1
|
Ouyang H, Mou L, Luk C, Liu N, Karaskova J, Squire J, Tsao MS. Immortal human pancreatic duct epithelial cell lines with near normal genotype and phenotype. THE AMERICAN JOURNAL OF PATHOLOGY 2000; 157:1623-31. [PMID: 11073822 PMCID: PMC1885733 DOI: 10.1016/s0002-9440(10)64800-6] [Citation(s) in RCA: 259] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Immortal epithelial cell lines were previously established after transduction of the HPV16-E6E7 genes into primary cultures of normal pancreatic duct epithelial cells. Single clones were isolated that demonstrated near normal genotype and phenotype. The proliferation of HPDE6-E6E7c7 and c11 cells is anchorage-dependent, and they were nontumorigenic in SCID mice. The cell lines demonstrated many phenotypes of normal pancreatic duct epithelium, including mRNA expression of carbonic anhydrase II, MUC-1, and cytokeratins 7, 8, 18, and 19. These cells have normal Ki-ras, p53, c-myc, and p16(INK4A) genotypes. Cytogenetic studies demonstrated losses of 3p, 10p12, and 13q14, the latter included the Rb1 gene. The wild-type p53 protein was detectable at very low levels consistent with the presence of E6 gene product, and the lack of functional p53 pathway was confirmed by the inability for gamma-irradiation to up-regulate p53 and p21waf1/cip1 protein. The p110/Rb protein level was also not detectable consistent with the expression of E7 protein and haploid loss of Rb1 gene. Despite this, the proliferation of both c7 and c11 cells were markedly inhibited by transforming growth factor-beta1. This was associated with up-regulation of p21cip1/waf1 but not p27kip1. Further studies showed that p130/Rb2 and cyclin D3 were expressed, suggesting that p130/Rb2 may have partially assumed the maintenance of G(1) cell cycle checkpoint regulation. These results indicate that except for the loss of p53 functional pathway, the two clones of HPDE6-E6E7 cells demonstrated a near normal genotype and phenotype of pancreatic duct epithelial cells. These cell lines will be useful for future studies on the molecular basis of pancreatic duct cell carcinogenesis and islet cell differentiation.
Collapse
|
research-article |
25 |
259 |
2
|
Ouyang H, Nussenzweig A, Kurimasa A, Soares VC, Li X, Cordon-Cardo C, Li WH, Cheong N, Nussenzweig M, Iliakis G, Chen DJ, Li GC. Ku70 is required for DNA repair but not for T cell antigen receptor gene recombination In vivo. J Exp Med 1997; 186:921-9. [PMID: 9294146 PMCID: PMC2199057 DOI: 10.1084/jem.186.6.921] [Citation(s) in RCA: 220] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/1997] [Revised: 07/14/1997] [Indexed: 02/05/2023] Open
Abstract
Ku is a complex of two proteins, Ku70 and Ku80, and functions as a heterodimer to bind DNA double-strand breaks (DSB) and activate DNA-dependent protein kinase. The role of the Ku70 subunit in DNA DSB repair, hypersensitivity to ionizing radiation, and V(D)J recombination was examined in mice that lack Ku70 (Ku70(-/-)). Like Ku80(-/-) mice, Ku70(-/-) mice showed a profound deficiency in DNA DSB repair and were proportional dwarfs. Surprisingly, in contrast to Ku80(-/-) mice in which both T and B lymphocyte development were arrested at an early stage, lack of Ku70 was compatible with T cell receptor gene recombination and the development of mature CD4+CD8- and CD4-CD8+ T cells. Our data shows, for the first time, that Ku70 plays an essential role in DNA DSB repair, but is not required for TCR V(D)J recombination. These results suggest that distinct but overlapping repair pathways may mediate DNA DSB repair and V(D)J recombination.
