1
|
Medema MH, Kottmann R, Yilmaz P, Cummings M, Biggins JB, Blin K, de Bruijn I, Chooi YH, Claesen J, Coates RC, Cruz-Morales P, Duddela S, Düsterhus S, Edwards DJ, Fewer DP, Garg N, Geiger C, Gomez-Escribano JP, Greule A, Hadjithomas M, Haines AS, Helfrich EJN, Hillwig ML, Ishida K, Jones AC, Jones CS, Jungmann K, Kegler C, Kim HU, Kötter P, Krug D, Masschelein J, Melnik AV, Mantovani SM, Monroe EA, Moore M, Moss N, Nützmann HW, Pan G, Pati A, Petras D, Reen FJ, Rosconi F, Rui Z, Tian Z, Tobias NJ, Tsunematsu Y, Wiemann P, Wyckoff E, Yan X, Yim G, Yu F, Xie Y, Aigle B, Apel AK, Balibar CJ, Balskus EP, Barona-Gómez F, Bechthold A, Bode HB, Borriss R, Brady SF, Brakhage AA, Caffrey P, Cheng YQ, Clardy J, Cox RJ, De Mot R, Donadio S, Donia MS, van der Donk WA, Dorrestein PC, Doyle S, Driessen AJM, Ehling-Schulz M, Entian KD, Fischbach MA, Gerwick L, Gerwick WH, Gross H, Gust B, Hertweck C, Höfte M, Jensen SE, Ju J, Katz L, Kaysser L, Klassen JL, Keller NP, Kormanec J, Kuipers OP, Kuzuyama T, Kyrpides NC, Kwon HJ, Lautru S, Lavigne R, Lee CY, Linquan B, Liu X, Liu W, Luzhetskyy A, Mahmud T, Mast Y, Méndez C, Metsä-Ketelä M, Micklefield J, Mitchell DA, Moore BS, Moreira LM, Müller R, Neilan BA, Nett M, Nielsen J, O'Gara F, Oikawa H, Osbourn A, Osburne MS, Ostash B, Payne SM, Pernodet JL, Petricek M, Piel J, Ploux O, Raaijmakers JM, Salas JA, Schmitt EK, Scott B, Seipke RF, Shen B, Sherman DH, Sivonen K, Smanski MJ, Sosio M, Stegmann E, Süssmuth RD, Tahlan K, Thomas CM, Tang Y, Truman AW, Viaud M, Walton JD, Walsh CT, Weber T, van Wezel GP, Wilkinson B, Willey JM, Wohlleben W, Wright GD, Ziemert N, Zhang C, Zotchev SB, Breitling R, Takano E, Glöckner FO. Minimum Information about a Biosynthetic Gene cluster. Nat Chem Biol 2015; 11:625-31. [PMID: 26284661 PMCID: PMC5714517 DOI: 10.1038/nchembio.1890] [Citation(s) in RCA: 581] [Impact Index Per Article: 58.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
research-article |
10 |
581 |
2
|
Huang AC, Jiang T, Liu YX, Bai YC, Reed J, Qu B, Goossens A, Nützmann HW, Bai Y, Osbourn A. A specialized metabolic network selectively modulates Arabidopsis root microbiota. Science 2019; 364:364/6440/eaau6389. [DOI: 10.1126/science.aau6389] [Citation(s) in RCA: 254] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 03/25/2019] [Indexed: 12/16/2022]
Abstract
Plant specialized metabolites have ecological functions, yet the presence of numerous uncharacterized biosynthetic genes in plant genomes suggests that many molecules remain unknown. We discovered a triterpene biosynthetic network in the roots of the small mustard plant Arabidopsis thaliana. Collectively, we have elucidated and reconstituted three divergent pathways for the biosynthesis of root triterpenes, namely thalianin (seven steps), thalianyl medium-chain fatty acid esters (three steps), and arabidin (five steps). A. thaliana mutants disrupted in the biosynthesis of these compounds have altered root microbiota. In vitro bioassays with purified compounds reveal selective growth modulation activities of pathway metabolites toward root microbiota members and their biochemical transformation and utilization by bacteria, supporting a role for this biosynthetic network in shaping an Arabidopsis-specific root microbial community.
