1
|
Safar J, Wille H, Itri V, Groth D, Serban H, Torchia M, Cohen FE, Prusiner SB. Eight prion strains have PrP(Sc) molecules with different conformations. Nat Med 1998; 4:1157-65. [PMID: 9771749 DOI: 10.1038/2654] [Citation(s) in RCA: 955] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Variations in prions, which cause different incubation times and deposition patterns of the prion protein isoform called PrP(Sc), are often referred to as 'strains'. We report here a highly sensitive, conformation-dependent immunoassay that discriminates PrP(Sc) molecules among eight different prion strains propagated in Syrian hamsters. This immunoassay quantifies PrP isoforms by simultaneously following antibody binding to the denatured and native forms of a protein. In a plot of the ratio of antibody binding to denatured/native PrP graphed as a function of the concentration of PrP(Sc), each strain occupies a unique position, indicative of a particular PrP(Sc) conformation. This conclusion is supported by a unique pattern of equilibrium unfolding of PrP(Sc) found with each strain. Our findings indicate that each of the eight prion strains has a PrP(Sc) molecule with a unique conformation and, in accordance with earlier results, indicate the biological properties of prion strains are 'enciphered' in the conformation of PrP(Sc) and that the variation in incubation times is related to the relative protease sensitivity of PrP(Sc) in each strain.
Collapse
|
Comparative Study |
27 |
955 |
2
|
Vey M, Pilkuhn S, Wille H, Nixon R, DeArmond SJ, Smart EJ, Anderson RG, Taraboulos A, Prusiner SB. Subcellular colocalization of the cellular and scrapie prion proteins in caveolae-like membranous domains. Proc Natl Acad Sci U S A 1996; 93:14945-9. [PMID: 8962161 PMCID: PMC26242 DOI: 10.1073/pnas.93.25.14945] [Citation(s) in RCA: 427] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/1996] [Indexed: 02/03/2023] Open
Abstract
Results of transgenetic studies argue that the scrapie isoform of the prion protein (PrPSc) interacts with the substrate cellular PrP (PrPC) during conversion into nascent PrPSc. While PrPSc appears to accumulate primarily in lysosomes, caveolae-like domains (CLDs) have been suggested to be the site where PrPC is converted into PrPSc. We report herein that CLDs isolated from scrapie-infected neuroblastoma (ScN2a) cells contain PrPC and PrPSc. After lysis of ScN2a cells in ice-cold Triton X-100, both PrP isoforms and an N-terminally truncated form of PrPC (PrPC-II) were found concentrated in detergent-insoluble complexes resembling CLDs that were isolated by flotation in sucrose gradients. Similar results were obtained when CLDs were purified from plasma membranes by sonication and gradient centrifugation; with this procedure no detergents are used, which minimizes artifacts that might arise from redistribution of proteins among subcellular fractions. The caveolar markers ganglioside GM1 and H-ras were found concentrated in the CLD fractions. When plasma membrane proteins were labeled with the impermeant reagent sulfo-N-hydroxysuccinimide-biotin, both PrPC and PrPSc were found biotinylated in CLD fractions. Similar results on the colocalization of PrPC and PrPSc were obtained when CLDs were isolated from Syrian hamster brains. Our findings demonstrate that both PrPC and PrPSc are present in CLDs and, thus, support the hypothesis that the PrPSc formation occurs within this subcellular compartment.
Collapse
|
research-article |
29 |
427 |
3
|
Wille H, Drewes G, Biernat J, Mandelkow EM, Mandelkow E. Alzheimer-like paired helical filaments and antiparallel dimers formed from microtubule-associated protein tau in vitro. J Biophys Biochem Cytol 1992; 118:573-84. [PMID: 1639844 PMCID: PMC2289542 DOI: 10.1083/jcb.118.3.573] [Citation(s) in RCA: 374] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Recent evidence from several laboratories shows that the paired helical filaments of Alzheimer's disease brains consist mainly of the protein tau in an abnormally phosphorylated form, but the mode of assembly is not understood. Here we use EM to study several constructs derived from human brain tau and expressed in Escherichia coli. All constructs or tau isoforms are rodlike molecules with a high tendency to dimerize in an antiparallel fashion, as shown by antibody labeling and chemical crosslinking. The length of the rods is largely determined by the region of internal repeats that is also responsible for microtubule binding. One unit length of the repeat domain (three or four repeats) is around 22-25 nm, comparable to the cross-section of Alzheimer PHF cores. Constructs corresponding roughly to the repeat region of tau can form synthetic paired helical filaments resembling those from Alzheimer brain tissue. A similar self-assembly occurs with the chemically cross-linked dimers. In both cases there is no need for phosphorylation of the protein.
