2022]
Abstract
An elevated level of homocysteine called hyperhomocysteinemia (HHcy) is associated with pathological cardiac remodeling. Hydrogen sulfide (H2S) acts as a cardioprotective gas; however, the mechanism by which H2S mitigates homocysteine-mediated pathological remodeling in cardiomyocytes is unclear. We hypothesized that H2S ameliorates HHcy-mediated hypertrophy by inducing cardioprotective miR-133a in cardiomyocytes. To test the hypothesis, HL1 cardiomyocytes were treated with (1) plain medium (control, CT), (2) 100 µM of homocysteine (Hcy), (3) Hcy with 30 µM of H2S (Hcy + H2S), and (4) H2S for 24 h. The levels of hypertrophy markers: c-fos, atrial natriuretic peptide (ANP), and beta-myosin heavy chain (β-MHC), miR-133a, and its transcriptional inducer myosin enhancer factor-2C (MEF2C) were determined by Western blotting, RT-qPCR, and immunofluorescence. The activity of MEF2C was assessed by co-immunoprecipitation of MEF2C with histone deacetylase-1(HDAC1). Our results show that H2S ameliorates homocysteine-mediated up-regulation of c-fos, ANP, and β-MHC, and down-regulation of MEF2C and miR-133a. HHcy induces the binding of MEF2C with HDAC1, whereas H2S releases MEF2C from MEF2C-HDAC1 complex causing activation of MEF2C. These findings elicit that HHcy induces cardiac hypertrophy by promoting MEF2C-HDAC1 complex formation that inactivates MEF2C causing suppression of anti-hypertrophy miR-133a in cardiomyocytes. H2S mitigates hypertrophy by inducing miR-133a through activation of MEF2C in HHcy cardiomyocytes. To our knowledge, this is a novel mechanism of H2S-mediated activation of MEF2C and induction of miR-133a and inhibition of hypertrophy in HHcy cardiomyocytes.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
23 |
6
|
Kar S, Shahshahan H, Mishra PK. Abstract 501: Hydrogen Sulfide Protects the Heart Against Ferroptotic Cell Death in Diabetic Cardiomyopathy. Circ Res 2020. [DOI: 10.1161/res.127.suppl_1.501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hyperglycemia-induced death of terminally differentiated cardiomyocytes in diabetic cardiomyopathy (DMCM) leads to heart failure. Ferroptosis is a newly discovered form of cell death triggered by intracellular iron and oxidative stress. While little is known about ferroptosis in DMCM, hyperinsulinemia stimulates intracellular iron uptake, which would be predicted to increase ferroptosis. H
2
S is an endogenous gaseous signaling molecule which may inhibit ferroptosis. H
2
S donors increase glutathione substrate for glutathione peroxidase 4 (GPX4), which removes lipid peroxidation and is the primary inhibitor of ferroptosis. However, no study has investigated the role of H
2
S in ferroptosis. We tested the hypothesis that increased ferroptosis contributes to DMCM, which is ameliorated by restoring H
2
S levels, by measuring ferroptosis in the hearts of db/db mice with DMCM and high glucose treated primary neonatal cardiomyocytes after H
2
S donor treatment. GPX4 expression was decreased (3.21±0.41 GPX4/total protein in db/+ control mice vs. 1.84±0.26 in db/db, P<0.05, n=6/group) and 4-HNE lipid peroxide was increased (7.37±0.98 μg 4-HNE/total protein in db/+ control mice vs. 8.73±0.84 in db/db, P<0.05, n=3/group) in the left ventricle of db/db mice indicating increased ferroptosis in DMCM. GPX4 activity was also decreased along with increased 4-HNE in high glucose cultured cardiomyocytes. Treatment with the ferroptosis inhibitor ferrostatin-1 prevented hyperglycemia induced ferroptosis. Treatment of cardiomyocytes with the H
2
S donor GYY4137 in hyperglycemia also decreased 4-HNE. We also validated the anti-ferroptotic potential of H
2
S by treating cardiomyocytes with the ferroptosis inducer RSL3 and GYY4137. H
2
S donor treatment reduced reactive oxygen species and 4-HNE lipid peroxide seen after ferroptosis induction with RSL3. This study establishes ferroptosis as a new, non-apoptotic, form of cell death in DMCM, and H
2
S as a novel regulator of cardiac ferroptosis.