Collapse
|
|
6 |
254 |
3
|
Nützmann HW, Huang A, Osbourn A. Plant metabolic clusters - from genetics to genomics. THE NEW PHYTOLOGIST 2016; 211:771-89. [PMID: 27112429 PMCID: PMC5449196 DOI: 10.1111/nph.13981] [Citation(s) in RCA: 215] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 03/22/2016] [Indexed: 05/18/2023]
Abstract
Contents 771 I. 771 II. 772 III. 780 IV. 781 V. 786 786 References 786 SUMMARY: Plant natural products are of great value for agriculture, medicine and a wide range of other industrial applications. The discovery of new plant natural product pathways is currently being revolutionized by two key developments. First, breakthroughs in sequencing technology and reduced cost of sequencing are accelerating the ability to find enzymes and pathways for the biosynthesis of new natural products by identifying the underlying genes. Second, there are now multiple examples in which the genes encoding certain natural product pathways have been found to be grouped together in biosynthetic gene clusters within plant genomes. These advances are now making it possible to develop strategies for systematically mining multiple plant genomes for the discovery of new enzymes, pathways and chemistries. Increased knowledge of the features of plant metabolic gene clusters - architecture, regulation and assembly - will be instrumental in expediting natural product discovery. This review summarizes progress in this area.
Collapse
|
Review |
9 |
215 |
4
|
Abstract
In bacteria, more than half of the genes in the genome are organized in operons. In contrast, in eukaryotes, functionally related genes are usually dispersed across the genome. There are, however, numerous examples of functional clusters of nonhomologous genes for metabolic pathways in fungi and plants. Despite superficial similarities with operons (physical clustering, coordinate regulation), these clusters have not usually originated by horizontal gene transfer from bacteria, and (unlike operons) the genes are typically transcribed separately rather than as a single polycistronic message. This clustering phenomenon raises intriguing questions about the origins of clustered metabolic pathways in eukaryotes and the significance of clustering for pathway function. Here we review metabolic gene clusters from fungi and plants, highlight commonalities and differences, and consider how these clusters form and are regulated. We also identify opportunities for future research in the areas of large-scale genomics, synthetic biology, and experimental evolution.
Collapse
|
Review |
7 |
118 |
5
|
Yu N, Nützmann HW, MacDonald JT, Moore B, Field B, Berriri S, Trick M, Rosser SJ, Kumar SV, Freemont PS, Osbourn A. Delineation of metabolic gene clusters in plant genomes by chromatin signatures. Nucleic Acids Res 2016; 44:2255-65. [PMID: 26895889 PMCID: PMC4797310 DOI: 10.1093/nar/gkw100] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 01/20/2016] [Accepted: 02/09/2016] [Indexed: 12/26/2022] Open
Abstract
Plants are a tremendous source of diverse chemicals, including many natural product-derived drugs. It has recently become apparent that the genes for the biosynthesis of numerous different types of plant natural products are organized as metabolic gene clusters, thereby unveiling a highly unusual form of plant genome architecture and offering novel avenues for discovery and exploitation of plant specialized metabolism. Here we show that these clustered pathways are characterized by distinct chromatin signatures of histone 3 lysine trimethylation (H3K27me3) and histone 2 variant H2A.Z, associated with cluster repression and activation, respectively, and represent discrete windows of co-regulation in the genome. We further demonstrate that knowledge of these chromatin signatures along with chromatin mutants can be used to mine genomes for cluster discovery. The roles of H3K27me3 and H2A.Z in repression and activation of single genes in plants are well known. However, our discovery of highly localized operon-like co-regulated regions of chromatin modification is unprecedented in plants. Our findings raise intriguing parallels with groups of physically linked multi-gene complexes in animals and with clustered pathways for specialized metabolism in filamentous fungi.
Collapse
|
research-article |
9 |
60 |
6
|
Bohnert M, Nützmann HW, Schroeckh V, Horn F, Dahse HM, Brakhage AA, Hoffmeister D. Cytotoxic and antifungal activities of melleolide antibiotics follow dissimilar structure-activity relationships. PHYTOCHEMISTRY 2014; 105:101-8. [PMID: 24906293 DOI: 10.1016/j.phytochem.2014.05.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 04/08/2014] [Accepted: 05/05/2014] [Indexed: 05/25/2023]
Abstract
The fungal genus Armillaria is unique in that it is the only natural source of melleolide antibiotics, i.e., protoilludene alcohols esterified with orsellinic acid or its derivatives. This class of natural products is known to exert antimicrobial and cytotoxic effects. Here, we present a refined relationship between the structure and the antimicrobial activity of the melleolides. Using both agar diffusion and broth dilution assays, we identified the Δ(2,4)-double bond of the protoilludene moiety as a key structural feature for antifungal activity against Aspergillus nidulans, Aspergillus flavus, and Penicillium notatum. These findings contrast former reports on cytotoxic activities and may indicate a different mode of action towards susceptible fungi. We also report the isolation and structure elucidation of five melleolides (6'-dechloroarnamial, 6'-chloromelleolide F, 10-hydroxy-5'-methoxy-6'-chloroarmillane, and 13-deoxyarmellides A and B), along with the finding that treatment with an antifungal melleolide impacts transcription of A. nidulans natural product genes.