Collapse
|
research-article |
33 |
374 |
4
|
Kasparian J, Rodriguez M, Méjean G, Yu J, Salmon E, Wille H, Bourayou R, Frey S, Andre YB, Mysyrowicz A, Sauerbrey R, Wolf JP, Wöste L. White-light filaments for atmospheric analysis. Science 2003; 301:61-4. [PMID: 12843384 DOI: 10.1126/science.1085020] [Citation(s) in RCA: 229] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Most long-path remote spectroscopic studies of the atmosphere rely on ambient light or narrow-band lasers. High-power femtosecond laser pulses have been found to propagate in the atmosphere as dynamically self-guided filaments that emit in a continuum from the ultraviolet to the infrared. This white light exhibits a directional behavior with enhanced backward scattering and was detected from an altitude of more than 20 kilometers. This light source opens the way to white-light and nonlinear light detection and ranging applications for atmospheric trace-gas remote sensing or remote identification of aerosols. Air ionization inside the filaments also opens promising perspectives for laser-induced condensation and lightning control. The mobile femtosecond-terawatt laser system, Teramobile, has been constructed to study these applications.
Collapse
|
|
22 |
229 |
5
|
Supattapone S, Bosque P, Muramoto T, Wille H, Aagaard C, Peretz D, Nguyen HO, Heinrich C, Torchia M, Safar J, Cohen FE, DeArmond SJ, Prusiner SB, Scott M. Prion protein of 106 residues creates an artifical transmission barrier for prion replication in transgenic mice. Cell 1999; 96:869-78. [PMID: 10102274 DOI: 10.1016/s0092-8674(00)80596-6] [Citation(s) in RCA: 181] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A redacted prion protein (PrP) of 106 amino acids with two large deletions was expressed in transgenic (Tg) mice deficient for wild-type (wt) PrP (Prnp0/0) and supported prion propagation. RML prions containing full-length PrP(Sc)produced disease in Tg(PrP106)Prnp0/0 mice after approximately 300 days, while transmission of RML106 prions containing PrP(Sc)106 created disease in Tg(PrP106) Prnp0/0 mice after only approximately 66 days on repeated passage. This artificial transmission barrier for the passage of RML prions was diminished by the coexpression of wt MoPrPc in Tg(PrP106)Prnp+/0 mice that developed scrapie in approximately 165 days, suggesting that wt MoPrP acts in trans to accelerate replication of RML106 prions. Purified PrP(Sc)106 was protease resistant, formed filaments, and was insoluble in nondenaturing detergents. The unique features of RML106 prions offer insights into the mechanism of prion replication, and the small size of PrP(Sc)106 should facilitate structural analysis.
Collapse
|
|
26 |
181 |
6
|
Hagestedt T, Lichtenberg B, Wille H, Mandelkow EM, Mandelkow E. Tau protein becomes long and stiff upon phosphorylation: correlation between paracrystalline structure and degree of phosphorylation. J Cell Biol 1989; 109:1643-51. [PMID: 2507554 PMCID: PMC2115827 DOI: 10.1083/jcb.109.4.1643] [Citation(s) in RCA: 161] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In a previous report we have shown that microtubule-associated protein tau can be induced to form paracrystals (Lichtenberg, B., E.-M. Mandelkow, T. Hagestedt, and E. Mandelkow. 1988. Nature [Lond.]. 334:359-362). A striking feature was the high degree of elasticity of the molecules. We now report that this property is related to the state of phosphorylation. When tau is dephosphorylated by alkaline phosphatase, it becomes shorter and more elastic; when it is phosphorylated by Ca++/calmodulin-dependent kinase, it becomes longer and stiffer. This may provide a model for the control of structural properties of tau-like molecules by phosphorylation.
