1
|
Tohme S, Yazdani HO, Al-Khafaji AB, Chidi AP, Loughran P, Mowen K, Wang Y, Simmons RL, Huang H, Tsung A. Neutrophil Extracellular Traps Promote the Development and Progression of Liver Metastases after Surgical Stress. Cancer Res 2016; 76:1367-80. [PMID: 26759232 DOI: 10.1158/0008-5472.can-15-1591] [Citation(s) in RCA: 494] [Impact Index Per Article: 54.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 12/19/2015] [Indexed: 12/13/2022]
Abstract
Risks of tumor recurrence after surgical resection have been known for decades, but the mechanisms underlying treatment failures remain poorly understood. Neutrophils, first-line responders after surgical stress, may play an important role in linking inflammation to cancer progression. In response to stress, neutrophils can expel their protein-studded chromatin to form local snares known as neutrophil extracellular traps (NET). In this study, we asked whether, as a result of its ability to ensnare moving cells, NET formation might promote metastasis after surgical stress. Consistent with this hypothesis, in a cohort of patients undergoing attempted curative liver resection for metastatic colorectal cancer, we observed that increased postoperative NET formation was associated with a >4-fold reduction in disease-free survival. In like manner, in a murine model of surgical stress employing liver ischemia-reperfusion, we observed an increase in NET formation that correlated with an accelerated development and progression of metastatic disease. These effects were abrogated by inhibiting NET formation in mice through either local treatment with DNAse or inhibition of the enzyme peptidylarginine deaminase, which is essential for NET formation. In growing metastatic tumors, we found that intratumoral hypoxia accentuated NET formation. Mechanistic investigations in vitro indicated that mouse neutrophil-derived NET triggered HMGB1 release and activated TLR9-dependent pathways in cancer cells to promote their adhesion, proliferation, migration, and invasion. Taken together, our findings implicate NET in the development of liver metastases after surgical stress, suggesting that their elimination may reduce risks of tumor relapse.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
494 |
2
|
van der Windt DJ, Sud V, Zhang H, Varley PR, Goswami J, Yazdani HO, Tohme S, Loughran P, O’Doherty RM, Minervini MI, Huang H, Simmons RL, Tsung A. Neutrophil extracellular traps promote inflammation and development of hepatocellular carcinoma in nonalcoholic steatohepatitis. Hepatology 2018; 68:1347-1360. [PMID: 29631332 PMCID: PMC6173613 DOI: 10.1002/hep.29914] [Citation(s) in RCA: 334] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 03/11/2018] [Accepted: 03/30/2018] [Indexed: 12/14/2022]
Abstract
UNLABELLED Nonalcoholic steatohepatitis (NASH) is a progressive, inflammatory form of fatty liver disease. It is the most rapidly rising risk factor for the development of hepatocellular carcinoma (HCC), which can arise in NASH with or without cirrhosis. The inflammatory signals promoting the progression of NASH to HCC remain largely unknown. The propensity of neutrophils to expel decondensed chromatin embedded with inflammatory proteins, known as neutrophil extracellular traps (NETs), has been shown to be important in chronic inflammatory conditions and in cancer progression. In this study, we asked whether NET formation occurs in NASH and contributes to the progression of HCC. We found elevated levels of a NET marker in serum of patients with NASH. In livers from STAM mice (NASH induced by neonatal streptozotocin and high-fat diet), early neutrophil infiltration and NET formation were seen, followed by an influx of monocyte-derived macrophages, production of inflammatory cytokines, and progression of HCC. Inhibiting NET formation, through treatment with deoxyribonuclease (DNase) or using mice knocked out for peptidyl arginine deaminase type IV (PAD4-/- ), did not affect the development of a fatty liver but altered the consequent pattern of liver inflammation, which ultimately resulted in decreased tumor growth. Mechanistically, we found that commonly elevated free fatty acids stimulate NET formation in vitro. CONCLUSION Our findings implicate NETs in the protumorigenic inflammatory environment in NASH, suggesting that their elimination may reduce the progression of liver cancer in NASH. (Hepatology 2018).
Collapse
|
research-article |
7 |
334 |
3
|
Yazdani HO, Roy E, Comerci AJ, van der Windt DJ, Zhang H, Huang H, Loughran P, Shiva S, Geller DA, Bartlett DL, Tsung A, Sheng T, Simmons RL, Tohme S. Neutrophil Extracellular Traps Drive Mitochondrial Homeostasis in Tumors to Augment Growth. Cancer Res 2019; 79:5626-5639. [PMID: 31519688 PMCID: PMC6825588 DOI: 10.1158/0008-5472.can-19-0800] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 07/31/2019] [Accepted: 09/09/2019] [Indexed: 12/29/2022]
Abstract
Neutrophil infiltration and neutrophil extracellular traps (NET) in solid cancers are associated with poorer prognosis, but the mechanisms are incompletely understood. We hypothesized that NETs enhance mitochondrial function in tumor cells, providing extra energy for accelerated growth. Metastatic colorectal cancer tissue showed increased intratumoral NETs and supranormal preoperative serum MPO-DNA, a NET marker. Higher MPO-DNA correlated with shorter survival. In mice, subcutaneous tumor implants and hepatic metastases grew slowly in PAD4-KO mice, genetically incapable of NETosis. In parallel experiments, human cancer cell lines grew slower in nu/nu mice treated with DNAse, which disassembles NETs. PAD4-KO tumors manifested decreased proliferation, increased apoptosis, and increased evidence of oxidative stress. PAD4-KO tumors had decreased mitochondrial density, mitochondrial DNA, a lesser degree of ATP production, along with significantly decreased mitochondrial biogenesis proteins PGC1α, TFAM, and NRF-1. In vitro, cancer cells treated with NETs upregulated mitochondrial biogenesis-associated genes, increased mitochondrial density, increased ATP production, enhanced the percentage of cancer cells with reduced mitochondrial membrane potential, and increased the oxygen consumption rate. Furthermore, NETs increased cancer cells' expression of fission and fusion-associated proteins, DRP-1 and MFN-2, and mitophagy-linked proteins, PINK1 and Parkin. All of which were decreased in PAD4-KO tumors. Mechanistically, neutrophil elastase released from NETs activated TLR4 on cancer cells, leading to PGC1α upregulation, increased mitochondrial biogenesis, and accelerated growth. Taken together, NETs can directly alter the metabolic programming of cancer cells to increase tumor growth. NETs represent a promising therapeutic target to halt cancer progression. SIGNIFICANCE: Neutrophils through the release of NETs facilitate the growth of stressed cancer cells by altering their bioenergetics, the inhibition of which induces cell death.
