1
|
Spoerner M, Herrmann C, Vetter IR, Kalbitzer HR, Wittinghofer A. Dynamic properties of the Ras switch I region and its importance for binding to effectors. Proc Natl Acad Sci U S A 2001; 98:4944-9. [PMID: 11320243 PMCID: PMC33143 DOI: 10.1073/pnas.081441398] [Citation(s) in RCA: 261] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2000] [Indexed: 11/18/2022] Open
Abstract
We have investigated the dynamic properties of the switch I region of the GTP-binding protein Ras by using mutants of Thr-35, an invariant residue necessary for the switch function. Here we show that these mutants, previously used as partial loss-of-function mutations in cell-based assays, have a reduced affinity to Ras effector proteins without Thr-35 being involved in any interaction. The structure of Ras(T35S)(.)GppNHp was determined by x-ray crystallography. Whereas the overall structure is very similar to wildtype, residues from switch I are completely invisible, indicating that the effector loop region is highly mobile. (31)P-NMR data had indicated an equilibrium between two rapidly interconverting conformations, one of which (state 2) corresponds to the structure found in the complex with the effectors. (31)P-NMR spectra of Ras mutants (T35S) and (T35A) in the GppNHp form show that the equilibrium is shifted such that they occur predominantly in the nonbinding conformation (state 1). On addition of Ras effectors, Ras(T35S) but not Ras(T35A) shift to positions corresponding to the binding conformation. The structural data were correlated with kinetic experiments that show two-step binding reaction of wild-type and (T35S)Ras with effectors requires the existence of a rate-limiting isomerization step, which is not observed with T35A. The results indicate that minor changes in the switch region, such as removing the side chain methyl group of Thr-35, drastically affect dynamic behavior and, in turn, interaction with effectors. The dynamics of the switch I region appear to be responsible for the conservation of this threonine residue in GTP-binding proteins.
Collapse
|
research-article |
24 |
261 |
2
|
Schweins T, Geyer M, Scheffzek K, Warshel A, Kalbitzer HR, Wittinghofer A. Substrate-assisted catalysis as a mechanism for GTP hydrolysis of p21ras and other GTP-binding proteins. NATURE STRUCTURAL BIOLOGY 1995; 2:36-44. [PMID: 7719852 DOI: 10.1038/nsb0195-36] [Citation(s) in RCA: 243] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Despite many advances in understanding the structure and function of GTP-binding proteins the mechanism by which these molecules switch from the GTP-bound on-state to the GDP-bound off-state is still poorly understood. Theoretical studies suggest that the activation of the nucleophilic water which hydrolyzes GTP needs a general base. Such a base could not be located in any of the many GTP-binding proteins. Here we present a unique type of linear free energy relationships that not only supports a mechanism for p21ras in which the substrate GTP itself acts as the catalytic base driving the GTPase reaction but can also help to explain why certain mutants of p21ras are oncogenic and others are not.
Collapse
|
|
30 |
243 |
3
|
Geyer M, Schweins T, Herrmann C, Prisner T, Wittinghofer A, Kalbitzer HR. Conformational transitions in p21ras and in its complexes with the effector protein Raf-RBD and the GTPase activating protein GAP. Biochemistry 1996; 35:10308-20. [PMID: 8756686 DOI: 10.1021/bi952858k] [Citation(s) in RCA: 188] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
31P NMR revealed that the complex of p21ras with the GTP analog GppNHp.Mg2+ exists in two conformational states, states 1 and 2. In wild-type p21ras the equilibrium constant K1(12) between the two states is 1.09. The population of these states is different for various mutants but independent of temperature. The activation enthalpy delta H ++ and activation entropy delta S ++ for the conformational transitions were determined by full-exchange matrix analysis for wild-type p21ras and p21ras(S65P). For the wild-type protein one obtains delta H ++ = 89 +/- 2 kJ mol-1 and delta S ++ = 102 +/- 20 J mol-1 K-1 and for the mutant protein delta H ++ = 93 +/- 7 kJ mol-1 and delta S ++ = 138 +/- 30 J mol-1 K-1. The study of various p21ras mutants suggests that the two states correspond to different conformations of loop L2, with Tyr-32 in two different positions relative to the bound nucleotide. High-field EPR at 95 GHz suggest that the observed conformational transition does not directly influence the coordination sphere of the protein-bound metal ion. The influence of this transition on loop L4 was studied by 1H NMR with mutants E62H and E63H. There was no indication that L4 takes part in the transition described in L2, although a reversible conformational change could be induced by decreasing the pH value. The exchange between the two states is slow on the NMR time scale (< 10 s-1): at approximately pH 5 the population of the two states is equal. The interaction of p21ras-triphosphate complexes with the Ras-binding domain (RBD) of the effector protein c-Raf-1, Raf-RBD, and with the GTPase activating protein GAP was studied by 31P NMR spectroscopy. In complex with Raf-RBD the second conformation of p21ras (state 2) is stabilized. In this conformation Tyr-32 is located in close proximity to the phosphate groups of the nucleotide, and the beta-phosphate resonance is shifted upfield by 0.7 ppm. Spectra obtained in the presence of GAP suggest that in the ground state GAP does not interact directly with the nucleotide bound to p21ras and does not induce larger conformational changes in the neighborhood of the nucleotide. The experimental data are consistent with a picture where GAP accelerates the exchange process between the two states and simultaneously increases the population of state 1 at higher temperature.