Collapse
|
research-article |
36 |
161 |
7
|
Supattapone S, Wille H, Uyechi L, Safar J, Tremblay P, Szoka FC, Cohen FE, Prusiner SB, Scott MR. Branched polyamines cure prion-infected neuroblastoma cells. J Virol 2001; 75:3453-61. [PMID: 11238871 PMCID: PMC114138 DOI: 10.1128/jvi.75.7.3453-3461.2001] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Branched polyamines, including polyamidoamine and polypropyleneimine (PPI) dendrimers, are able to purge PrP(Sc), the disease-causing isoform of the prion protein, from scrapie-infected neuroblastoma (ScN2a) cells in culture (S. Supattapone, H.-O. B. Nguyen, F. E. Cohen, S. B. Prusiner, and M. R. Scott, Proc. Natl. Acad. Sci. USA 96:14529-14534, 1999). We now demonstrate that exposure of ScN2a cells to 3 microg of PPI generation 4.0/ml for 4 weeks not only reduced PrP(Sc) to a level undetectable by Western blot but also eradicated prion infectivity as determined by a bioassay in mice. Exposure of purified RML prions to branched polyamines in vitro disaggregated the prion rods, reduced the beta-sheet content of PrP 27-30, and rendered PrP 27-30 susceptible to proteolysis. The susceptibility of PrP(Sc) to proteolytic digestion induced by branched polyamines in vitro was strain dependent. Notably, PrP(Sc) from bovine spongiform encephalopathy-infected brain was susceptible to PPI-mediated denaturation in vitro, whereas PrP(Sc) from natural sheep scrapie-infected brain was resistant. Fluorescein-labeled PPI accumulated specifically in lysosomes, suggesting that branched polyamines act within this acidic compartment to mediate PrP(Sc) clearance. Branched polyamines are the first class of compounds shown to cure prion infection in living cells and may prove useful as therapeutic, disinfecting, and strain-typing reagents for prion diseases.
Collapse
|
research-article |
24 |
150 |
8
|
Nörenberg U, Wille H, Wolff JM, Frank R, Rathjen FG. The chicken neural extracellular matrix molecule restrictin: similarity with EGF-, fibronectin type III-, and fibrinogen-like motifs. Neuron 1992; 8:849-63. [PMID: 1375037 DOI: 10.1016/0896-6273(92)90199-n] [Citation(s) in RCA: 133] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Restrictin is a chick neural extracellular matrix protein implicated in neural cell attachment and found to be associated with the cell surface recognition protein F11. Here we show by cDNA cloning that restrictin is a large multidomain protein composed of 4 structural motifs. At the N-terminus restrictin contains a cysteine-rich segment of about 140 aa that might link restrictin monomers into oligomers. This region is followed by 4.5 epidermal growth factor-like repeats and then by 9 consecutive motifs that are similar to fibronectin type III motifs. At the C-terminus restriction is related to the beta and gamma chains of fibrinogen, including similarity to a calcium-binding segment. Restrictin shows substantial sequence similarity with tenascin (cytotactin) throughout the polypeptide, and like tenascin, it forms oligomeric structures, as revealed by electron microscopy of immunoaffinity-purified restriction. The cell attachment site of restrictin is mapped to the C-terminal region by antibody perturbation experiments.
Collapse
|
Comparative Study |
33 |
133 |
9
|
Kaneko K, Ball HL, Wille H, Zhang H, Groth D, Torchia M, Tremblay P, Safar J, Prusiner SB, DeArmond SJ, Baldwin MA, Cohen FE. A synthetic peptide initiates Gerstmann-Sträussler-Scheinker (GSS) disease in transgenic mice. J Mol Biol 2000; 295:997-1007. [PMID: 10656806 DOI: 10.1006/jmbi.1999.3386] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The molecular basis of the infectious, inherited and sporadic forms of prion diseases is best explained by a conformationally dimorphic protein that can exist in distinct normal and disease-causing isoforms. We identified a 55-residue peptide of a mutant prion protein that can be refolded into at least two distinct conformations. When inoculated intracerebrally into the appropriate transgenic mouse host, 20 of 20 mice receiving the beta-form of this peptide developed signs of central nervous system dysfunction at approximately 360 days, with neurohistologic changes that are pathognomonic of Gerstmann-Sträussler-Scheinker disease. By contrast, eight of eight mice receiving a non-beta-form of the peptide failed to develop any neuropathologic changes more than 600 days after the peptide injections. We conclude that a chemically synthesized peptide refolded into the appropriate conformation can accelerate or possibly initiate prion disease.