Collapse
|
research-article |
28 |
220 |
3
|
Sahoo S, Ouyang H, Goh JCH, Tay TE, Toh SL. Characterization of a Novel Polymeric Scaffold for Potential Application in Tendon/Ligament Tissue Engineering. ACTA ACUST UNITED AC 2006; 12:91-9. [PMID: 16499446 DOI: 10.1089/ten.2006.12.91] [Citation(s) in RCA: 193] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Unlike braided fabrics, knitted scaffolds have been proven to favor deposition of collagenous connective tissue matrix, which is crucial for tendon/ligament reconstruction. But cell seeding of such scaffolds often requires a gel system, which is unstable in a dynamic situation, especially in the knee joint. This study developed a novel, biodegradable nano-microfibrous polymer scaffold by electrospinning PLGA nanofibers onto a knitted PLGA scaffold in order to provide a large biomimetic surface for cell attachment. Porcine bone marrow stromal cells were seeded onto either the novel scaffolds by pipetting a cell suspension (Group I) or the knitted PLGA scaffolds by immobilizing in fibrin gel (Group II). Cell attachment at 36 hours, cell proliferation and extracellular matrix synthesis at 1 week, and mechanical properties over 2 weeks were investigated. Cell attachment was comparable and cell proliferation was faster in Group I. Moreover, cellular function was more actively exhibited in Group I, as evident by the higher expression of collagen I, decorin, and biglycan genes. Thus, this novel scaffold, facilitating cell seeding and promoting cell proliferation, function, and differentiation, could be applied with promise in tissue engineering of tendon/ligament.
Collapse
|
|
19 |
193 |
4
|
Li GC, Ouyang H, Li X, Nagasawa H, Little JB, Chen DJ, Ling CC, Fuks Z, Cordon-Cardo C. Ku70: a candidate tumor suppressor gene for murine T cell lymphoma. Mol Cell 1998; 2:1-8. [PMID: 9702186 DOI: 10.1016/s1097-2765(00)80108-2] [Citation(s) in RCA: 163] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We present evidence that inactivation of the Ku70 gene leads to a propensity for malignant transformation both in vitro and in vivo. In vitro, Ku70-/- mouse fibroblasts displayed an increased rate of sister chromatid exchange and a high frequency of spontaneous neoplastic transformation. In vivo, Ku70-/- mice, known to be defective in B but not T lymphocyte maturation, developed thymic and disseminated T cell lymphomas at a mean age of 6 months with CD4+CD8+ tumor cells. These findings directly demonstrate that Ku70 deficiency facilitates neoplastic growth and suggest a novel role of the Ku70 locus in tumor suppression.
Collapse
|
Comparative Study |
27 |
163 |
5
|
Li N, Banin S, Ouyang H, Li GC, Courtois G, Shiloh Y, Karin M, Rotman G. ATM is required for IkappaB kinase (IKKk) activation in response to DNA double strand breaks. J Biol Chem 2001; 276:8898-903. [PMID: 11114307 DOI: 10.1074/jbc.m009809200] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Following challenge with proinflammatory stimuli or generation of DNA double strand breaks (DSBs), transcription factor NF-kappaB translocates from the cytoplasm to the nucleus to activate expression of target genes. In addition, NF-kappaB plays a key role in protecting cells from proapoptotic stimuli, including DSBs. Patients suffering from the genetic disorder ataxia-telangiectasia, caused by mutations in the ATM gene, are highly sensitive to inducers of DSBs, such as ionizing radiation. Similar hypersensitivity is displayed by cell lines derived from ataxia-telangiectasia patients or Atm knockout mice. The ATM protein, a member of the phosphatidylinositol 3-kinase (PI3K)-like family, is a multifunctional protein kinase whose activity is stimulated by DSBs. As both ATM and NF-kappaB deficiencies result in increased sensitivity to DSBs, we examined the role of ATM in NF-kappaB activation. We report that ATM is essential for NF-kappaB activation in response to DSBs but not proinflammatory stimuli, and this activity is mediated via the IkappaB kinase complex. DNA-dependent protein kinase, another member of the PI3K-like family, PI3K itself, and c-Abl, a nuclear tyrosine kinase, are not required for this response.