Collapse
|
|
11 |
41 |
7
|
Scherlach K, Nützmann HW, Schroeckh V, Dahse HM, Brakhage AA, Hertweck C. Cytotoxic Pheofungins from an Engineered Fungus Impaired in Posttranslational Protein Modification. Angew Chem Int Ed Engl 2011; 50:9843-7. [PMID: 21913294 DOI: 10.1002/anie.201104488] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Indexed: 11/06/2022]
|
|
14 |
40 |
8
|
Hao X, Xie C, Ruan Q, Zhang X, Wu C, Han B, Qian J, Zhou W, Nützmann HW, Kai G. The transcription factor OpWRKY2 positively regulates the biosynthesis of the anticancer drug camptothecin in Ophiorrhiza pumila. HORTICULTURE RESEARCH 2021; 8:7. [PMID: 33384421 PMCID: PMC7775441 DOI: 10.1038/s41438-020-00437-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/22/2020] [Accepted: 10/17/2020] [Indexed: 05/03/2023]
Abstract
The limited bioavailability of plant-derived natural products with anticancer activity poses major challenges to the pharmaceutical industry. An example of this is camptothecin, a monoterpene indole alkaloid with potent anticancer activity that is extracted at very low concentrations from woody plants. Recently, camptothecin biosynthesis has been shown to become biotechnologically amenable in hairy-root systems of the natural producer Ophiorrhiza pumila. Here, time-course expression and metabolite analyses were performed to identify novel transcriptional regulators of camptothecin biosynthesis in O. pumila. It is shown here that camptothecin production increased over cultivation time and that the expression pattern of the WRKY transcription factor encoding gene OpWRKY2 is closely correlated with camptothecin accumulation. Overexpression of OpWRKY2 led to a more than three-fold increase in camptothecin levels. Accordingly, silencing of OpWRKY2 correlated with decreased camptothecin levels in the plant. Further detailed molecular characterization by electrophoretic mobility shift, yeast one-hybrid and dual-luciferase assays showed that OpWRKY2 directly binds and activates the central camptothecin pathway gene OpTDC. Taken together, the results of this study demonstrate that OpWRKY2 acts as a direct positive regulator of camptothecin biosynthesis. As such, a feasible strategy for the over-accumulation of camptothecin in a biotechnologically amenable system is presented.
Collapse
|
research-article |
4 |
38 |
9
|
Di Stefano M, Nützmann HW, Marti-Renom M, Jost D. Polymer modelling unveils the roles of heterochromatin and nucleolar organizing regions in shaping 3D genome organization in Arabidopsis thaliana. Nucleic Acids Res 2021; 49:1840-1858. [PMID: 33444439 PMCID: PMC7913674 DOI: 10.1093/nar/gkaa1275] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 11/16/2020] [Accepted: 01/13/2021] [Indexed: 01/10/2023] Open
Abstract
The 3D genome is characterized by a complex organization made of genomic and epigenomic layers with profound implications on gene regulation and cell function. However, the understanding of the fundamental mechanisms driving the crosstalk between nuclear architecture and (epi)genomic information is still lacking. The plant Arabidopsis thaliana is a powerful model organism to address these questions owing to its compact genome for which we have a rich collection of microscopy, chromosome conformation capture (Hi-C) and ChIP-seq experiments. Using polymer modelling, we investigate the roles of nucleolus formation and epigenomics-driven interactions in shaping the 3D genome of A. thaliana. By validation of several predictions with published data, we demonstrate that self-attracting nucleolar organizing regions and repulsive constitutive heterochromatin are major mechanisms to regulate the organization of chromosomes. Simulations also suggest that interphase chromosomes maintain a partial structural memory of the V-shapes, typical of (sub)metacentric chromosomes in anaphase. Additionally, self-attraction between facultative heterochromatin regions facilitates the formation of Polycomb bodies hosting H3K27me3-enriched gene-clusters. Since nucleolus and heterochromatin are highly-conserved in eukaryotic cells, our findings pave the way for a comprehensive characterization of the generic principles that are likely to shape and regulate the 3D genome in many species.