Collapse
|
|
25 |
121 |
10
|
Kaneko K, Peretz D, Pan KM, Blochberger TC, Wille H, Gabizon R, Griffith OH, Cohen FE, Baldwin MA, Prusiner SB. Prion protein (PrP) synthetic peptides induce cellular PrP to acquire properties of the scrapie isoform. Proc Natl Acad Sci U S A 1995; 92:11160-4. [PMID: 7479957 PMCID: PMC40591 DOI: 10.1073/pnas.92.24.11160] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Conversion of the cellular isoform of prion protein (PrPC) into the scrapie isoform (PrPSc) involves an increase in the beta-sheet content, diminished solubility, and resistance to proteolytic digestion. Transgenetic studies argue that PrPC and PrPSc form a complex during PrPSc formation; thus, synthetic PrP peptides, which mimic the conformational pluralism of PrP, were mixed with PrPC to determine whether its properties were altered. Peptides encompassing two alpha-helical domains of PrP when mixed with PrPC produced a complex that displayed many properties of PrPSc. The PrPC-peptide complex formed fibrous aggregates and up to 65% of complexed PrPC sedimented at 100,000 x g for 1 h, whereas PrPC alone did not. These complexes were resistant to proteolytic digestion and displayed a high beta-sheet content. Unexpectedly, the peptide in a beta-sheet conformation did not form the complex, whereas the random coil did. Addition of 2% Sarkosyl disrupted the complex and rendered PrPC sensitive to protease digestion. While the pathogenic A117V mutation increased the efficacy of complex formation, anti-PrP monoclonal antibody prevented interaction between PrPC and peptides. Our findings in concert with transgenetic investigations argue that PrPC interacts with PrPSc through a domain that contains the first two putative alpha-helices. Whether PrPC-peptide complexes possess prion infectivity as determined by bioassays remains to be established.
Collapse
|
research-article |
30 |
85 |
11
|
Riesner D, Kellings K, Post K, Wille H, Serban H, Groth D, Baldwin MA, Prusiner SB. Disruption of prion rods generates 10-nm spherical particles having high alpha-helical content and lacking scrapie infectivity. J Virol 1996; 70:1714-22. [PMID: 8627692 PMCID: PMC189995 DOI: 10.1128/jvi.70.3.1714-1722.1996] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
An abnormal isoform of the prion protein (PrP) designated PrPSc is the major, or possibly the only, component of infectious prions. Structural studies of PrPSc have been impeded by its lack of solubility under conditions in which infectivity is retained. Among the many detergents examined, only treatment with the ionic detergent sodium dodecyl sulfate (SDS) or Sarkosyl followed by sonication dispersed prion rods which are composed of PrP 27-30, an N-terminally truncated form of PrPSc. After ultracentrifugation at 100,000 x g for 1 h, approximately 30% of the PrP 27-30 and scrapie infectivity were found in the supernatant, which was fractionated by sedimentation through 5 to 20% sucrose gradients. Near the top of the gradient, spherical particles with an observed sedimentation coefficient of approximately 6S, approximately 10 mm in diameter and composed of four to six PrP 27-30 molecules, were found. The spheres could be digested with proteinase K and exhibited little, if any, scrapie infectivity. When the prion rods were disrupted in SDS and the entire sample was fractionated by sucrose gradient centrifugation, a lipid-rich fraction at the meniscus composed of fragments of rods and heterogeneous particles containing high levels of prion infectivity was found. Fractions adjacent to the meniscus also contained spherical particles. Circular dichroism of the spheres revealed 60% alpha-helical content; addition of 25% acetonitrile induced aggregates high in beta sheet but remaining devoid of infectivity. Although the highly purified spherical oligomers of PrP 27-30 lack infectivity, they may provide an excellent substrate for determining conditions of renaturation under which prion particles regain infectivity.
Collapse
|
research-article |
29 |
82 |
12
|
Wille H, Zhang GF, Baldwin MA, Cohen FE, Prusiner SB. Separation of scrapie prion infectivity from PrP amyloid polymers. J Mol Biol 1996; 259:608-21. [PMID: 8683568 DOI: 10.1006/jmbi.1996.0343] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The prion protein (PrP) undergoes a profound conformational change when the cellular isoform (PrPC) is converted into the scrapie form (PrPSc). Limited proteolysis of PrPsc produces PrP 27-30 which readily polymerizes into amyloid. To study the structure of PrP amyloid, we employed organic solvents that perturb protein conformation. Hexafluoro-2-propanol (HFIP), which promotes alpha-helix formation, modified the ultrastructure of rod-shaped PrP amyloids; flattened ribbons with a more regular substructure were found. As the concentration of HFIP was increased, the beta-sheet content and proteinase K resistance of PrP 27-30 as well as prion infectivity diminished. HFIP reversibly decreased the binding of Congo red dye to the rods while inactivation of prion infectivity was irreversible. In contrast to 10% HFIP, 1,1,1-trifluoro-2-propanol (TFIP) did not inactivate prion infectivity but like HFIP, TFIP did alter the morphology of the rods and abolish Congo red binding. This study separates prion infectivity from the amyloid properties of PrP 27-30 and underscores the dependence of prion infectivity on PrPSc conformation. The results also demonstrate that the specific beta-sheet-rich structures required for prion infectivity can be differentiated from those needed for amyloid formation as determined by Congo red binding.