Collapse
|
|
24 |
155 |
6
|
D'Errico JA, Berry JE, Ouyang H, Strayhorn CL, Windle JJ, Somerman MJ. Employing a transgenic animal model to obtain cementoblasts in vitro. J Periodontol 2000; 71:63-72. [PMID: 10695940 DOI: 10.1902/jop.2000.71.1.63] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Proper formation of cementum, a mineralized tissue lining the tooth root surface, is required for development of a functional periodontal ligament. Further, the presence of healthy cementum is considered to be an important criterion for predictable restoration of periodontal tissues lost as a consequence of disease. Despite the significance of cementum to general oral health, the mechanisms controlling development and regeneration of this tissue are not well understood and research has been hampered by the lack of adequate in vitro experimental models. METHODS In an effort to establish cementoblast cell populations, without the trappings of a heterogeneous population containing periodontal ligament (PDL) cells, cells were obtained from the root surface of first mandibular molars of OC-TAg transgenic mice. These mice contain the SV40 large T-antigen (TAg) under control of the osteocalcin (OC) promoter. Therefore, only cells that express OC also express TAg and are immortalized in vitro. Based on results of prior in situ studies, OC is expressed by cementoblasts during root development, but not by cells within the PDL. Consequently, when populations are isolated from developing molars using collagenase/trypsin digestion, only cementoblasts, not PDL cells, are immortalized and thus, will survive in culture. RESULTS The resulting immortalized cementoblast population (OC/CM) expressed bone sialoprotein (BSP), osteopontin (OPN), and OC, markers selective to cells lining the root surface. These cells also expressed type I and XII collagen and type I PTH/PTHrP receptor (PTH1R). In addition to expression of genes associated with cementoblasts, OC/CM cells promoted mineral nodule formation and exhibited a PTHrP mediated cAMP response. CONCLUSIONS This approach for establishing cementoblasts in vitro provides a model to study cementogenesis as required to enhance our knowledge of the mechanisms controlling development, maintenance, and regeneration of periodontal tissues.
Collapse
|
|
25 |
138 |
7
|
Kurimasa A, Ouyang H, Dong LJ, Wang S, Li X, Cordon-Cardo C, Chen DJ, Li GC. Catalytic subunit of DNA-dependent protein kinase: impact on lymphocyte development and tumorigenesis. Proc Natl Acad Sci U S A 1999; 96:1403-8. [PMID: 9990036 PMCID: PMC15475 DOI: 10.1073/pnas.96.4.1403] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The DNA-dependent protein kinase (DNA-PK) consists of a heterodimer DNA-binding complex, Ku70 and Ku80, and a large catalytic subunit, DNA-PKcs. To examine the role of DNA-PKcs in lymphocyte development, radiation sensitivity, and tumorigenesis, we disrupted the mouse DNA-PKcs by homologous recombination. DNA-PKcs-null mice exhibit neither growth retardation nor a high frequency of T cell lymphoma development, but show severe immunodeficiency and radiation hypersensitivity. In contrast to the Ku70-/- and Ku80-/- phenotype, DNA-PKcs-null mice are blocked for V(D)J coding but not for signal-end joint formation. Furthermore, inactivation of DNA-PKcs leads to hyperplasia and dysplasia of the intestinal mucosa and production of aberrant crypt foci, suggesting a novel role of DNA-PKcs in tumor suppression.
Collapse
|
research-article |
26 |
137 |
8
|
Chu W, Gong X, Li Z, Takabayashi K, Ouyang H, Chen Y, Lois A, Chen DJ, Li GC, Karin M, Raz E. DNA-PKcs is required for activation of innate immunity by immunostimulatory DNA. Cell 2000; 103:909-18. [PMID: 11136976 DOI: 10.1016/s0092-8674(00)00194-x] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bacterial DNA and related synthetic immunostimulatory oligodeoxyribonucleotides (ISS-ODN) stimulate innate immunity. However, the molecular recognition mechanism that initiates signaling in response to bacterial DNA and ISS-ODN has not been identified. Herein, we demonstrate that administration of bacterial DNA and ISS-ODN to mice lacking the catalytic subunit of DNA-PK (DNA-PKcs) and in vitro stimulation of BMDM from these mice result in defective induction of IL-6 and IL-12. Further analysis using BMDM of IKKbeta(-/-) revealed that both DNA-PKcs and IKKbeta are essential for normal cytokine production in response to ISS-ODN or bacterial DNA. ISS-ODN and bacterial DNA activate DNA-PK, which in turn contributes to activation of IKK and NF-kappaB. These results reveal a novel role of DNA-PKcs in innate immune responses and a link between DNA repair and innate immunity.