Collapse
|
Research Support, N.I.H., Extramural |
6 |
153 |
4
|
Kaltenmeier C, Yazdani HO, Morder K, Geller DA, Simmons RL, Tohme S. Neutrophil Extracellular Traps Promote T Cell Exhaustion in the Tumor Microenvironment. Front Immunol 2021; 12:785222. [PMID: 34899751 PMCID: PMC8652262 DOI: 10.3389/fimmu.2021.785222] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/09/2021] [Indexed: 12/17/2022] Open
Abstract
While neutrophil extracellular traps (NETs) are important for directly promoting cancer growth, little is known about their impact on immune cells within the tumor microenvironment (TME). We hypothesize that NETs can directly interact with infiltrating T cells to promote an immunosuppressive TME. Herein, to induce a NET-rich TME, we performed liver Ischemia/Reperfusion (I/R) in an established cancer metastasis model or directly injected NETs in subcutaneous tumors. In this NET-rich TME, the majority of CD4+ and CD8+ tumor infiltrating lymphocytes expressed multiple inhibitory receptors, in addition these cells showed a functional and metabolic exhausted phenotype. Targeting of NETs in vivo by treating mice with DNAse lead to decreased tumor growth, decreased NET formation and higher levels of functioning T cells. In vitro, NETs contained the immunosuppressive ligand PD-L1 responsible for T cell exhaustion and dysfunction; an effect abrogated by using PD-L1 KO NETs or culturing NETs with PD-1 KO T cells. Furthermore, we found elevated levels of sPDL-1 and MPO-DNA, a NET marker, in the serum of patients undergoing surgery for colorectal liver metastases resection. Neutrophils isolated from patients after surgery were primed to form NETs and induced exhaustion and dysfunction of human CD4+ and CD8+ T cells. We next targeted PD-L1 in vivo by injecting a blocking antibody during liver I/R. A single dose of anti-PD-L1 during surgery lead to diminished tumors at 3 weeks and functional T cells in the TME. Our data thus reveal that NETs have the capability of suppressing T cell responses through metabolic and functional exhaustion and thereby promote tumor growth. Furthermore, targeting of PD-L1 containing NETs at time of surgery with DNAse or anti-PD-L1 lead to diminished tumor growth, which represents a novel and viable strategy for sustaining immune competence within the TME.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
141 |
5
|
Tohme S, Yazdani HO, Liu Y, Loughran P, van der Windt DJ, Huang H, Simmons RL, Shiva S, Tai S, Tsung A. Hypoxia mediates mitochondrial biogenesis in hepatocellular carcinoma to promote tumor growth through HMGB1 and TLR9 interaction. Hepatology 2017; 66:182-197. [PMID: 28370295 PMCID: PMC5481489 DOI: 10.1002/hep.29184] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 02/26/2017] [Accepted: 03/23/2017] [Indexed: 12/12/2022]
Abstract
UNLABELLED The ability of cancer cells to survive and grow under hypoxic conditions has been known for decades, but the mechanisms remain poorly understood. Under certain conditions, cancer cells undergo changes in their bioenergetic profile to favor mitochondrial respiration by activating the peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α) and up-regulating mitochondrial biogenesis. In this study, we hypothesized that augmented mitochondrial biogenesis plays a critical role for cancer cells to survive hypoxia. Consistent with this hypothesis, both hypoxic human hepatocellular carcinoma (HCC) tumors and HCC cell lines subjected to hypoxia increase mitochondrial biogenesis. Silencing of PGC-1α in hypoxic HCC cell lines halts their proliferation. Mechanistic investigations in vitro indicated that intracellular high mobility group box 1 (HMGB1) protein, a nuclear protein overexpressed in HCC, is essential for the process. Silencing of HMGB1 in hypoxic HCC cell lines resulted in a significant decrease in PGC-1α activation and mitochondrial biogenesis. Without HMGB1, hypoxic HCC cells had significantly reduced adenosine triphosphate production, decreased cellular proliferation, and increased apoptosis. In a diethylnitrosamine-induced murine model of HCC, genetic blocking of HMGB1 in hypoxic tumors resulted in a significant decrease in tumor growth. Tumors lacking HMGB1 had a significant reduction in mitochondrial biogenesis and a significant increase in mitochondrial dysfunction. Further in vitro mechanistic experiments indicated that during hypoxia HMGB1 translocates from the nucleus to the cytoplasm and binds to cytoplasmic Toll-like receptor-9. This binding leads to activation of p38 and subsequent phosphorylation of PGC-1α, with resultant up-regulation of mitochondrial biogenesis. CONCLUSION Taken together, our findings suggest that during hypoxia HMGB1 up-regulates mitochondrial biogenesis in HCC cancer cells, promoting tumor survival and proliferation. (Hepatology 2017;66:182-197).