Collapse
|
|
29 |
80 |
13
|
Post K, Pitschke M, Schäfer O, Wille H, Appel TR, Kirsch D, Mehlhorn I, Serban H, Prusiner SB, Riesner D. Rapid acquisition of beta-sheet structure in the prion protein prior to multimer formation. Biol Chem 1998; 379:1307-17. [PMID: 9865603 DOI: 10.1515/bchm.1998.379.11.1307] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The N-terminally truncated form of the prion protein, PrP 27-30, and the corresponding recombinant protein, rPrP, were solubilized in 0.2% SDS, and the transitions induced by changing the conditions from 0.2% SDS to physiological conditions, i.e. removing SDS, were characterized with respect to solubility, resistance to proteolysis, secondary structure and multimerization. Circular dichroism, electron microscopy and fluorescence correlation spectroscopy were used to study the structural transitions of PrP. Within one minute the alpha-helical structure of PrP was transformed into one that was enriched in beta-sheets and consisted mainly of dimers. Larger oligomers were found after 20 minutes and larger multimers exhibiting resistance to proteolysis were found after several hours. It was concluded that the monomeric alpha-helical conformation was stable in SDS or when attached to the membrane; however, the state of lowest free energy in aqueous solution at neutral pH seems to be the multimeric, beta-sheet enriched conformation.
Collapse
|
|
27 |
76 |
14
|
Laws DD, Bitter HM, Liu K, Ball HL, Kaneko K, Wille H, Cohen FE, Prusiner SB, Pines A, Wemmer DE. Solid-state NMR studies of the secondary structure of a mutant prion protein fragment of 55 residues that induces neurodegeneration. Proc Natl Acad Sci U S A 2001; 98:11686-90. [PMID: 11562491 PMCID: PMC58790 DOI: 10.1073/pnas.201404298] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The secondary structure of a 55-residue fragment of the mouse prion protein, MoPrP(89-143), was studied in randomly aggregated (dried from water) and fibrillar (precipitated from water/acetonitrile) forms by (13)C solid-state NMR. Recent studies have shown that the fibrillar form of the P101L mutant of MoPrP(89-143) is capable of inducing prion disease in transgenic mice, whereas unaggregated or randomly aggregated samples do not provoke disease. Through analysis of (13)C chemical shifts, we have determined that both wild-type and mutant sequence MoPrP(89-143) form a mixture of beta-sheet and alpha-helical conformations in the randomly aggregated state although the beta-sheet content in MoPrP(89-143, P101L) is significantly higher than in the wild-type peptide. In a fibrillar state, MoPrP(89-143, P101L) is completely converted into beta-sheet, suggesting that the formation of a specific beta-sheet structure may be required for the peptide to induce disease. Studies of an analogous peptide from Syrian hamster PrP verify that sequence alterations in residues 101-117 affect the conformation of aggregated forms of the peptides.
Collapse
|
research-article |
24 |
62 |
15
|
Baskakov IV, Aagaard C, Mehlhorn I, Wille H, Groth D, Baldwin MA, Prusiner SB, Cohen FE. Self-assembly of recombinant prion protein of 106 residues. Biochemistry 2000; 39:2792-804. [PMID: 10704232 DOI: 10.1021/bi9923353] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The central event in the pathogenesis of prion diseases is a profound conformational change of the prion protein (PrP) from an alpha-helical (PrP(C)) to a beta-sheet-rich isoform (PrP(Sc)). The elucidation of the mechanism of conformational transition has been complicated by the challenge of collecting high-resolution biophysical data on the relatively insoluble aggregation-prone PrP(Sc) isoform. In an attempt to facilitate the structural analysis of PrP(Sc), a redacted chimeric mouse-hamster PrP of 106 amino acids (MHM2 PrP106) with two deletions (Delta23-88 and Delta141-176) was expressed and purified from Escherichia coli. PrP106 retains the ability to support PrP(Sc) formation in transgenic mice, implying that it contains all regions of PrP that are necessary for the conformational transition into the pathogenic isoform [Supattapone, S., et al. (1999) Cell 96, 869-878]. Unstructured at low concentrations, recombinant unglycosylated PrP106 (rPrP106) undergoes a concentration-dependent conformational transition to a beta-sheet-rich form. Following the conformational transition, rPrP106 possesses properties similar to those of PrP(Sc)106, such as high beta-sheet content, defined tertiary structure, resistance to limited digestion by proteinase K, and high thermodynamic stability. In GdnHCl-induced denaturation studies, a single cooperative conformational transition between the unstructured monomer and the assembled beta-oligomer was observed. After proteinase K digestion, the oligomers retain an intact core with unusually high beta-sheet content (>80%). Using mass spectrometry, we discovered that the region of residues 134-215 of rPrP106 is protected from proteinase K digestion and possesses a solvent-independent propensity to adopt a beta-sheet-rich conformation. In contrast to the PrP(Sc)106 purified from the brains of neurologically impaired animals, multimeric beta-rPrP106 remains soluble, providing opportunities for detailed structural studies.