Collapse
|
Retracted Publication |
25 |
136 |
9
|
Abstract
Acupuncture has been practiced empirically in China for several millennia, and is being increasingly accepted by practitioners and patients worldwide. Functional gastrointestinal disorders are common in clinical gastroenterology. The prevalence of one or more functional gastrointestinal disorders is estimated to be as high as 70% in general population using Rome diagnostic criteria. Since functional gastrointestinal disorders are diagnosed based on symptoms and the exact aetiologies for most of functional gastrointestinal disorders are not completely known, it is not unusual that the treatment for these disorders is unsatisfactory and alternative therapies are attractive to both patients and practitioners. During the latest decades, a considerable number of studies have been performed on acupuncture for the treatment of functional gastrointestinal disorders and underlying mechanisms. In this article, we reviewed available data in the literature on the applications and mechanisms of acupuncture for the treatment of functional gastrointestinal disorders, including functional oesophageal disorders, nausea and vomiting, functional dyspepsia, irritable bowel syndrome, constipation, etc. A summary is provided based on the quality and quantity of published studies regarding the efficacy of acupuncture in treating these various disorders. In addition, the methodology of acupuncture is also introduced.
Collapse
|
Review |
21 |
134 |
10
|
Lin L, Liu C, Tan H, Ouyang H, Zhang Y, Zeng W. Anaesthetic technique may affect prognosis for ovarian serous adenocarcinoma: a retrospective analysis. Br J Anaesth 2011; 106:814-22. [PMID: 21436156 DOI: 10.1093/bja/aer055] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Animal studies have shown that regional anaesthesia and analgesia may prevent or attenuate the surgical stress response by preserving immune function and result in better long-term outcome. We have tested the hypothesis that patients with ovarian serous adenocarcinoma who had surgery with epidural anaesthesia and analgesia would have better long-term outcome than those who were given general anaesthesia (GA) and i.v. opioid analgesia. METHODS A retrospective review of medical records identified 143 patients with ovarian serous adenocarcinoma who underwent surgery between January 1994 and October 2006 at the Sun Yat-sen University Cancer Center. Data in the analysis included age, anaesthesia-analgesia technique, ASA status, blood loss, transfusion, duration of surgery, status of preoperative cancer antigen 125, tumour size, International Federation of Gynecology and Obstetrics stage, histological grade, lymph node status, residual macroscopic tumour, and chemotherapy. Survival analysis was made with the main outcome measure of death. RESULTS The 3- and 5-yr overall survival rates were 78% and 61% in the patient group who received epidural anaesthesia and analgesia (Group E, n=106), and 58% and 49% in the patient group who received GA and i.v. opioid analgesia (Group G, n=37), respectively. After adjusting for the other variables, Group G had a hazard ratio of 1.214 (P=0.043) in a multivariable Cox regression model compared with Group E. CONCLUSIONS This retrospective analysis suggests that epidural anaesthesia and analgesia for ovarian serous adenocarcinoma surgery may reduce mortality during the initial years of follow-up.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
129 |
11
|
Wang S, Guo M, Ouyang H, Li X, Cordon-Cardo C, Kurimasa A, Chen DJ, Fuks Z, Ling CC, Li GC. The catalytic subunit of DNA-dependent protein kinase selectively regulates p53-dependent apoptosis but not cell-cycle arrest. Proc Natl Acad Sci U S A 2000; 97:1584-8. [PMID: 10677503 PMCID: PMC26478 DOI: 10.1073/pnas.97.4.1584] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