Collapse
|
research-article |
8 |
91 |
6
|
Yazdani HO, Chen HW, Tohme S, Tai S, van der Windt DJ, Loughran P, Rosborough BR, Sud V, Beer-Stolz D, Turnquist HR, Tsung A, Huang H. IL-33 exacerbates liver sterile inflammation by amplifying neutrophil extracellular trap formation. J Hepatol 2017; 68:S0168-8278(17)32291-2. [PMID: 28943296 PMCID: PMC5862757 DOI: 10.1016/j.jhep.2017.09.010] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 09/10/2017] [Accepted: 09/11/2017] [Indexed: 01/04/2023]
Abstract
BACKGROUND & AIMS Neutrophils and liver sinusoidal endothelial cells (LSECs) both contribute to sterile inflammatory injury during ischemia/reperfusion (I/R), a well-known liver surgical stress. Interleukin-33 (IL-33) has been shown to drive neutrophil infiltration during inflammatory responses through its receptor ST2. We recently reported that infiltrating neutrophils form neutrophil extracellular traps (NETs), which exacerbate sterile inflammatory injury in liver I/R. Here, we sought to determine the role of IL-33 in NET formation during liver sterile inflammation. METHODS Evaluation of IL-33 forming NETs was investigated using a partial liver I/R model to generate sterile injury in healthy WT, IL-33 and ST2 knockouts. Serum levels of IL-33 and myeloperoxidase (MPO)-DNA complex were measured in both humans and mice after the first surgery. Liver damage was assessed. Mouse neutrophil depletion was performed by intraperitoneal injection of anti-Ly6G antibody before I/R. RESULTS Patients undergoing liver resection showed a significant increase in serum IL-33 compared to healthy volunteers. This coincided with higher serum MPO-DNA complexes. NET formation was decreased in IL-33 and ST2 knockout mice compared with control mice, after liver I/R. IL-33 or ST2 deficiency protected livers from I/R injury, whereas rIL-33 administration during I/R exacerbated hepatotoxicity and systemic inflammation. In vitro, IL-33 is released from LSECs to promote NET formation. IL-33 deficient LSECs failed to induce NETs. ST2 deficient neutrophils limited their capacity to form NETs in vitro and adoptive transfer of ST2 knockout neutrophils to neutrophil-depleted WT mice significantly decreased NET formation. CONCLUSIONS Data establish that IL-33, mainly released from LSECs, causes excessive sterile inflammation after hepatic I/R by inducing NET formation. Therapeutic targeting of IL-33/ST2 might extend novel strategies to minimize organ damage in various clinical settings associated with sterile inflammation. LAY SUMMARY Liver ischemia and reperfusion injury results in the formation of neutrophil extracellular traps, which contribute to organ damage in liver surgeries. Herein, we show that IL-33 is released from liver sinusoidal endothelial cells to promote NET formation during liver I/R, which exacerbates inflammatory cascades and sterile inflammation.
Collapse
|
research-article |
8 |
80 |
7
|
Yazdani HO, Huang H, Tsung A. Autophagy: Dual Response in the Development of Hepatocellular Carcinoma. Cells 2019; 8:cells8020091. [PMID: 30695997 PMCID: PMC6406383 DOI: 10.3390/cells8020091] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/22/2019] [Accepted: 01/26/2019] [Indexed: 12/16/2022] Open
Abstract
Autophagy is an evolutionary conserved intracellular mechanism which helps eukaryotic cells in maintaining their metabolic state to afford high-efficiency energy requirements. In the physiology of a normal liver and the pathogenesis of liver diseases, autophagy plays a crucial role. Autophagy has been found to be both upregulated and downregulated in different cancers providing the evidence that autophagy plays a dual role in suppressing and promoting cell survival. Hepatocellular carcinoma (HCC) is the most common primary liver cancer and the major leading cause of cancer mortality worldwide. In light of its high complexity and poor prognosis, it is essential to improve our understanding of autophagy’s role in HCC. In this review, we summarize the dual mechanism of autophagy in the development of HCC and elucidate the currently used therapeutic strategies for anti-HCC therapy.
Collapse
|
Review |
6 |
59 |
8
|
Kaltenmeier C, Wang R, Popp B, Geller D, Tohme S, Yazdani HO. Role of Immuno-Inflammatory Signals in Liver Ischemia-Reperfusion Injury. Cells 2022; 11:cells11142222. [PMID: 35883665 PMCID: PMC9323912 DOI: 10.3390/cells11142222] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/09/2022] [Accepted: 07/13/2022] [Indexed: 02/01/2023] Open
Abstract
Ischemia reperfusion injury (IRI) is a major obstacle in liver resection and liver transplantation. The initial step of IRI is mediated through ischemia which promotes the production of reactive oxygen species in Kupffer cells. This furthermore promotes the activation of pro-inflammatory signaling cascades, including tumor necrosis factor-alpha, IL-6, interferon, inducible nitric oxide synthase, TLR9/nuclear-factor kappa B pathway, and the production of damage-associated molecular patterns (DAMPs), such as ATP, histone, high mobility group box 1 (HMGB1), urate, mitochondrial formyl peptides and S100 proteins. With ongoing cell death of hepatocytes during the ischemic phase, DAMPs are built up and released into the circulation upon reperfusion. This promotes a cytokines/chemokine storm that attracts neutrophils and other immune cells to the site of tissue injury. The effect of IRI is further aggravated by the release of cytokines and chemokines, such as epithelial neutrophil activating protein (CXCL5), KC (CXCL1) and MIP-2 (CXCL2), the complement proteins C3a and C5a, mitochondrial-derived formyl peptides, leukotriene B4 and neutrophil extracellular traps (NETs) from migrating neutrophils. These NETs can also activate platelets and form Neutrophil-platelet microthrombi to further worsen ischemia in the liver. In this review we aim to summarize the current knowledge of mediators that promote liver IRI, and we will discuss the role of neutrophils and neutrophil extracellular traps in mediating IRI.