Collapse
|
|
25 |
61 |
16
|
Lim SN, Bonzelius F, Low SH, Wille H, Weimbs T, Herman GA. Identification of discrete classes of endosome-derived small vesicles as a major cellular pool for recycling membrane proteins. Mol Biol Cell 2001; 12:981-95. [PMID: 11294901 PMCID: PMC32281 DOI: 10.1091/mbc.12.4.981] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Vesicles carrying recycling plasma membrane proteins from early endosomes have not yet been characterized. Using Chinese hamster ovary cells transfected with the facilitative glucose transporter, GLUT4, we identified two classes of discrete, yet similarly sized, small vesicles that are derived from early endosomes. We refer to these postendosomal vesicles as endocytic small vesicles or ESVs. One class of ESVs contains a sizable fraction of the pool of the transferrin receptor, and the other contains 40% of the total cellular pool of GLUT4 and is enriched in the insulin-responsive aminopeptidase (IRAP). The ESVs contain cellubrevin and Rab4 but are lacking other early endosomal markers, such as EEA1 or syntaxin13. The ATP-, temperature-, and cytosol-dependent formation of ESVs has been reconstituted in vitro from endosomal membranes. Guanosine 5'-[gamma-thio]triphosphate and neomycin, but not brefeldin A, inhibit budding of the ESVs in vitro. A monoclonal antibody recognizing the GLUT4 cytoplasmic tail perturbs the in vitro targeting of GLUT4 to the ESVs without interfering with the incorporation of IRAP or TfR. We suggest that cytosolic proteins mediate the incorporation of recycling membrane proteins into discrete populations of ESVs that serve as carrier vesicles to store and then transport the cargo from early endosomes, either directly or indirectly, to the cell surface.
Collapse
|
research-article |
24 |
54 |
17
|
Schlumpberger M, Wille H, Baldwin MA, Butler DA, Herskowitz I, Prusiner SB. The prion domain of yeast Ure2p induces autocatalytic formation of amyloid fibers by a recombinant fusion protein. Protein Sci 2000; 9:440-51. [PMID: 10752606 PMCID: PMC2144574 DOI: 10.1110/ps.9.3.440] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The Ure2 protein from Saccharomyces cerevisiae has been proposed to undergo a prion-like autocatalytic conformational change, which leads to inactivation of the protein, thereby generating the [URE3] phenotype. The first 65 amino acids, which are dispensable for the cellular function of Ure2p in nitrogen metabolism, are necessary and sufficient for [URE3] (Masison & Wickner, 1995), leading to designation of this domain as the Ure2 prion domain (UPD). We expressed both UPD and Ure2 as glutathione-S-transferase (GST) fusion proteins in Escherichia coli and observed both to be initially soluble. Upon cleavage of GST-UPD by thrombin, the released UPD formed ordered fibrils that displayed amyloid-like characteristics, such as Congo red dye binding and green-gold birefringence. The fibrils exhibited high beta-sheet content by Fourier transform infrared spectroscopy. Fiber formation proceeded in an autocatalytic manner. In contrast, the released, full-length Ure2p formed mostly amorphous aggregates; a small amount polymerized into fibrils of uniform size and morphology. Aggregation of Ure2p could be seeded by UPD fibrils. Our results provide biochemical support for the proposal that the [URE3] state is caused by a self-propagating inactive form of Ure2p. We also found that the uncleaved GST-UPD fusion protein could polymerize into amyloid fibrils by a strictly autocatalytic mechanism, forcing the GST moiety of the protein to adopt a new, beta-sheet-rich conformation. The findings on the GST-UPD fusion protein indicate that the ability of the prion domain to mediate a prion-like conversion process is not specific for or limited to the Ure2p.