DNA damage induced by ionizing radiation (IR) activates p53, leading to the regulation of downstream pathways that control cell-cycle progression and apoptosis. However, the mechanisms for the IR-induced p53 activation and the differential activation of pathways downstream of p53 are unclear. Here we provide evidence that the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) serves as an upstream effector for p53 activation in response to IR, linking DNA damage to apoptosis. DNA-PKcs knockout (DNA-PKcs-/-) mice were exposed to whole-body IR, and the cell-cycle and apoptotic responses were examined in their thymuses. Our data show that IR induction of apoptosis and Bax expression, both mediated via p53, was significantly suppressed in the thymocytes of DNA-PKcs-/- mice. In contrast, IR-induced cell-cycle arrest and p21 expression were normal. Thus, DNA-PKcs deficiency selectively disrupts p53-dependent apoptosis but not cell-cycle arrest. We also confirmed previous findings that p21 induction was attenuated and cell-cycle arrest was defective in the thymoctyes of whole body-irradiated Atm-/- mice, but the apoptotic response was unperturbed. Taken together, our results support a model in which the upstream effectors DNA-PKcs and Atm selectively activate p53 to differentially regulate cell-cycle and apoptotic responses. Whereas Atm selects for cell-cycle arrest but not apoptosis, DNA-PKcs selects for apoptosis but not cell-cycle arrest.
Collapse
|
research-article |
25 |
114 |
12
|
D'Errico JA, Ouyang H, Berry JE, MacNeil RL, Strayhorn C, Imperiale MJ, Harris NL, Goldberg H, Somerman MJ. Immortalized cementoblasts and periodontal ligament cells in culture. Bone 1999; 25:39-47. [PMID: 10423020 DOI: 10.1016/s8756-3282(99)00096-4] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Cementum, a mineralized tissue lining the surface of the tooth root, is required for formation of a functional periodontal ligament attachment during development. Additionally, during regeneration of tissues after disease, cementum is thought to play a critical role in the reparative process. Research efforts aimed toward understanding mechanisms involved in periodontal development and regeneration, and in particular the formation of root cementum, have been hampered by an inability to isolate and culture cells involved in cementum production, i.e., cementoblasts. Using classical techniques for osteoblast isolation, immortalized, heterogeneous cementoblast/periodontal ligament cell (CM/PDL) populations were established from cells lining the tooth root surface of: 1) CD-1 mice, where cells were immortalized using SV40, or 2) H-2KbtsA58 "immorto" mice, where cells containing an immortalizing transgene were removed and cultured. CM/PDL populations were derived from tissues adherent to developing tooth root surfaces, while tissues adherent to the surrounding alveolar bone were specifically excluded from the population. Immortalized CM/PDL cells were characterized to ensure their phenotype reflected that previously demonstrated in situ and in primary, nonimmortalized cultures. Proteins/mRNAs associated with bone/cementum and known to be expressed by root lining cementoblasts, but not by PDL cells, in situ, e.g., bone sialoprotein, osteopontin, and osteocalcin, were expressed by cells within the immortalized populations. Furthermore, CM/PDL cells, in vitro, attached to bone sialoprotein in an arginine-glycineaspartic acid (RGD)-dependent manner, promoted mineral nodule formation and exhibited a PTH/PTHrP-mediated cAMP response. These immortalized heterogeneous populations, containing both CM and PDL cells, provide a unique opportunity to study cells involved in cementogenesis and to enhance our knowledge of the mechanisms controlling development, maintenance, and regeneration of periodontal tissues.