Collapse
|
|
29 |
188 |
4
|
Welker R, Kottler H, Kalbitzer HR, Kräusslich HG. Human immunodeficiency virus type 1 Nef protein is incorporated into virus particles and specifically cleaved by the viral proteinase. Virology 1996; 219:228-36. [PMID: 8623533 DOI: 10.1006/viro.1996.0240] [Citation(s) in RCA: 150] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The Nef protein of primate immunodeficiency viruses is essential for establishing a highly productive pathogenic infection in vivo. In tissue culture, Nef is not required for infection but enhances viral infectivity. This effect is most pronounced in unstimulated primary lymphocytes and occurs in the early phase of infection prior to viral gene expression. Since Nef expression does not lead to obvious changes in virus composition, it was of interest to analyze whether Nef is incorporated into virus particles. Here, we show that Nef is specifically immunoprecipitated from radioactively labeled human immunodeficiency virus type 1 (HIV-1)-infected cells and virus particle preparations. Quantitative analysis revealed Nef to be incorporated on the order of 10% of reverse transcriptase incorporation, which corresponds to 5 to 10 molecules of Nef per virion. In infected cells, Nef was detected as a full-length 27-kDa protein. In contrast, approximately 50% of particle-associated Nef corresponded to an 18-kDa species which comigrated with the larger product after in vitro cleavage of purified HIV-1 Nef by the viral proteinase. Nef cleavage in particle preparations was completely abolished by a specific inhibitor of HIV-1 proteinase. Most likely, Nef is cleaved concomitantly with viral structural proteins on maturation of virus particles. This cleavage is likely to be functionally significant because it dissociates the conserved core domain from the N-terminal membrane attachment region. Our results suggest that the profound influence of Nef on establishing infection of unstimulated cells in tissue culture and in vivo is mediated by virion-associated Nef which functions in early infection before viral gene expression.
Collapse
|
|
29 |
150 |
5
|
Linnemann T, Geyer M, Jaitner BK, Block C, Kalbitzer HR, Wittinghofer A, Herrmann C. Thermodynamic and kinetic characterization of the interaction between the Ras binding domain of AF6 and members of the Ras subfamily. J Biol Chem 1999; 274:13556-62. [PMID: 10224125 DOI: 10.1074/jbc.274.19.13556] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cellular signaling downstream of Ras is highly diversified and may involve many different effector molecules. A potential candidate is AF6 which was originally identified as a fusion to ALL-1 in acute myeloid leukemia. In the present work the interaction between Ras and AF6 is characterized and compared with other effectors. The binding characteristics are quite similar to Raf and RalGEF, i.e. nucleotide dissociation as well as GTPase-activating protein activity are inhibited, whereas the intrinsic GTPase activity of Ras is unperturbed by AF6 binding. Particularly, the dynamics of interaction are similar to Raf and RalGEF with a lifetime of the Ras. AF6 complex in the millisecond range. As probed by 31P NMR spectroscopy one of two major conformational states of Ras is stabilized by the interaction with AF6. Looking at the affinities of AF6 to a number of Ras mutants in the effector region, a specificity profile emerges distinct from that of other effector molecules. This finding may be useful in defining the biological function of AF6 by selectively switching off other pathways downstream of Ras using the appropriate effector mutant. Notably, among the Ras-related proteins AF6 binds most tightly to Rap1A which could imply a role of Rap1A in AF6 regulation.
Collapse
|
|
26 |
119 |
6
|
Geyer M, Herrmann C, Wohlgemuth S, Wittinghofer A, Kalbitzer HR. Structure of the Ras-binding domain of RalGEF and implications for Ras binding and signalling. NATURE STRUCTURAL BIOLOGY 1997; 4:694-9. [PMID: 9302994 DOI: 10.1038/nsb0997-694] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The solution structure of the Ras-binding domain (RBD) of Ral guanine-nucleotide exchange factor RalGEF was solved by NMR spectroscopy. The overall structure is similar to that of Raf-RBD, another effector of Ras, although the sequence identity is only 13%. 15N chemical shifts changes in the complex of RalGEF-RBD with Ras indicate an interaction similar to the intermolecular beta-sheet observed for the complex between Ras and Raf-RBD.