Collapse
|
|
5 |
1 |
7
|
Gawargi FI, Shahshahan HR, Mishra PK. Tailoring transfection for cardiomyocyte cell lines: balancing efficiency and toxicity in lipid versus polymer-based transfection methods in H9c2 and HL-1 cells. Am J Physiol Heart Circ Physiol 2024; 326:H1406-H1419. [PMID: 38607343 PMCID: PMC11380941 DOI: 10.1152/ajpheart.00119.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/27/2024] [Accepted: 04/02/2024] [Indexed: 04/13/2024]
Abstract
Cardiovascular research relies heavily on the veracity of in vitro cardiomyocyte models, with H9c2 and HL-1 cell lines at the forefront due to their cardiomyocyte-like properties. However, the variability stemming from nonstandardized culturing and transfection methods poses a significant challenge to data uniformity and reliability. In this study, we introduce meticulously crafted protocols to enhance the culture and transfection of H9c2 and HL-1 cells, emphasizing the reduction of cytotoxic effects while improving transfection efficiency. Through the examination of polymer-based and lipid-based transfection methods, we offer a comparative analysis that underscores the heightened efficiency and reduced toxicity of these approaches. Our research provides an extensive array of step-by-step procedures designed to foster robust cell cultures and outlines troubleshooting practices to rectify issues of low transfection rates. We discuss the merits and drawbacks of both transfection techniques, equipping researchers with the knowledge to choose the most fitting method for their experimental goals. By offering a definitive guide to these cell lines' culturing and transfection, our work seeks to set a new standard in procedural consistency, ensuring that the cardiovascular research community can achieve more dependable and reproducible results, thereby pushing the boundaries of current methodologies toward impactful clinical applications.NEW & NOTEWORTHY We have developed standardized protocols that significantly reduce cytotoxicity and enhance transfection efficiency in H9c2 and HL-1 cardiomyocyte cell lines. Our detailed comparative analysis of polymer-based and lipid-based transfection methods has identified optimized approaches with superior performance. Accompanying these protocols are comprehensive troubleshooting strategies to address common issues related to low transfection rates. Implementing these protocols is expected to yield more consistent and reproducible results, driving the field of cardiovascular research toward impactful clinical breakthroughs.
Collapse
|
Comparative Study |
1 |
|
8
|
Sharawat S, Nandi S, Kesherwani V, Shahshahan H, Mishra P. Mdivi‐1 Mitigates ROS and Mitophagy, Improves Healthy Mitochondrial Pool in Hyperglycemic Cardiomyocytes. FASEB J 2015. [DOI: 10.1096/fasebj.29.1_supplement.1040.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
|
10 |
|
9
|
Shahshahan H, Hackfort B, Mishra P. Cardiomyocyte‐Specific Transgenic MMP9 Overexpression Induces Cardiac Remodeling. FASEB J 2021. [DOI: 10.1096/fasebj.2021.35.s1.04281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
|
4 |
|
10
|
Nandi SS, Duryee MJ, Shahshahan HR, Thiele GM, Anderson DR, Mishra PK. Induction of autophagy markers is associated with attenuation of miR-133a in diabetic heart failure patients undergoing mechanical unloading. Am J Transl Res 2015; 7:683-696. [PMID: 26064437 PMCID: PMC4455344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 04/11/2015] [Indexed: 06/04/2023]
Abstract
Autophagy is ubiquitous in all forms of heart failure and cardioprotective miR-133a is attenuated in human heart failure. Previous reports from heart failure patients undergoing left ventricular assist device (LVAD) implantation demonstrated that autophagy is upregulated in the LV of the failing human heart. Studies in the murine model show that diabetes downregulates miR-133a. However, the role of miR-133a in the regulation of autophagy in diabetic hearts is unclear. We tested the hypothesis that diabetes exacerbates cardiac autophagy by inhibiting miR-133a in heart failure patients undergoing LVAD implantation. The miRNA assay was performed on the LV of 15 diabetic (D) and 6 non-diabetic (ND) heart failure patients undergoing LVAD implantation. Four ND with highly upregulated and 5 D with highly downregulated miR-133a were analyzed for autophagy markers (Beclin1, LC3B, ATG3) and their upstream regulators (mTOR and AMPK), and hypertrophy marker (beta-myosin heavy chain) by RT-qPCR, Western blotting and immunofluorescence. Our results demonstrate that attenuation of miR-133a in diabetic hearts is associated with the induction of autophagy and hypertrophy, and suppression of mTOR without appreciable difference in AMPK activity. In conclusion, attenuation of miR-133a contributes to the exacerbation of diabetes mediated cardiac autophagy and hypertrophy in heart failure patients undergoing LVAD implantation.
Collapse
|
research-article |
10 |
|