Collapse
|
Review |
3 |
49 |
9
|
Kaltenmeier C, Simmons RL, Tohme S, Yazdani HO. Neutrophil Extracellular Traps (NETs) in Cancer Metastasis. Cancers (Basel) 2021; 13:6131. [PMID: 34885240 PMCID: PMC8657162 DOI: 10.3390/cancers13236131] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 11/29/2021] [Indexed: 12/20/2022] Open
Abstract
Metastasis is the leading cause of cancer related morbidity and mortality. The metastatic process involves several identifiable biological stages, including tumor cell dissemination, intravasation, and the extravasation of circulating cancer cells to facilitate colonization at a distant site. Immune cell infiltration and inflammation within the tumor microenvironment coincide with tumor progression and metastatic spread and are thought to be the key mediators of this complex process. Amongst many infiltrating cells, neutrophils have recently emerged as an important player in fueling tumor progression, both in animal models and cancer patients. The production of Neutrophil Extracellular Traps (NETs) is particularly important in the pathogenesis of the metastatic cascade. NETs are composed of web-like DNA structures with entangled proteins that are released in response to inflammatory cues in the environment. NETs play an important role in driving tumor progression both in experimental and clinical models. In this review, we aim to summarize the current advances in understanding the role of NETs in cancer, with a specific focus on their role in promoting premetastatic niche formation, interaction with circulating cancer cells, and in epithelial to mesenchymal transition during cancer metastasis. We will furthermore discuss the possible role and different treatment options for targeting NETs to prevent tumor progression.
Collapse
|
Review |
4 |
33 |
10
|
Tohme S, Yazdani HO, Sud V, Loughran P, Huang H, Zamora R, Simmons RL, Vodovotz Y, Tsung A. Computational Analysis Supports IL-17A as a Central Driver of Neutrophil Extracellular Trap-Mediated Injury in Liver Ischemia Reperfusion. THE JOURNAL OF IMMUNOLOGY 2018; 202:268-277. [PMID: 30504418 DOI: 10.4049/jimmunol.1800454] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 10/23/2018] [Indexed: 12/19/2022]
Abstract
Hepatic ischemia reperfusion (I/R) is a clinically relevant model of acute sterile inflammation leading to a reverberating, self-sustaining inflammatory response with resultant necrosis. We hypothesized that computerized dynamic network analysis (DyNA) of 20 inflammatory mediators could help dissect the sequence of post-I/R mediator interactions that induce injury. Although the majority of measured inflammatory mediators become elevated in the first 24 h, we predicted that only a few would be secreted early in the process and serve as organizational centers of downstream intermediator complexity. In support of this hypothesis, DyNA inferred a central organizing role for IL-17A during the first 3 h of reperfusion. After that, DyNA revealed connections among almost all the inflammatory mediators, representing an ongoing cytokine storm. Blocking IL-17A immediately after reperfusion disassembled the inflammatory networks and protected the liver from injury. Disassembly of the networks was not achieved if IL-17A blockage was delayed two or more hours postreperfusion. Network disassembly was accompanied by decrease in neutrophil infiltration and neutrophil extracellular trap (NET) formation. By contrast, administration of recombinant IL-17A increased neutrophil infiltration, NET formation, and liver necrosis. The administration of DNase, a NET inhibitor, significantly reduced hepatic damage despite prior administration of IL-17A, and DNase also disassembled the inflammatory networks. In vitro, IL-17A was a potent promoter of NET formation. Therefore, computational analysis identified IL-17A's early, central organizing role in the rapid evolution of a network of inflammatory mediators that induce neutrophil infiltration and NET formation responsible for hepatic damage after liver I/R.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
28 |
11
|
Kaltenmeier C, Yazdani HO, Handu S, Popp B, Geller D, Tohme S. The Role of Neutrophils as a Driver in Hepatic Ischemia-Reperfusion Injury and Cancer Growth. Front Immunol 2022; 13:887565. [PMID: 35844608 PMCID: PMC9284204 DOI: 10.3389/fimmu.2022.887565] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/02/2022] [Indexed: 12/22/2022] Open
Abstract
The innate immune system plays an essential role in the response to sterile inflammation and its association with liver ischemia and reperfusion injury (IRI). Liver IRI often manifests during times of surgical stress such as cancer surgery or liver transplantation. Following the initiation of liver IRI, stressed hepatocytes release damage-associated molecular patterns (DAMPs) which promote the infiltration of innate immune cells which then initiate an inflammatory cascade and cytokine storm. Upon reperfusion, neutrophils are among the first cells that infiltrate the liver. Within the liver, neutrophils play an important role in fueling tissue damage and tumor progression by promoting the metastatic cascade through the formation of Neutrophil Extracellular Traps (NETs). NETs are composed of web-like DNA structures containing proteins that are released in response to inflammatory stimuli in the environment. Additionally, NETs can aid in mediating liver IRI, promoting tumor progression, and most recently, in mediating early graft rejection in liver transplantation. In this review we aim to summarize the current knowledge of innate immune cells, with a focus on neutrophils, and their role in mediating IRI in mouse and human diseases, including cancer and transplantation. Moreover, we will investigate the interaction of Neutrophils with varying subtypes of other cells. Furthermore, we will discuss the role and different treatment modalities in targeting Neutrophils and NETs to prevent IRI.
Collapse
|
|
3 |
23 |
12
|
Yazdani HO, Kaltenmeier C, Morder K, Moon J, Traczek M, Loughran P, Zamora R, Vodovotz Y, Li F, Wang JHC, Geller DA, Simmons RL, Tohme S. Exercise Training Decreases Hepatic Injury and Metastases Through Changes in Immune Response to Liver Ischemia/Reperfusion in Mice. Hepatology 2021; 73:2494-2509. [PMID: 32924145 PMCID: PMC7956053 DOI: 10.1002/hep.31552] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/13/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND AND AIMS Liver ischemia/reperfusion injury (IRI) induces local and systemic inflammation in which neutrophil extracellular traps (NETs) are major drivers. IRI markedly augments metastatic growth, which is consistent with the notion that the liver IRI can serve as a premetastatic niche. Exercise training (ExT) confers a sustainable protection, reducing IRI in some animal models, and has been associated with improved survival in patients with cancer; however, the impact of ExT on liver IRI or development of hepatic metastases is unknown. APPROACH AND RESULTS Mice were randomized into exercise (ExT) and sedentary groups before liver IRI and tumor injection. Computerized dynamic network analysis of 20 inflammatory mediators was used to dissect the sequence of mediator interactions after ischemia/reperfusion (I/R) that induce injury. ExT mice showed a significant decrease in hepatic IRI and tissue necrosis. This coincided with disassembly of complex networks among inflammatory mediators seen in sedentary mice. Neutrophil infiltration and NET formation were decreased in the ExT group, which suppressed the expression of liver endothelial cell adhesion molecules. Concurrently, ExT mice revealed a distinct population of infiltrating macrophages expressing M2 phenotypic genes. In a metastatic model, fewer metastases were present 3 weeks after I/R in the ExT mice, a finding that correlated with a marked increase in tumor-suppressing T cells within the tumor microenvironment. CONCLUSIONS ExT preconditioning mitigates the inflammatory response to liver IRI, protecting the liver from injury and metastases. In light of these findings, potential may exist for the reduction of liver premetastatic niches induced by liver IRI through the use of ExT as a nonpharmacologic therapy before curative surgical approaches.