Collapse
|
Letter |
28 |
102 |
7
|
Geyer M, Munte CE, Schorr J, Kellner R, Kalbitzer HR. Structure of the anchor-domain of myristoylated and non-myristoylated HIV-1 Nef protein. J Mol Biol 1999; 289:123-38. [PMID: 10339411 DOI: 10.1006/jmbi.1999.2740] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Negative factor (Nef) is a regulatory myristoylated protein of human immunodeficiency virus (HIV) that has a two-domain structure consisting of an anchor domain and a core domain separated by a specific cleavage site of the HIV proteases. For structural analysis, the HIV-1 Nef anchor domain (residues 2-57) was synthesized with a myristoylated and non-myristoylated N terminus. The structures of the two peptides were studied by1H NMR spectroscopy and a structural model was obtained by restrained molecular dynamic simulations. The non-myristoylated peptide does not have a unique, compactly folded structure but occurs in a relatively extended conformation. The only rather well-defined canonical secondary structure element is a short two-turn alpha-helix (H2) between Arg35 and Gly41. A tendency for another helical secondary structure element (H1) can be observed for the arginine-rich region (Arg17 to Arg22). Myristoylation of the N-terminal glycine residue leads to stabilization of both helices, H1 and H2. The first helix in the arginine-rich region is stabilized by the myristoylation and now contains residues Pro14 to Arg22. The second helix appears to be better defined and to contain more residues (Ala33 to Gly41) than in the absence of myristoylation. In addition, the hydrophobic N-terminal myristic acid residue interacts closely with the side-chain of Trp5 and thereby forms a loop with Gly2, Gly3 and Lys4 in the kink region. This interaction could possibly be disturbed by phosphorylation of a nearby serine residue, and modifiy the characteristic membrane interactions of the HIV-1 Nef anchor domain.
Collapse
|
Comparative Study |
26 |
92 |
8
|
Kremer W, Schuler B, Harrieder S, Geyer M, Gronwald W, Welker C, Jaenicke R, Kalbitzer HR. Solution NMR structure of the cold-shock protein from the hyperthermophilic bacterium Thermotoga maritima. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:2527-39. [PMID: 11322871 DOI: 10.1046/j.1432-1327.2001.02127.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cold-shock proteins (Csps) are a subgroup of the cold-induced proteins preferentially expressed in bacteria and other organisms on reduction of the growth temperature below the physiological temperature. They are related to the cold-shock domain found in eukaryotes and are some of the most conserved proteins known. Their exact function is still not known, but translational regulation, possibly via RNA chaperoning, has been discussed. Here we present the structure of a hyperthermophilic member of the Csp family. The NMR solution structure of TmCsp from Thermotoga maritima, the hyperthermophilic member of this class of proteins, was solved on the basis of 1015 conformational constraints. It contains five beta strands combined in two antiparallel beta sheets making up a beta barrel structure, in which beta strands 1-4 are arranged in a Greek-key topology. The side chain of R2, which is exclusively found in thermophilic members of the Csp family, probably participates in a peripheral ion cluster involving residues D20, R2, E47 and K63, suggesting that the thermostability of TmCsp is based on the peripheral ion cluster around the side chain of R2.
Collapse
|
Comparative Study |
24 |
90 |
9
|
Vetter IR, Linnemann T, Wohlgemuth S, Geyer M, Kalbitzer HR, Herrmann C, Wittinghofer A. Structural and biochemical analysis of Ras-effector signaling via RalGDS. FEBS Lett 1999; 451:175-80. [PMID: 10371160 DOI: 10.1016/s0014-5793(99)00555-4] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The structure of the complex of Ras with the Ras-binding domain of its effector RalGDS (RGS-RBD), the first genuine Ras-effector complex, has been solved by X-ray crystallography. As with the Rap-RafRBD complex (Nasser et al., 1995), the interaction is via an inter-protein beta-sheet between the switch I region of Ras and the second strand of the RGS-RBD sheet, but the details of the interactions in the interface are remarkably different. Mutational studies were performed to investigate the contribution of selected interface residues to the binding affinity. Gel filtration experiments show that the Ras x RGS-RBD complex is a monomer. The results are compared to a recently determined structure of a similar complex using a Ras mutant (Huang et al., 1998) and are discussed in relation to partial loss-of-function mutations and the specificity of Ras versus Rap binding.
Collapse
|
|
26 |
84 |
10
|
Antz C, Geyer M, Fakler B, Schott MK, Guy HR, Frank R, Ruppersberg JP, Kalbitzer HR. NMR structure of inactivation gates from mammalian voltage-dependent potassium channels. Nature 1997; 385:272-5. [PMID: 9000078 DOI: 10.1038/385272a0] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The electrical signalling properties of neurons originate largely from the gating properties of their ion channels. N-type inactivation of voltage-gated potassium (Kv) channels is the best-understood gating transition in ion channels, and occurs by a 'ball-and-chain' type mechanism. In this mechanism an N-terminal domain (inactivation gate), which is tethered to the cytoplasmic side of the channel protein by a protease-cleavable chain, binds to its receptor at the inner vestibule of the channel, thereby physically blocking the pore. Even when synthesized as a peptide, ball domains restore inactivation in Kv channels whose inactivation domains have been deleted. Using high-resolution nuclear magnetic resonance (NMR) spectroscopy, we analysed the three-dimensional structure of the ball peptides from two rapidly inactivating mammalian K. channels (Raw3 (Kv3.4) and RCK4 (Kv1.4)). The inactivation peptide of Raw3 (Raw3-IP) has a compact structure that exposes two phosphorylation sites and allows the formation of an intramolecular disulphide bridge between two spatially close cysteine residues. Raw3-IP exhibits a characteristic surface charge pattern with a positively charged, a hydrophobic, and a negatively charged region. The RCK4 inactivation peptide (RCK4-IP) shows a similar spatial distribution of charged and uncharged regions, but is more flexible and less ordered in its amino-terminal part.