Collapse
|
research-article |
4 |
27 |
10
|
Nützmann HW, Osbourn A. Regulation of metabolic gene clusters in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2015; 205:503-10. [PMID: 25417931 PMCID: PMC4301183 DOI: 10.1111/nph.13189] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 10/23/2014] [Indexed: 05/04/2023]
Abstract
Recent discoveries have revealed that the genes for the biosynthesis of a variety of plant specialized metabolites are organized in operon-like clusters within plant genomes. Here we identify a regulatory process that is required for normal expression of metabolic gene clusters in Arabidopsis thaliana. Comparative gene expression analysis of a representative clustered gene was performed in a set of chromatin mutant lines. Subsequently, metabolite levels were analysed by GC-MS and the local chromatin structure was investigated by chromatin immunoprecipitation and nucleosome positioning. We show that the transcript levels of genes within two metabolic clusters are coordinately reduced in an arp6 and h2a.z background. We demonstrate that H2A.Z enrichment in the clusters is positively correlated with active cluster expression. We further show that nucleosome stability within the cluster regions is higher in the arp6 background compared with the wild-type. These results implicate ARP6 and H2A.Z in the regulation of metabolic clusters in Arabidopsis thaliana through localized chromatin modifications that enable the coordinate expression of groups of contiguous genes. These findings shed light on the complex process of cluster regulation, an area that could in the future open up new opportunities for the discovery and manipulation of specialized metabolic pathways in plants.
Collapse
|
research-article |
10 |
22 |
11
|
Méteignier LV, Nützmann HW, Papon N, Osbourn A, Courdavault V. Emerging mechanistic insights into the regulation of specialized metabolism in plants. NATURE PLANTS 2023; 9:22-30. [PMID: 36564633 DOI: 10.1038/s41477-022-01288-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 10/25/2022] [Indexed: 06/17/2023]
Abstract
Plants biosynthesize a broad range of natural products through specialized and species-specific metabolic pathways that are fuelled by core metabolism, together forming a metabolic network. Specialized metabolites have important roles in development and adaptation to external cues, and they also have invaluable pharmacological properties. A growing body of evidence has highlighted the impact of translational, transcriptional, epigenetic and chromatin-based regulation and evolution of specialized metabolism genes and metabolic networks. Here we review the forefront of this research field and extrapolate to medicinal plants that synthetize rare molecules. We also discuss how this new knowledge could help in improving strategies to produce useful plant-derived pharmaceuticals.
Collapse
|
Review |
2 |
20 |
12
|
Nützmann HW, Schroeckh V, Brakhage AA. Regulatory cross talk and microbial induction of fungal secondary metabolite gene clusters. Methods Enzymol 2013; 517:325-41. [PMID: 23084946 DOI: 10.1016/b978-0-12-404634-4.00016-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Filamentous fungi are well-known producers of a wealth of secondary metabolites with various biological activities. Many of these compounds such as penicillin, cyclosporine, or lovastatin are of great importance for human health. Genome sequences of filamentous fungi revealed that the encoded potential to produce secondary metabolites is much higher than the actual number of compounds produced during cultivation in the laboratory. This finding encouraged research groups to develop new methods to exploit the silent reservoir of secondary metabolites. In this chapter, we present three successful strategies to induce the expression of secondary metabolite gene clusters. They are based on the manipulation of the molecular processes controlling the biosynthesis of secondary metabolites and the simulation of stimulating environmental conditions leading to altered metabolic profiles. The presented methods were successfully applied to identify novel metabolites. They can be also used to significantly increase product yields.