Collapse
|
research-article |
4 |
13 |
13
|
Yazdani HO, Tohme S. Murine Model of Metastatic Liver Tumors in the Setting of Ischemia Reperfusion Injury. J Vis Exp 2019. [PMID: 31524857 DOI: 10.3791/59748] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Liver ischemia and reperfusion (I/R) injury, a common clinical challenge, remains an inevitable pathophysiological process that has been shown to induce multiple tissue and organ damage. Despite recent advances and therapeutic approaches, the overall morbidity has remained unsatisfactory especially in patients with underlying parenchymal abnormalities. In the context of aggressive cancer growth and metastasis, surgical I/R is suspected to be the promoter regulating tumor recurrence. This article aims to describe a clinically relevant murine model of liver I/R and colorectal liver metastasis. In doing so, we aim to assist other investigators in establishing and perfecting this model for their routine research practice to better understand the effects of liver I/R on promoting liver metastases.
Collapse
|
Video-Audio Media |
6 |
4 |
14
|
Van Der Windt D, Yazdani HO, Chen HW, Rosborough BR, Loughran P, Tsung A, Huang H. ST2 Stimulation on Neutrophils Induces Neutrophil Extracellular Trap Formation and Exacerbates Injury after Hepatic Ischemia/Reperfusion. J Am Coll Surg 2016. [DOI: 10.1016/j.jamcollsurg.2016.06.153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
|
9 |
1 |
15
|
Yazdani HO, Haykal T, Yang R, Tohme C, Geller DA, Tohme S. Abstract 5136: Surgical stress promotes long-lasting protumorigenic changes in bone marrow derived progenitor cells. Cancer Res 2023. [DOI: 10.1158/1538-7445.am2023-5136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Abstract
Introduction: Surgery is a crucial intervention for cancer patients. However, the perioperative period is characterized by an increased risk for accelerated growth of metastatic disease. Our recent work shows that the protumorigenic systemic inflammatory changes and the formation of neutrophil extracellular traps (NETs) persist months after surgery in both mice and humans, and parallel micrometastatic tumor growth and recurrence. Here we hypothesized that surgery may induce long-term sustained epigenetic and transcriptomic changes in bone marrow derived granulocytes-monocytes progenitor cells (GMPs) leading to functional reprogramming of mature neutrophils and persistent systemic release of these protumorigenic NET-forming neutrophils.
Methods: Eight-week-old mice were subjected to non-lethal surgical stress (laparotomy) for 30 mins. Seven days after, mice were inoculated with 1x106 MC38 (murine colorectal cancer cells) subcutaneously. For bone marrow (BM) transplant model, a group of B6 congenic (CD45.1) mice were subjected to laparotomy. BM derived cells were harvested 7 days after the procedure and orthotopically transplanted into B6 CD45.2 irradiated (1000 rads) mice. After the establishment of hematopoiesis (6 weeks), MC38 cancer cells were implanted into the recipient mice.
Results: Mice that underwent laparotomy had significantly increased tumor volume at 3 weeks compared to control mice, that only underwent anesthesia (Laparotomy vs control **p<0.01). While the intratumoral flowcytometry analysis showed no difference in the frequency of infiltrating immune cells, quantitative (q) PCR analysis revealed significant plasticity in the tumor infiltrating neutrophils (TANs) observed by an increase in the expression of genes (MCP1, Arg1) associated with pro-inflammatory (N2) type neutrophils compared to control. A persistent increased level of NETs was also observed within the tumors and circulation of mice several weeks after laparotomy. ATAC-seq and Bulk-RNA-seq analysis further revealed major epigenetic and transcriptomic changes in TANs, circulating neutrophils and GMPs. To substantiate long-lasting surgical effects, tumor burden was assessed in the BM recipient mice and showed to be significantly increased in mice that had received BM cells from laparotomy mice versus BM cells from sham group.
Conclusion: Surgery promotes long-term rewiring of the bone marrow derived cells resulting in increased tumor growth. Understanding the underlying molecular mechanism may help with therapeutic interventions to prevent protumorigenic surgical effects and improve patient outcomes.
Citation Format: Hamza O. Yazdani, Tony Haykal, Ruiqi Yang, Celine Tohme, David A. Geller, Samer Tohme. Surgical stress promotes long-lasting protumorigenic changes in bone marrow derived progenitor cells. [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2023; Part 1 (Regular and Invited Abstracts); 2023 Apr 14-19; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2023;83(7_Suppl):Abstract nr 5136.