Collapse
|
research-article |
25 |
53 |
18
|
Kaneko K, Wille H, Mehlhorn I, Zhang H, Ball H, Cohen FE, Baldwin MA, Prusiner SB. Molecular properties of complexes formed between the prion protein and synthetic peptides. J Mol Biol 1997; 270:574-86. [PMID: 9245588 DOI: 10.1006/jmbi.1997.1135] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Complexes of the Syrian hamster cellular prion protein (PrPC) and synthetic Syrian hamster PrP peptides were found to mimic many of the characteristics of the scrapie PrP isoform (PrPSc). Either PrPC expressed in chinese hamster ovary (CHO) cells or a C-terminal fragment of 142 residues of recombinant PrP protein (rPrP) produced in Escherichia coli was mixed with an excess of a synthetic 56 amino acid peptide, denoted PrP(90-145). Complex formation required PrPC or rPrP to be destabilized by guanidine hydrochloride (GdnHCl) or urea and PrP(90-145) to be in a coil conformation; it was enhanced by an acidic environment, salt and detergent. If PrP(90-145) was in a beta-sheet conformation, then no complexes were formed. While complex formation was rapid, acquisition of protease resistance was a slow process. Amorphous aggregates with a PrPC/PrP(90-145) ratio of 1:1 were formed in phosphate buffer, whereas fibrils with a diameter of approximately 10 nm and a PrPC/PrP(90-145) ratio of 1:5 were formed in Tris buffer. The complexes were stable only in the presence of excess peptide in either the coil or beta-sheet conformation; they dissociated rapidly after centrifugation and resuspension in buffer without peptide. Neither a peptide having a similar hydrophobicity profile/charge distribution to PrP(90-145) nor a scrambled version, denoted hPrP(90-145) and sPrP(90-145), respectively, were able to induce complex formation. Although hPrP(90-145) could stabilize the PrPC/PrP(90-145) complexes, sPrP(90-145) could not. Studies of PrPC/peptide complexes may provide insights into how PrPC interacts with PrPSc during the formation of a nascent PrPSc molecule and into the process by which PrPC is converted into PrPSc.
Collapse
|
|
28 |
43 |
19
|
Wille H, Mandelkow EM, Dingus J, Vallee RB, Binder LI, Mandelkow E. Domain structure and antiparallel dimers of microtubule-associated protein 2 (MAP2). J Struct Biol 1992; 108:49-61. [PMID: 1373291 DOI: 10.1016/1047-8477(92)90006-v] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have studied the microtubule-associated protein MAP2 from porcine brain and its subfragments by limited proteolysis, antibody labeling, and electron microscopy. Two major chymotryptic fragments start at lys 1528 and arg 1664, generating microtubule-binding fragments of Mr 36 kDa (303 residues, analogous to the "assembly domain" of Vallee, 1980) and 18 kDa (167 residues). These fragments can be labeled with the antibody 2-4 which recognizes the last internal repeat of MAP2 (Dingus et al., 1991). The epitope of another monoclonal antibody, AP18 (Binder et al., 1986), was mapped to the first 151 residues of MAP2. The interaction with AP18 is phosphorylation dependent; dephosphorylated MAP2 is not recognized. Intact MAP2 forms rod-like particles of 97 nm mean length, similar to Gottlieb and Murphy's (1985) observations. Both antibodies bind near an end of the rod, suggesting that the sequence and the structure are approximately colinear. There is a pronounced tendency for MAP2 to form dimers whose components are nearly in register but of opposite polarity. MAP2 can also fold in a hairpin-like fashion, generating 50-nm rods, and it can self-associate into oligomers and fibers. The 36-kDa microtubule-binding fragment also has a rod-like shape; its mean length is 49 nm, half of the intact molecule, even though the fragment contains only one-sixth of the mass. The antibody 2-4 decorates one end of the rod, similar to the intact protein. The fragment also forms antiparallel dimers, but its tendency for higher self-assembly forms is much lower than with intact MAP2.
Collapse
|
|
33 |
42 |
20
|
Mandelkow EM, Biernat J, Drewes G, Steiner B, Lichtenberg-Kraag B, Wille H, Gustke N, Mandelkow E. Microtubule-associated protein tau, paired helical filaments, and phosphorylation. Ann N Y Acad Sci 1993; 695:209-16. [PMID: 7694533 DOI: 10.1111/j.1749-6632.1993.tb23054.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
This paper summarizes our recent studies on microtubule-associated protein tau and its pathological state resembling that of the paired helical filaments of Alzheimer's disease. The Alzheimer-like state of tau protein can be identified and analyzed in terms of certain phosphorylation sites and phosphorylation-dependent antibody epitopes. It can be induced by protein kinases which tend to phosphorylate serine or threonine residues followed by a proline; this includes mitogen-activated protein kinase (MAPK) and glycogen-synthase kinase 3 (GSK-3). Both of these are tightly associated with microtubules as well as with paired helical filaments. Structurally, tau appears as a rod-like molecule; it tends to self-associate into dimers whose monomers are antiparallel. Constructs of truncated tau made up of antiparallel dimers of the microtubule binding domain can be assembled into paired helical filaments in vitro.