Collapse
MESH Headings
- Aspergillus nidulans/genetics
- Aspergillus nidulans/metabolism
- Culture Media/metabolism
- Gene Deletion
- Gene Expression Regulation, Fungal
- Gene Knockout Techniques/methods
- Genes, Fungal
- Genes, Regulator
- Genetic Engineering/methods
- Genetic Vectors/genetics
- Genetic Vectors/metabolism
- Multigene Family
- Promoter Regions, Genetic
- RNA, Bacterial/genetics
- RNA, Fungal/genetics
- RNA, Fungal/isolation & purification
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- Recombination, Genetic
- Signal Transduction/genetics
- Streptomyces/genetics
- Streptomyces/metabolism
- Transcriptional Activation
- Transformation, Genetic
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
9 |
13
|
Nguyen TH, Thiers L, Van Moerkercke A, Bai Y, Fernández-Calvo P, Minne M, Depuydt T, Colinas M, Verstaen K, Van Isterdael G, Nützmann HW, Osbourn A, Saeys Y, De Rybel B, Vandepoele K, Ritter A, Goossens A. A redundant transcription factor network steers spatiotemporal Arabidopsis triterpene synthesis. NATURE PLANTS 2023; 9:926-937. [PMID: 37188853 DOI: 10.1038/s41477-023-01419-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 04/14/2023] [Indexed: 05/17/2023]
Abstract
Plant specialized metabolites modulate developmental and ecological functions and comprise many therapeutic and other high-value compounds. However, the mechanisms determining their cell-specific expression remain unknown. Here we describe the transcriptional regulatory network that underlies cell-specific biosynthesis of triterpenes in Arabidopsis thaliana root tips. Expression of thalianol and marneral biosynthesis pathway genes depends on the phytohormone jasmonate and is limited to outer tissues. We show that this is promoted by the activity of redundant bHLH-type transcription factors from two distinct clades and coactivated by homeodomain factors. Conversely, the DOF-type transcription factor DAG1 and other regulators prevent expression of the triterpene pathway genes in inner tissues. We thus show how precise expression of triterpene biosynthesis genes is determined by a robust network of transactivators, coactivators and counteracting repressors.
Collapse
|
|
2 |
7 |
14
|
Bishop J, Swan H, Valente F, Nützmann HW. The Plant Nuclear Envelope and Its Role in Gene Transcription. FRONTIERS IN PLANT SCIENCE 2021; 12:674209. [PMID: 33995467 PMCID: PMC8119737 DOI: 10.3389/fpls.2021.674209] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 03/25/2021] [Indexed: 05/12/2023]
Abstract
Chromosomes are dynamic entities in the eukaryotic nucleus. During cell development and in response to biotic and abiotic change, individual sections as well as entire chromosomes re-organise and reposition within the nuclear space. A focal point for these processes is the nuclear envelope (NE) providing both barrier and anchor for chromosomal movement. In plants, positioning of chromosome regions and individual genes at the nuclear envelope has been shown to be associated with distinct transcriptional patterns. Here, we will review recent findings on the interplay between transcriptional activity and gene positioning at the nuclear periphery (NP). We will discuss potential mechanisms of transcriptional regulation at the nuclear envelope and outline future perspectives in this research area.
Collapse
|
Review |
4 |
5 |
15
|
Pérez-de Los Santos FJ, Sotelo-Fonseca JE, Ramírez-Colmenero A, Nützmann HW, Fernandez-Valverde SL, Oktaba K. Plant In Situ Hi-C Experimental Protocol and Bioinformatic Analysis. Methods Mol Biol 2022; 2512:217-247. [PMID: 35818008 DOI: 10.1007/978-1-0716-2429-6_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Hi-C enables the characterization of the 0conformation of the genome in the three-dimensional nuclear space. This technique has revolutionized our ability to detect interactions between linearly distant genomic sites on a genome-wide scale. Here, we detail a protocol to carry out in situ Hi-C in plants and describe a straightforward bioinformatics pipeline for the analysis of such data, in particular for comparing samples from different organs or conditions.