Collapse
|
|
28 |
81 |
11
|
Dörschug M, Frank R, Kalbitzer HR, Hengstenberg W, Deutscher J. Phosphoenolpyruvate-dependent phosphorylation site in enzyme IIIglc of the Escherichia coli phosphotransferase system. EUROPEAN JOURNAL OF BIOCHEMISTRY 1984; 144:113-9. [PMID: 6383826 DOI: 10.1111/j.1432-1033.1984.tb08438.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Enzyme-IIIglc is part of the glucose phosphotransferase system of Escherichia coli and Salmonella typhimurium and is phosphorylated by phosphoenolpyruvate in a reaction requiring enzyme I (phosphoenolpyruvate-protein phosphotransferase), and the histidine-containing phospho-carrier protein HPr. In this paper we report the isolation of IIIglc from E. coli and the characterization of the active center. Alkaline hydrolysis of [32P]P-IIIglc and chromatography of the hydrolysate suggested that the phosphoryl group is bound to a histidyl residue in P-IIIglc of S. typhimurium. Here we present 1H-NMR measurements of IIIglc and P-IIIglc from E. coli which further substantiate that the phosphoryl group in P-IIIglc is linked to the N-3 position of a histidyl residue. After phosphorylation of IIIglc with [32P]Phosphoenolpyruvate, enzyme I and HPr, the phosphorylated protein was cleaved with either alkaline protease from Streptomyces griseus or subtilisin from Bacillus subtilis. According to amino acid analysis both proteases produced the same peptide carrying the phosphoryl group. The amino acid sequence of this peptide was found to be Val-His-Phe-Gly-Ile-Asp. The lower electrophoretic mobility of P-IIIglc on dodecylsulfate/polyacrylamide gels and its stronger binding to the hydrophobic matrix of a reversed-phase column compared to unphosphorylated protein may indicate a structural change following phosphoenolpyruvate-dependent phosphorylation.
Collapse
|
|
41 |
73 |
12
|
Franken SM, Scheidig AJ, Krengel U, Rensland H, Lautwein A, Geyer M, Scheffzek K, Goody RS, Kalbitzer HR, Pai EF. Three-dimensional structures and properties of a transforming and a nontransforming glycine-12 mutant of p21H-ras. Biochemistry 1993; 32:8411-20. [PMID: 8357792 DOI: 10.1021/bi00084a005] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The three-dimensional structures and biochemical properties of two mutants of the G-domain (residues 1-166) of p21H-ras, p21 (G12D) and p21 (G12P), have been determined in the triphosphate-bound form using guanosine 5'-(beta,gamma-imido)triphosphate (GppNHp). They correspond to the most frequent oncogenic and the only nononcogenic mutation of Gly-12, respectively. The G12D mutation is the only mutant analyzed so far that crystallizes in a space group different from wild type, and the atomic model of the protein shows the most drastic changes of structure around the active site as compared to wild-type p21. This is due to the interactions of the aspartic acid side chain with Tyr-32, Gln-61, and the gamma-phosphate, which result in reduced mobility of these structural elements. The interaction between the carboxylate group of Asp-12 and the gamma-phosphate is mediated by a shared proton, which we show by 31P NMR measurements to exist in solution as well. The structure of p21 (G12P) is remarkably similar to that of wild-type p21 in the active site, including the position of the nucleophilic water. The pyrrolidine ring of Pro-12 points outward and seems to be responsible for the weaker affinity toward GAP (GTPase-activating protein) and the failure of GAP to stimulate GTP hydrolysis.