Collapse
|
Review |
32 |
41 |
21
|
Wille H, Prusiner SB. Ultrastructural studies on scrapie prion protein crystals obtained from reverse micellar solutions. Biophys J 1999; 76:1048-62. [PMID: 9916037 PMCID: PMC1300055 DOI: 10.1016/s0006-3495(99)77270-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The structural transition from the cellular prion protein (PrPC) that is rich in alpha-helices to the pathological form (PrPSc) that has a high beta-sheet content seems to be the fundamental event underlying the prion diseases. Determination of the structure of PrPSc and the N-terminally truncated PrP 27-30 has been complicated by their insolubility. Here we report the solubilization of PrP 27-30 through a system of reverse micelles that yields monomeric and dimeric PrP. Although solubilization of PrP 27-30 was not accompanied by any recognizable change in secondary structure as measured by FTIR spectroscopy, it did result in a loss of prion infectivity. The formation of small two- and three-dimensional crystals upon exposure to uranyl salts argues that soluble PrP 27-30 possesses considerable tertiary structure. The crystals of PrP 27-30 grown from reverse micellar solutions suggest a novel crystallization mechanism that might be applicable for other membrane proteins. A variety of different crystal lattices diffracted up to 1.85 nm by electron microscopy. Despite the lack of measurable biological activity, the structure of PrP 27-30 in these crystals may provide insight into the structural transition that occurs during PrPSc formation.
Collapse
|
research-article |
26 |
40 |
22
|
Supattapone S, Bouzamondo E, Ball HL, Wille H, Nguyen HO, Cohen FE, DeArmond SJ, Prusiner SB, Scott M. A protease-resistant 61-residue prion peptide causes neurodegeneration in transgenic mice. Mol Cell Biol 2001; 21:2608-16. [PMID: 11259607 PMCID: PMC86891 DOI: 10.1128/mcb.21.7.2608-2616.2001] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An abridged prion protein (PrP) molecule of 106 amino acids, designated PrP106, is capable of forming infectious miniprions in transgenic mice (S. Supattapone, P. Bosque, T. Muramoto, H. Wille, C. Aagaard, D. Peretz, H.-O. B. Nguyen, C. Heinrich, M. Torchia, J. Safar, F. E. Cohen, S. J. DeArmond, S. B. Prusiner, and M. Scott, Cell 96:869-878, 1999). We removed additional sequences from PrP106 and identified a 61-residue peptide, designated PrP61, that spontaneously adopted a protease-resistant conformation in neuroblastoma cells. Synthetic PrP61 bearing a carboxy-terminal lipid moiety polymerized into protease-resistant, beta-sheet-enriched amyloid fibrils at a physiological salt concentration. Transgenic mice expressing low levels of PrP61 died spontaneously with ataxia. Neuropathological examination revealed accumulation of protease-resistant PrP61 within neuronal dendrites and cell bodies, apparently causing apoptosis. PrP61 may be a useful model for deciphering the mechanism by which PrP molecules acquire protease resistance and become neurotoxic.
Collapse
|
research-article |
24 |
40 |
23
|
Stein B, Wedekind C, Wille H, Immler F, Müller M, Wöste L, del Guasta M, Morandi M, Stefanutti L, Antonelli A, Agostini P, Rizi V, Readelli G, Mitev V, Matthey R, Kivi R, Kyrö E. Optical classification, existence temperatures, and coexistence of different polar stratospheric cloud types. ACTA ACUST UNITED AC 1999. [DOI: 10.1029/1999jd900064] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
|
26 |
38 |
24
|
Siebers D, Lucu Č, Winkler A, Dalla Venezia L, Wille H. Active uptake of sodium in the gills of the hyperregulating shore crabCarcinus maenas. ACTA ACUST UNITED AC 1986. [DOI: 10.1007/bf01987292] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
|
39 |
29 |
25
|
Heins S, Song YH, Wille H, Mandelkow E, Mandelkow EM. Effect of MAP2, MAP2c, and tau on kinesin-dependent microtubule motility. JOURNAL OF CELL SCIENCE. SUPPLEMENT 1991; 14:121-4. [PMID: 1832164 DOI: 10.1242/jcs.1991.supplement_14.24] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
By making use of DIC video microscopy to monitor microtubule motility we have studied the effect of several MAPs (MAP2, MAP2c, tau) on microtubule-kinesin interactions and microtubule gliding. Of the three MAPs tested, MAP2 interferes most strongly with kinesin-dependent microtubule motility.
Collapse
|
|
34 |
29 |