Collapse
|
|
2 |
|
16
|
Mota Alvidrez RI, Annarapu GK, Srinivasan AJ, Liu Z, Yazdani HO, Simmons RL, Shiva S, Neal MD, Nolfi-Donegan D. High Dose of Metformin Decreases Susceptibility to Occlusive Arterial Thrombosis in Diabetic Mice. RESEARCH SQUARE 2023:rs.3.rs-3143156. [PMID: 37503167 PMCID: PMC10371086 DOI: 10.21203/rs.3.rs-3143156/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Introduction Metformin is the most prescribed medication in Diabetes Mellitus(DM). Metformin has shown to decrease mean platelet volume, with promising antiplatelet effects. High doses of Metformin have also been associated with hypercoagulation. We hypothesize that Metformin will protect DM mice from occlusive arterial thrombus formation by altering platelet activation and mitochondrial bioenergetics. Methods DM was developed by low dose of Streptozotocin, healthy (non-DM) mice are controls. Either vehicle or Metformin was administered twice daily via oral gavage for 7-days. Ferric chloride (FeCl3) arterial thrombosis and tail bleeding time were performed. Whole blood aggregometry, platelet activation/adhesion and mitochondrial bioenergetics were evaluated. Results Metformin decreased susceptibility of DM mice to arterial thrombosis. Platelet bioenergetics show DM mice have increased platelet mitochondrial respiration, but no differences were observed with Metformin treatment. In healthy mice, Metformin modulated ADP-dependent increase in platelet adhesion. In healthy mice, Metformin shortens bleeding time with faster thrombotic occlusion. Metformin also increased platelet mitochondrial maximal respiration and spare respiratory capacity uniquely in healthy mice. Conclusion Metformin regulates platelet bioenergetics and ADP-mediated platelet function in DM mice which attenuates susceptibility to arterial thrombosis. Future studies will evaluate clinically relevant doses of Metformin that regulates thrombotic function in diabetic platelets.
Collapse
|
Preprint |
2 |
|
17
|
Yazdani HO, Geller DA, Tohme S. Spliced CEACAM1: A Potential Novel Biomarker and Target for Ameliorating Liver Ischemia-reperfusion Injury. Transplantation 2024; 108:585-587. [PMID: 38385338 DOI: 10.1097/tp.0000000000004886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Hepatic ischemia-reperfusion injury remains a significant challenge in liver transplantation potentially leading to delayed graft function, primary nonfunction, and sometimes rejection. Understanding the underlying mechanisms and implementing mitigation strategies are essential for improving transplant outcomes and patient survival. A recent study published by Dery et al shows that alternative splicing of carcinoembryonic antigen-related cell adhesion molecule 1 regulated by hypoxia inducible factor 1 alpha under stress enhances hepatic ischemia tolerance in mice and humans. The authors identified a direct binding of hypoxia inducible factor 1 alpha to the promoter region of polypyrimidine tract-binding protein 1 splicing enzyme, resulting in carcinoembryonic antigen-related cell adhesion molecule 1-short induction and improved posttransplant outcomes. This study has notably elucidated a potential biomarker pertaining to the quality of liver transplant donor grafts.
Collapse
|
|
1 |
|
18
|
Liu Z, Annarapu G, Yazdani HO, Wang Q, Liu S, Luo JH, Yu YP, Ren B, Neal MD, Monga SP, Mota Alvidrez RI. Restoring glucose balance: Conditional HMGB1 knockdown mitigates hyperglycemia in a Streptozotocin induced mouse model. Heliyon 2024; 10:e23561. [PMID: 38187339 PMCID: PMC10770459 DOI: 10.1016/j.heliyon.2023.e23561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 01/09/2024] Open
Abstract
Diabetes mellitus (DM) poses a significant global health burden, with hyperglycemia being a primary contributor to complications and high morbidity associated with this disorder. Existing glucose management strategies have shown suboptimal effectiveness, necessitating alternative approaches. In this study, we explored the role of high mobility group box 1 (HMGB1) in hyperglycemia, a protein implicated in initiating inflammation and strongly correlated with DM onset and progression. We hypothesized that HMGB1 knockdown will mitigate hyperglycemia severity and enhance glucose tolerance. To test this hypothesis, we utilized a novel inducible HMGB1 knockout (iHMGB1 KO) mouse model exhibiting systemic HMGB1 knockdown. Hyperglycemic phenotype was induced using low dose streptozotocin (STZ) injections, followed by longitudinal glucose measurements and oral glucose tolerance tests to evaluate the effect of HMGB1 knockdown on glucose metabolism. Our findings showed a substantial reduction in glucose levels and enhanced glucose tolerance in HMGB1 knockdown mice. Additionally, we performed RNA sequencing analyses, which identified potential alternations in genes and molecular pathways within the liver and skeletal muscle tissue that may account for the in vivo phenotypic changes observed in hyperglycemic mice following HMGB1 knockdown. In conclusion, our present study delivers the first direct evidence of a causal relationship between systemic HMGB1 knockdown and hyperglycemia in vivo, an association that had remained unexamined prior to this research. This discovery positions HMGB1 knockdown as a potentially efficacious therapeutic target for addressing hyperglycemia and, by extension, the DM epidemic. Furthermore, we have revealed potential underlying mechanisms, establishing the essential groundwork for subsequent in-depth mechanistic investigations focused on further elucidating and harnessing the promising therapeutic potential of HMGB1 in DM management.
Collapse
|
research-article |
1 |
|
19
|
Alvidrez RIM, Annarapu GK, Srinivasan AJ, Liu Z, Yazdani HO, Nolfi-Donegan D, Simmons RL, Shiva S, Neal MD. High Dose of Metformin Decreases Susceptibility to Occlusive Arterial Thrombosis in Diabetic Mice. JOURNAL OF PHARMACY AND PHARMACOLOGY RESEARCH 2023; 7:192-202. [PMID: 37975061 PMCID: PMC10653203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Introduction Metformin is the most prescribed medication in Diabetes Mellitus(DM). Metformin has shown to decrease mean platelet volume, with promising antiplatelet effects. High doses of Metformin have also been associated with hypercoagulation. We hypothesize that Metformin will protect DM mice from occlusive arterial thrombus formation by altering platelet activation and mitochondrial bioenergetics. Methods DM was developed by low dose of Streptozotocin, non-DM (healthy) mice are controls. Either vehicle or Metformin was administered twice daily via oral gavage for 7-days. Ferric chloride (FeCl3) arterial thrombosis and tail bleeding time were performed. Whole blood aggregometry, platelet activation/adhesion and mitochondrial bioenergetics were evaluated. Results Metformin decreased susceptibility of DM mice to arterial thrombosis. Platelet bioenergetics show DM mice have increased platelet mitochondrial respiration, but no differences were observed with Metformin treatment. In non-DM (healthy) mice, Metformin modulated ADP-dependent increase in platelet adhesion. Non-DM (healthy) mice, Metformin shortens bleeding time with faster thrombotic occlusion. Metformin also increased platelet mitochondrial maximal respiration and spare respiratory capacity uniquely in non-DM (healthy) mice. Conclusion Metformin regulates platelet bioenergetics and ADP-mediated platelet function in DM mice which attenuates susceptibility to arterial thrombosis. Future studies will evaluate clinically relevant doses of Metformin that regulates thrombotic function in diabetic platelets.