Collapse
|
Comparative Study |
32 |
69 |
13
|
Schweins T, Geyer M, Kalbitzer HR, Wittinghofer A, Warshel A. Linear free energy relationships in the intrinsic and GTPase activating protein-stimulated guanosine 5'-triphosphate hydrolysis of p21ras. Biochemistry 1996; 35:14225-31. [PMID: 8916907 DOI: 10.1021/bi961118o] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Controlling the hydrolysis rate of GTP bound to guanine nucleotide binding proteins is crucial for the right timing of many biological processes. Theoretical, structural, and functional studies have demonstrated that in p21ras the substrate of the reaction, GTP itself, plays a central role by acting as the base catalyst. This substrate-assisted reaction mechanism was analyzed with the help of linear free energy relationships (LFERs). Here we present experimental data that further support the proposed mechanism. We extend the LFER analysis to a wide range of oncogenic as well as nontransforming Ras mutants. It is illustrated that almost all Ras variants follow the observed LFER and thus also the same reaction path. Further, the reduced GTPase reaction rate that characterizes the oncogenic effect of many of the p21 mutants found in human tumors seems to be a consequence of a slightly reduced pKa of the gamma-phosphate group of bound GTP. Factors causing a pKa deviation of just 0.5 unit are enough to slow the intrinsic GTPase reaction rate significantly, and the system may exhibit as a consequence of this an oncogenic potential. Interestingly, we also found oncogenic mutations that do not follow the regular LFER. This suggests that the oncogenic effect of distinct Ras mutants has a different physical origin. The results presented might aid in the design of drugs aimed at reactivating the GTPase reaction of many oncogenic p21ras mutants. We also analyzed the stimulated GTPase reaction of p21ras by the GTPase activating protein (GAP) and the GTPase reaction of Rap1A, a Ras-related GTP binding protein, with similar approaches. The corresponding results indicate that the GAP-stimulated GTPase as well as the Rap1A-catalyzed reaction seem to follow the same substrate-assisted reaction mechanism. However, the correlation coefficient for the GAP-catalyzed reaction is different from the corresponding coefficient for the intrinsic reaction. While the intrinsic reaction exhibits a Brønsted slope of beta = 2.1, the corresponding value for the GAP-activated reaction is beta = 4.9.
Collapse
|
|
29 |
68 |
14
|
Neidig KP, Geyer M, Görler A, Antz C, Saffrich R, Beneicke W, Kalbitzer HR. AURELIA, a program for computer-aided analysis of multidimensional NMR spectra. JOURNAL OF BIOMOLECULAR NMR 1995; 6:255-270. [PMID: 22910849 DOI: 10.1007/bf00197807] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/1995] [Accepted: 07/25/1995] [Indexed: 06/01/2023]
Abstract
AURELIA is an advanced program for the computer-aided evaluation of two-, three- and four-dimensional NMR spectra of any type of molecule. It can be used for the analysis of spectra of small molecules as well as for evaluation of complicated spectra of biological macromolecules such as proteins. AURELIA is highly interactive and offers a large number of tools, such as artefact reduction, cluster and multiplet analysis, spin system searches, resonance assignments, automated calculation of volumes in multidimensional spectra, calculation of distances with different approaches, including the full relaxation matrix approach, Bayesian analysis of peak features, correlation of molecular structures with NMR data, comparison of spectra via spectral algebra and pattern match techniques, automated sequential assignments on the basis of triple resonance spectra, and automatic strip calculation. In contrast to most other programs, many tasks are performed automatically.
Collapse
|
|
30 |
66 |
15
|
Feuerstein J, Kalbitzer HR, John J, Goody RS, Wittinghofer A. Characterisation of the metal-ion-GDP complex at the active sites of transforming and nontransforming p21 proteins by observation of the 17O-Mn superhyperfine coupling and by kinetic methods. EUROPEAN JOURNAL OF BIOCHEMISTRY 1987; 162:49-55. [PMID: 3028791 DOI: 10.1111/j.1432-1033.1987.tb10540.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Kinetic studies on the interaction of three Ha-ras-encoded p21 proteins with GDP and MgGDP have yielded values for the association (10(6)-10(7) M-1 s-1) and dissociation (10(-3)-10(-5) s-1) rate constants at 0 degrees C. Dramatic differences in the rate constants were not observed for the three proteins. Under non-physiological conditions (absence of Mg2+), the rate constant for GDP release was an order of magnitude faster for the viral protein p21v than for the cellular form p21c or the T24 mutant p21t, but this was reduced to a factor of about 3 in the presence of Mg2+. In all cases, there was an increase of about one order of magnitude in the rate of GDP release on removing magnesium. The binding affinities ranged from 5.7 X 10(10) M-1 for p21c to 1.3 X 10(11) M-1 for p21v. Electron paramagnetic resonance (EPR) measurements on Mn2+ bound together with stereospecifically 17O-labelled GDP showed direct coordination of a beta-phosphate oxygen to the metal ion with a superhyperfine coupling constant of 0.16-0.22 mT, but no interaction with the alpha-phosphate oxygens at the active site of all three proteins. The association constant of Mn(II) to p21 proteins in the absence of nucleotides was estimated to be greater than 10(5) M-1. In agreement with the EPR results, experiments on the metal ion dependence of the binding of thiophosphate analogs of GDP provided further evidence for the absence of direct coordination of the metal ion to the alpha-phosphate group. These results have been used to construct a model for the interactions of Mg X GDP with the active site of p21 proteins.