Collapse
|
|
3 |
1 |
16
|
Scherlach K, Nützmann HW, Schroeckh V, Dahse HM, Brakhage AA, Hertweck C. Cytotoxic Pheofungins from an Engineered Fungus Impaired in Posttranslational Protein Modification. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201104488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
|
14 |
1 |
17
|
Nützmann HW, Osbourn A. Erratum to “Gene clustering in plant specialized metabolism” [Curr Opin Biotechnol 2014, 26:91–99]. Curr Opin Biotechnol 2014. [DOI: 10.1016/j.copbio.2013.11.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
|
11 |
1 |
18
|
Hao X, Xie C, Ruan Q, Zhang X, Wu C, Han B, Qian J, Zhou W, Nützmann HW, Kai G. The transcription factor OpWRKY2 positively regulates the biosynthesis of the anticancer drug camptothecin in Ophiorrhiza pumila. HORTICULTURE RESEARCH 2021; 8:7. [PMID: 33384421 DOI: 10.1038/s41438-020-00437-433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/22/2020] [Accepted: 10/17/2020] [Indexed: 05/25/2023]
Abstract
The limited bioavailability of plant-derived natural products with anticancer activity poses major challenges to the pharmaceutical industry. An example of this is camptothecin, a monoterpene indole alkaloid with potent anticancer activity that is extracted at very low concentrations from woody plants. Recently, camptothecin biosynthesis has been shown to become biotechnologically amenable in hairy-root systems of the natural producer Ophiorrhiza pumila. Here, time-course expression and metabolite analyses were performed to identify novel transcriptional regulators of camptothecin biosynthesis in O. pumila. It is shown here that camptothecin production increased over cultivation time and that the expression pattern of the WRKY transcription factor encoding gene OpWRKY2 is closely correlated with camptothecin accumulation. Overexpression of OpWRKY2 led to a more than three-fold increase in camptothecin levels. Accordingly, silencing of OpWRKY2 correlated with decreased camptothecin levels in the plant. Further detailed molecular characterization by electrophoretic mobility shift, yeast one-hybrid and dual-luciferase assays showed that OpWRKY2 directly binds and activates the central camptothecin pathway gene OpTDC. Taken together, the results of this study demonstrate that OpWRKY2 acts as a direct positive regulator of camptothecin biosynthesis. As such, a feasible strategy for the over-accumulation of camptothecin in a biotechnologically amenable system is presented.
Collapse
|
|
4 |
1 |
19
|
Di Stefano M, Nützmann HW. Modeling the 3D genome of plants. Nucleus 2021; 12:65-81. [PMID: 34057011 PMCID: PMC8168717 DOI: 10.1080/19491034.2021.1927503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/29/2021] [Accepted: 05/05/2021] [Indexed: 12/11/2022] Open
Abstract
Chromosomes are the carriers of inheritable traits and define cell function and development. This is not only based on the linear DNA sequence of chromosomes but also on the additional molecular information they are associated with, including the transcription machinery, histone modifications, and their three-dimensional folding. The synergistic application of experimental approaches and computer simulations has helped to unveil how these organizational layers of the genome interplay in various organisms. However, such multidisciplinary approaches are still rarely explored in the plant kingdom. Here, we provide an overview of our current knowledge on plant 3D genome organization and review recent efforts to integrate cutting-edge experiments from microscopy and next-generation sequencing approaches with theoretical models. Building on these recent approaches, we propose possible avenues to extend the application of theoretical modeling in the characterization of the 3D genome organization in plants.
Collapse
|
review-article |
4 |
1 |
20
|
Baldwin A, Lechon T, Marchbank A, Scofield S, Lieu K, Wilson CL, Ludlow RA, Herbert RJ, Nützmann HW, Rogers HJ. The H3K27me3 histone mark correlates with repression of colour and aroma development post-harvest in strawberry fruit. JOURNAL OF EXPERIMENTAL BOTANY 2024:erae464. [PMID: 39546422 DOI: 10.1093/jxb/erae464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Indexed: 11/17/2024]
Abstract
Strawberry ripening is non-climacteric, and post-harvest fruit enter senescence and deteriorate rapidly. Chilled storage induces transcriptome wide changes in gene expression, including the down-regulation of aroma related genes. Histone marks are associated with transcriptional activation or repression; the H3K27me3 mark is mainly associated with repression of gene expression. Here genes associated with H3K27me3 were identified through ChIP-seq in ripe red strawberry fruit at harvest and after 5 days of chilled storage in the dark. The number of ChIP peaks increased with storage time, indicating an increased role for this mark in regulation of gene expression following chilled dark storage. Comparing ChIP-seq data to RNA-seq data from the same material identified 440 genes whose expression correlates with H3K27me3 repression. Abiotic stress genes, especially cold stress response genes, were down-regulated during storage. Increased association with the H3K27me3 mark indicates that they may be repressed via this epigenetic mark. Other functional groups included cell wall and carbohydrate metabolism. The association with the H3K27me3 mark of two transcription factors (FaHY5 and FaTRAB1) and FaADH, involved in ester biosynthesis, was validated by ChIP-PCR. These three genes are all down-regulated during storage and indicate a network of H3K27me3 gene repression affecting both anthocyanin and ester biosynthesis.
Collapse
|
|
1 |
|
21
|
Hetherington FM, Nützmann HW. Embracing the next generation of plant scientists. THE NEW PHYTOLOGIST 2018; 217:504-506. [PMID: 29271035 DOI: 10.1111/nph.14963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
|
Congress |
7 |
|