Collapse
|
research-article |
2 |
|
20
|
Yazdani HO, Yang R, Haykal T, Tohme C, Kaltenmeier C, Wang R, Nakano R, Nigmet Y, Gambella A, Loughran P, Hughes CB, Geller DA, Tohme S. Exercise Preconditioning of the Donor Liver Decreases Cold Ischemia/Reperfusion Injury in a Mouse Model. Transplantation 2025; 109:161-173. [PMID: 39656524 DOI: 10.1097/tp.0000000000005176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
BACKGROUND Liver transplantation stands as the primary treatment for end-stage liver disease, with demand surging in recent decades because of expanded indications. However, hepatic ischemia/reperfusion injury can lead to liver transplant failure in both deceased donor and living donor transplantation. This study explored whether preconditioning donor livers through exercise training (ExT) could mitigate cold ischemic injury posttransplantation. METHODS Donor C57BL/6 mice underwent ExT via treadmill running or remained sedentary. After 4 wk, the donor liver underwent cold storage and subsequent orthotopic liver transplantation or ex vivo warm reperfusion. RESULTS Donor liver from mice subjected to ExT showed significantly decreased hepatic injury on reperfusion. Tissue histology revealed decreased sinusoidal congestion, vacuolization, and hepatocellular necrosis in livers from ExT mice, and immunofluorescence staining further revealed a decreased number of apoptotic cells in ExT grafts. Livers from ExT donors expressed decreased intragraft inflammatory cytokines cascade, decreased neutrophil infiltration and neutrophil extracellular traps, and increased M2 phenotype of recipient macrophages compared with grafts from sedentary mice. After cold storage, liver grafts from ExT donors showed decreased accumulation of reactive oxygen species and decreased levels of cytochrome c and high mobility group box 1 released in the liver effluent. In addition, ExT grafts showed upregulated peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) and higher levels of mitochondrial content. Similar effects of decreased hepatic injury were observed in wild-type mice when pretreated with a PGC-1α stimulator ZLN005 instead of ExT. CONCLUSIONS These findings suggest that augmenting hepatocytic mitochondrial content through donor exercise or PGC-1α stimulation may offer therapeutic avenues to mitigate postreperfusion inflammation and improve transplant outcomes.
Collapse
|
|
1 |
|
21
|
Tohme C, Haykal T, Yang R, Austin TJ, Loughran P, Geller DA, Simmons RL, Tohme S, Yazdani HO. ZLN005, a PGC-1α Activator, Protects the Liver against Ischemia-Reperfusion Injury and the Progression of Hepatic Metastases. Cells 2024; 13:1448. [PMID: 39273020 PMCID: PMC11393917 DOI: 10.3390/cells13171448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/22/2024] [Accepted: 08/25/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Exercise can promote sustainable protection against cold and warm liver ischemia-reperfusion injury (IRI) and tumor metastases. We have shown that this protection is by the induction of hepatic mitochondrial biogenesis pathway. In this study, we hypothesize that ZLN005, a PGC-1α activator, can be utilized as an alternative therapeutic strategy. METHODS Eight-week-old mice were pretreated with ZLN005 and subjected to liver warm IRI. To establish a liver metastatic model, MC38 cancer cells (1 × 106) were injected into the spleen, followed by splenectomy and liver IRI. RESULTS ZLN005-pretreated mice showed a significant decrease in IRI-induced tissue injury as measured by serum ALT/AST/LDH levels and tissue necrosis. ZLN005 pretreatment decreased ROS generation and cell apoptosis at the site of injury, with a significant decrease in serum pro-inflammatory cytokines, innate immune cells infiltration, and intrahepatic neutrophil extracellular trap (NET) formation. Moreover, mitochondrial mass was significantly upregulated in hepatocytes and maintained after IRI. This was confirmed in murine and human hepatocytes treated with ZLN005 in vitro under normoxic and hypoxic conditions. Additionally, ZLN005 preconditioning significantly attenuated tumor burden and increased the percentage of intratumoral cytotoxic T cells. CONCLUSIONS Our study highlights the effective protection of ZLN005 pretreatment as a therapeutic alternative in terms of acute liver injury and tumor metastases.
Collapse
|
Research Support, N.I.H., Extramural |
1 |
|
22
|
Zhang H, Ren J, Yazdani HO, Van Der Windt D, Zhang J, Tsung A, Huang H. Preoperative exercise therapy protects the liver from ischemia-reperfusion injury. THE JOURNAL OF IMMUNOLOGY 2018. [DOI: 10.4049/jimmunol.200.supp.49.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Introduction
Surgical stress such as hepatic ischemia/reperfusion (I/R) injury results in an increased risk of postoperative morbidity and mortality, including liver transplantation. Preoperative exercise therapy has been shown to enhance physical capacity at the moment of hospital admission and may facilitate better recovery after surgery. However, the mechanisms behind this protection remain to be elucidated. Here we hypothesize that preoperative aerobic exercise therapy has protective effects as a result of inhibiting sterile inflammatory processes after liver I/R injury.