Collapse
|
|
38 |
60 |
16
|
Kalbitzer HR, Hengstenberg W, Rösch P, Muss P, Bernsmann P, Engelmann R, Dörschug M, Deutscher J. HPr proteins of different microorganisms studied by hydrogen-1 high-resolution nuclear magnetic resonance: similarities of structures and mechanisms. Biochemistry 1982; 21:2879-85. [PMID: 6809041 DOI: 10.1021/bi00541a012] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The HPr proteins of Streptococcus lactis, Streptococcus faecalis, Bacillus subtilis, and Escherichia coli were studied by 1H NMR at 360 MHz. The "active-center" histidines of all HPr proteins are characterized by a low pK value between 5.6 and 6.1 and similar spectral parameters. Phosphorylation of the histidyl residues leads to an increase of the pK value of 2-3 units and spectral changes characteristic for N-1 phosphorylation of the histidyl ring. The spectra of the HPr proteins of S. lactis, S. Faecalis, B. subtilis, and Staphylococcus aureus reveal many similarities, whereas the spectrum of the E. coli protein is different with exception of the active-center histidine. The HPr protein of S. lactis is formylated at its terminal amino group.
Collapse
|
Comparative Study |
43 |
60 |
17
|
Antz C, Bauer T, Kalbacher H, Frank R, Covarrubias M, Kalbitzer HR, Ruppersberg JP, Baukrowitz T, Fakler B. Control of K+ channel gating by protein phosphorylation: structural switches of the inactivation gate. NATURE STRUCTURAL BIOLOGY 1999; 6:146-50. [PMID: 10048926 DOI: 10.1038/5833] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Fast N-type inactivation of voltage-dependent potassium (Kv) channels controls membrane excitability and signal propagation in central neurons and occurs by a 'ball-and-chain'-type mechanism. In this mechanism an N-terminal protein domain (inactivation gate) occludes the pore from the cytoplasmic side. In Kv3.4 channels, inactivation is not fixed but is dynamically regulated by protein phosphorylation. Phosphorylation of several identified serine residues on the inactivation gate leads to reduction or removal of fast inactivation. Here, we investigate the structure-function basis of this phospho-regulation with nuclear magnetic resonance (NMR) spectroscopy and patch-clamp recordings using synthetic inactivation domains (ID). The dephosphorylated ID exhibited compact structure and displayed high-affinity binding to its receptor. Phosphorylation of serine residues in the N- or C-terminal half of the ID resulted in a loss of overall structural stability. However, depending on the residue(s) phosphorylated, distinct structural elements remained stable. These structural changes correlate with the distinct changes in binding and unbinding kinetics underlying the reduced inactivation potency of phosphorylated IDs.
Collapse
|
|
26 |
57 |
18
|
Maurer T, Kalbitzer HR. Indirect Referencing of 31P and 19F NMR Spectra. JOURNAL OF MAGNETIC RESONANCE. SERIES B 1996; 113:177-8. [PMID: 8954901 DOI: 10.1006/jmrb.1996.0172] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
|
29 |
54 |
19
|
Freund J, Kellner R, Konvalinka J, Wolber V, Kräusslich HG, Kalbitzer HR. A possible regulation of negative factor (Nef) activity of human immunodeficiency virus type 1 by the viral protease. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 223:589-93. [PMID: 8055930 DOI: 10.1111/j.1432-1033.1994.tb19029.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Negative factor (Nef) protein from human immunodeficiency virus type 1 (HIV-1) is cleaved into two well-defined domains by the HIV-1-encoded protease. The cleavage site is located between Trp57 and Leu58 and is well conserved. The two domains are stable in the presence of protease for more than 48 h. The C-terminal core domain contains a well-conserved well-folded region. The cleavage releases the core domain from the myristoylated membrane anchor domain. As is the case for other HIV proteins, cleavage of Nef could be crucial for correct biological function.
Collapse
|
Comparative Study |
31 |
52 |
20
|
Gronwald W, Huber F, Grünewald P, Spörner M, Wohlgemuth S, Herrmann C, Kalbitzer HR. Solution structure of the Ras binding domain of the protein kinase Byr2 from Schizosaccharomyces pombe. Structure 2001; 9:1029-41. [PMID: 11709167 DOI: 10.1016/s0969-2126(01)00671-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND After activation, small GTPases such as Ras transfer the incoming signal to effectors by specifically interacting with the binding domain of these proteins. Structural details of the binding domain of different effectors determine which pathway is predominantly activated. Byr2 from fission yeast is a functional homolog of Raf, which is the direct downstream target of Ras in mammalians that initiates a protein kinase cascade. The amino acid sequence of Byr2's Ras binding domain is only weakly related to that of Raf, and Byr2's three-dimensional structure is unknown. RESULTS We have solved the 3D structure of the Ras binding domain of Byr2 (Byr2RBD) from Schizosaccharomyces pombe in solution. The structure consists of three alpha helices and a mixed five-stranded beta pleated sheet arranged in the topology betabetaalphabetabetaalphabetaalpha with the first seven canonic secondary structure elements forming a ubiquitin superfold. 15N-(1)H-TROSY-HSQC spectroscopy of the complex of Byr2RBD with Ras*Mg(2+)*GppNHp reveals that the first and second beta strands and the first alpha helix of Byr2 are mainly involved in the protein-protein interaction as observed in other Ras binding domains. Although the putative interaction site of H-Ras from human and Ras1 from S. pombe are identical in sequence, binding to Byr2 leads to small but significant differences in the NMR spectra, indicating a slightly different binding mode. CONCLUSIONS The ubiquitin superfold appears to be the general structural motif for Ras binding domains even in cases with vanishing sequence identity. However, details of the 3D structure and the interacting interface are different, thereby determining the specifity of the recognition of Ras and Ras-related proteins.
Collapse
|
|
24 |
48 |
21
|
Neidig KP, Bodenmueller H, Kalbitzer HR. Computer aided evaluation of two-dimensional NMR spectra of proteins. Biochem Biophys Res Commun 1984; 125:1143-50. [PMID: 6549131 DOI: 10.1016/0006-291x(84)91403-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A computer program for the automatic evaluation of two-dimensional NMR spectra of peptides and proteins has been developed. The used strategy is described, the advantages and limits of this approach are discussed. The program was successfully tested on a COSY-spectrum of the neuropeptide Glp-Pro-Pro-Gly-Gly-Ser-Lys-Val-Ile-Leu-Phe from hydra, resulting in a drastic reduction of the time needed for the evaluation of two-dimensional NMR data.
Collapse
|
|
41 |
46 |
22
|
Hoffmann R, Wachs WO, Berger RG, Kalbitzer HR, Waidelich D, Bayer E, Wagner-Redeker W, Zeppezauer M. Chemical phosphorylation of the peptides GGXA (X = S, T, Y): an evaluation of different chemical approaches. INTERNATIONAL JOURNAL OF PEPTIDE AND PROTEIN RESEARCH 1995; 45:26-34. [PMID: 7775006 DOI: 10.1111/j.1399-3011.1995.tb01564.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
An evaluation was made of the two methods most commonly used for phosphorylation of hydroxyamino acids in peptides, i.e. the tetrazole-catalysed phosphitylation by di-tert-butyl-N,N-diethylphosphoramidite followed by oxidation and the phosphorylation by dibenzylphosphochloridate. As model system the sequence GGXA (X = S, T, Y) was used which represents a random-coil sequence avoiding the influence on the reaction kinetics of secondary structure formation. In the case of serine- and threonine-containing peptides, both synthetic methods gave comparable yields of the desired phosphopeptides. The phosphorylation of tyrosine was achieved more favorably via the phosphoramidite method. However, phosphotyrosine peptides are most easily obtained by peptide synthesis using Fmoc-Tyr(PO3Me2)OH as building block. The dibenzylphosphochloridate method yields the expected phosphopeptides as the only peptide derivative and in addition, a great number of unidentified by-products which can be removed by ion-exchange chromatography. The phosphoramidite method consistently resulted in three peptide derivatives, i.e. the desired phosphopeptide, the phosphitylated peptide and a bridged derivative with two GGXA fragments linked through a phosphodiester bridge. The derivatives were characterised by RP and ion-exchange chromatography, 31P- and 1H-NMR spectroscopy, and ion-spray and electrospray mass spectrometry. Interestingly, even these mild ionisation techniques resulted in partial fragmentation. The observed fragmentation pathways seem to be a diagnostic tool for the identification of phosphorylation sites in peptides. Both the phosphorylated serine and threonine peptide lost phosphoric acid (98 mass units), the tyrosine peptide lost phenyl phosphate (174 mass units).(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
Comparative Study |
30 |
42 |
23
|
Kalbitzer HR, Görler A, Li H, Dubovskii PV, Hengstenberg W, Kowolik C, Yamada H, Akasaka K. 15N and 1H NMR study of histidine containing protein (HPr) from Staphylococcus carnosus at high pressure. Protein Sci 2000; 9:693-703. [PMID: 10794411 PMCID: PMC2144620 DOI: 10.1110/ps.9.4.693] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The pressure-induced changes in 15N enriched HPr from Staphylococcus carnosus were investigated by two-dimensional (2D) heteronuclear NMR spectroscopy at pressures ranging from atmospheric pressure up to 200 MPa. The NMR experiments allowed the simultaneous observation of the backbone and side-chain amide protons and nitrogens. Most of the resonances shift downfield with increasing pressure indicating generalized pressure-induced conformational changes. The average pressure-induced shifts for amide protons and nitrogens are 0.285 ppm GPa(-1) at 278 K and 2.20 ppm GPa(-1), respectively. At 298 K the corresponding values are 0.275 and 2.41 ppm GPa(-1). Proton and nitrogen pressure coefficients show a significant but rather small correlation (0.31) if determined for all amide resonances. When restricting the analysis to amide groups in the beta-pleated sheet, the correlation between these coefficients is with 0.59 significantly higher. As already described for other proteins, the amide proton pressure coefficients are strongly correlated to the corresponding hydrogen bond distances, and thus are indicators for the pressure-induced changes of the hydrogen bond lengths. The nitrogen shift changes appear to sense other physical phenomena such as changes of the local backbone conformation as well. Interpretation of the pressure-induced shifts in terms of structural changes in the HPr protein suggests the following picture: the four-stranded beta-pleated sheet of HPr protein is the least compressible part of the structure showing only small pressure effects. The two long helices a and c show intermediary effects that could be explained by a higher compressibility and a concomitant bending of the helices. The largest pressure coefficients are found in the active center region around His15 and in the regulatory helix b which includes the phosphorylation site Ser46 for the HPr kinase. This suggests that this part of the structure occurs in a number of different structural states whose equilibrium populations are shifted by pressure. In contrast to the surrounding residues of the active center loop that show large pressure effects, Ile14 has a very small proton and nitrogen pressure coefficient. It could represent some kind of anchoring point of the active center loop that holds it in the right place in space, whereas other parts of the loop adapt themselves to changing external conditions.