Methods
Eight-week-old male C57BL/6 mice were randomly divided into exercise (n=15) or sedentary (n=15) groups. The exercise group ran on a motorized treadmill for 60 min/day, 5 days/week at a speed of 12.5m/min for 4 weeks. 70% partial liver warm I/R was performed in both groups of mice at 72 hours after the final exercise session.
Results
After 4 weeks,60% exercised mice showed a 3%–6% weight loss whereas the weight of all sedentary mice were increased. The sALT levels was significantly reduced in the exercise mice than the sedentary mice after liver I/R. Significantly increased Natural Killer (NK) cells were observed, whereas less neutrophil infiltration was seen in exercise mice after I/R, suggesting a link between hepatic immune modulation and exercise. Moreover, the lactate dehydrogenase (LDH), apoptosis, reactive oxygen species (ROS) in hepatocyte were all decreased in exercise mice.
Conclusions
These data show beneficial effects of preoperative exercise therapy on the experimental model of liver I/R injury, which offer a rationale for encouraging predisposed patients of HCC or other end-stage liver diseases that need liver surgery.
Collapse
|
|
7 |
|
23
|
Chen W, Peng W, Wang R, Bai S, Cao M, Xiong S, Li Y, Yang Y, Liang J, Liu L, Yazdani HO, Zhao Y, Cheng B. Exosome-derived tRNA fragments tRF-GluCTC-0005 promotes pancreatic cancer liver metastasis by activating hepatic stellate cells. Cell Death Dis 2024; 15:102. [PMID: 38291031 PMCID: PMC10827722 DOI: 10.1038/s41419-024-06482-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 02/01/2024]
Abstract
Early metastasis is the primary factor in the very poor prognosis of pancreatic ductal adenocarcinoma (PDAC), with liver metastasis being the most common form of distant metastasis in PDAC. To investigate the mechanism of PDAC liver metastasis, we found that PDAC cells can promote the formation of pre-metastatic niches (PMNs) through exosomes to facilitate liver metastasis in the early stage. In our study, hepatic stellate cells (HSCs) were treated with PDAC-derived exosomes (PDAC-exo), and the activation of HSCs was detected. A novel transfer RNA-derived fragment, the tRF-GluCTC-0005 was obtained by small RNA sequencing from serum exosomes of PDAC patients. Bioinformatics analysis and RNA pull-down assays revealed the interaction between WDR1 and tRF-GluCTC-0005. A KPC transgenic mouse model and an AAV-mediated sh-WDR1 mouse model were used to detect the mechanism of liver metastasis in vivo. Finally, the dual luciferase reporter assay, protein mutation truncation assay, Co-IP assay, and flow cytometry assay were used to explore the molecular mechanism in HSCs activation and PMNs formation. We found that the tRF-GluCTC-0005 in exosomes binds to the 3' untranslated region of the mRNA of the WDRl in HSCs and increases mRNA stability. The N-terminals of WDR1 bind to the YAP protein directly, inhibit YAP phosphorylation, and promote the expression of YAP transcription factors. The tRF-GluCTC-0005 in PDAC-exo significantly recruits myeloid-derived suppressor cells (MDSCs) in the liver, creating a PMNs immunosuppressive microenvironment and further advancing liver metastasis from PDAC. Our results suggest that the key of PDAC liver metastasis is the activation of HSCs through upregulation of WDR1 by tRF-GluCTC-0005 in exosomes, which mediates the infiltration of MDSCs to form PMNs.
Collapse
|
research-article |
1 |
|
24
|
Yazdani HO, Kaltenmeier CT, Geller D, Tohme S. Abstract A97: Neutrophil extracellular traps (NETs) promote immune escape and metastatic growth after surgical stress. Cancer Immunol Res 2020. [DOI: 10.1158/2326-6074.tumimm19-a97] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Introduction: Surgery induces local and systemic inflammatory and immunosuppressive disturbances that correlate with adverse cancer outcomes. Following surgical stress, NETs promote the growth of liver micrometastases. We hypothesize that NETs support metastatic growth by promoting immune escape.
Methods: Liver ischemia reperfusion was performed 5 days after a murine liver metastatic model was established.
Results: Liver PD-L1 expression increased and peaked between 6-48 hours after reperfusion. A smaller peak of PD-L1 was observed after 2 weeks as the metastatic tumors grew. During the first 48 hours, the predominant source of PD-L1 was CD45+-CD11b+-Ly6G+ cells. PD-L1 expression was significantly decreased when NETs were inhibited either genetically by using PAD4KO mice or DNAse injections. In vitro, we confirmed both human and murine NETs express high levels of PD-L1. After liver I/R, tumor-infiltrating T cells expressed inhibitory receptors and were highly dysfunctional with reduced cytokine production and proliferative capacity in the NET-rich tumors compared to tumors from sham mice. T-cell exhaustion was reversed in mice treated with DNAse or PAD4KO mice. Similar results were observed in vitro as NETs suppressed T-cell function via PDL-1/PD-1 interaction. Treating mice with anti-PD-L1 during the first 48 hours after reperfusion reversed T-cell exhaustion and decreased tumor growth.
Conclusion: NETs induced by surgical stress cause immune escape by secreting PD-L1, increasing T-cell exhaustion, and upregulation of immunosuppressive ligands on tumor cells. These findings suggest avenues for overcoming the perioperative accelerated tumor growth and immunosuppressive state and ultimately improving long-term oncologic outcomes.
Citation Format: Hamza O. Yazdani, Christof T. Kaltenmeier, David Geller, Samer Tohme. Neutrophil extracellular traps (NETs) promote immune escape and metastatic growth after surgical stress [abstract]. In: Proceedings of the AACR Special Conference on Tumor Immunology and Immunotherapy; 2019 Nov 17-20; Boston, MA. Philadelphia (PA): AACR; Cancer Immunol Res 2020;8(3 Suppl):Abstract nr A97.
Collapse
|
|
5 |
|