Collapse
|
research-article |
25 |
41 |
24
|
Ramm P, Couillard-Despres S, Plötz S, Rivera FJ, Krampert M, Lehner B, Kremer W, Bogdahn U, Kalbitzer HR, Aigner L. A nuclear magnetic resonance biomarker for neural progenitor cells: is it all neurogenesis? Stem Cells 2009; 27:420-3. [PMID: 18988707 DOI: 10.1634/stemcells.2008-0816] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In vivo visualization of endogenous neural progenitor cells (NPCs) is crucial to advance stem cell research and will be essential to ensure the safety and efficacy of neurogenesis-based therapies. Magnetic resonance spectroscopic imaging (i.e., spatially resolved spectroscopy in vivo) is a highly promising technique by which to investigate endogenous neurogenesis noninvasively. A distinct feature in nuclear magnetic resonance spectra (i.e., a lipid signal at 1.28 ppm) was recently attributed specifically to NPCs in vitro and to neurogenic regions in vivo. Here, we demonstrate that although this 1.28-ppm biomarker is present in NPC cultures, it is not specific for the latter. The 1.28-ppm marker was also evident in mesenchymal stem cells and in non-stem cell lines. Moreover, it was absent in freshly isolated NPCs but appeared under conditions favoring growth arrest or apoptosis; it is initiated by induction of apoptosis and correlates with the appearance of mobile lipid droplets. Thus, although the 1.28-ppm signal cannot be considered as a specific biomarker for NPCs, it might still serve as a sensor for processes that are tightly associated with neurogenesis and NPCs in vivo, such as apoptosis or stem cell quiescence. However, this requires further experimental evidence. The present work clearly urges the identification of additional biomarkers for NPCs and for neurogenesis.
Collapse
|
Research Support, Non-U.S. Gov't |
16 |
40 |
25
|
Hoffmann R, Reichert I, Wachs WO, Zeppezauer M, Kalbitzer HR. 1H and 31P NMR spectroscopy of phosphorylated model peptides. INTERNATIONAL JOURNAL OF PEPTIDE AND PROTEIN RESEARCH 1994; 44:193-8. [PMID: 7529751 DOI: 10.1111/j.1399-3011.1994.tb00160.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The model peptides glycylglycyltyrosylalanine (Gly-Gly-Tyr-Ala), glycylglycylthreonylalanine (Gly-Gly-Thr-Ala) and glycylglycylserylalanine (Gly-Gly-Ser-Ala) were phosphorylated at the hydroxyl groups of their tyrosyl, threonyl and seryl residues, respectively, and characterized by 31P and 1H NMR spectroscopy. The pKa-value of the phosphoryl group in the tyrosine-containing peptide determined from the pH dependence of chemical shifts is 5.9, the 31P chemical shifts at low pH (4.0) and high pH (8.0) are -3.8 and 0.2 ppm, respectively. Phosphorylation also leads to significant shifts of the 1H NMR resonances of the tyrosine residue; the amide resonance is shifted -0.02 ppm, the H alpha resonance 0.06 ppm, the H beta resonances 0.10 and -0.04 ppm, the H delta resonances 0.02 ppm and the H epsilon resonances 0.26 ppm. The pKa-value of the phosphoryl group in the threonine peptide determined from the pH dependence of chemical shifts is 6.1; the 31P chemical shifts at low pH (4.0) and high pH (8.0) are -0.1 and 4.8 ppm, respectively. The corresponding values for the serine peptide are 6.1 (pKa), 0.6 ppm and 4.9 ppm. Phosphorylation also leads to significant shifts of the 1H NMR resonances of the threonine and serine residues. In the threonine residue the amide resonance is shifted 0.25 ppm, the H alpha-resonance -0.43 ppm, the H beta-resonance 0.03 ppm and the H gamma-resonance 0.09 ppm. In the serine residue the amide resonance is shifted 0.21 ppm, the H alpha-resonance -0.17 ppm, and the H beta-resonances 0.17 ppm.
Collapse
|
Comparative Study |
31 |
39 |