Collapse
|
|
26 |
110 |
13
|
You Z, Ouyang H, Lopatin D, Polver PJ, Wang CY. Nuclear factor-kappa B-inducible death effector domain-containing protein suppresses tumor necrosis factor-mediated apoptosis by inhibiting caspase-8 activity. J Biol Chem 2001; 276:26398-404. [PMID: 11346652 DOI: 10.1074/jbc.m102464200] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activation of the transcription factor nuclear factor-kappa B (NF-kappa B) has been found to play an essential role in the inhibition of tumor necrosis factor (TNF)-mediated apoptosis. NF-kappa B regulates several antiapoptotic molecules including inhibitors of apoptosis, Bcl-2 family proteins (A1 and Bcl-X(L))(,) and IEX-IL. Here we report that the expression of a small death effector domain (DED)-containing protein, NDED (NF-kappa B-inducible DED-containing protein), depends on the activation of NF-kappa B. The inhibition of NF-kappa B by I kappa B alpha, a natural inhibitor of NF-kappa B, suppressed NDED mRNA expression induced by TNF. The restoration of NDED in NF-kappa B null cells inhibited TNF-induced apoptosis. Intriguingly, unlike the caspase-8 inhibitor cellular FADD-like interleukin-1 beta converting enzyme-inhibitory protein (c-FLIP), NDED suppressed TNF-mediated apoptosis by inhibiting TNF-induced caspase-8 enzymatic activity but not the processing of caspase-8. Furthermore, NDED could not inhibit etoposide-mediated apoptosis that is independent of caspase-8 activation. Our results provide the first demonstration that NF-kappa B transcriptionally induces the DED-containing protein to suppress TNF-mediated apoptosis by inhibiting caspase-8 activity, which offers new insight into the antiapoptotic mechanism of NF-kappa B.
Collapse
|
|
24 |
103 |
14
|
Tabernero J, Hozak RR, Yoshino T, Cohn AL, Obermannova R, Bodoky G, Garcia-Carbonero R, Ciuleanu TE, Portnoy DC, Prausová J, Muro K, Siegel RW, Konrad RJ, Ouyang H, Melemed SA, Ferry D, Nasroulah F, Van Cutsem E. Analysis of angiogenesis biomarkers for ramucirumab efficacy in patients with metastatic colorectal cancer from RAISE, a global, randomized, double-blind, phase III study. Ann Oncol 2018; 29:602-609. [PMID: 29228087 PMCID: PMC5888948 DOI: 10.1093/annonc/mdx767] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Background The phase III RAISE trial (NCT01183780) demonstrated that the vascular endothelial growth factor (VEGF) receptor (VEGFR)-2 binding monoclonal antibody ramucirumab plus 5-fluororuracil, leucovorin, and irinotecan (FOLFIRI) significantly improved overall survival (OS) and progression-free survival (PFS) compared with placebo + FOLFIRI as second-line metastatic colorectal cancer (mCRC) treatment. To identify patients who benefit the most from VEGFR-2 blockade, the RAISE trial design included a prospective and comprehensive biomarker program that assessed the association of biomarkers with ramucirumab efficacy outcomes. Patients and methods Plasma and tumor tissue collection was mandatory. Overall, 1072 patients were randomized 1 : 1 to the addition of ramucirumab or placebo to FOLFIRI chemotherapy. Patients were then randomized 1 : 2, for the biomarker program, to marker exploratory (ME) and marker confirmatory (MC) groups. Analyses were carried out using exploratory assays to assess the correlations of baseline marker levels [VEGF-C, VEGF-D, sVEGFR-1, sVEGFR-2, sVEGFR-3 (plasma), and VEGFR-2 (tumor tissue)] with clinical outcomes. Cox regression analyses were carried out for each candidate biomarker with stratification factor adjustment. Results Biomarker results were available from >80% (n = 894) of patients. Analysis of the ME subset determined a VEGF-D level of 115 pg/ml was appropriate for high/low subgroup analyses. Evaluation of the combined ME + MC populations found that the median OS in the ramucirumab + FOLFIRI arm compared with placebo + FOLFIRI showed an improvement of 2.4 months in the high VEGF-D subgroup [13.9 months (95% CI 12.5-15.6) versus 11.5 months (95% CI 10.1-12.4), respectively], and a decrease of 0.5 month in the low VEGF-D subgroup [12.6 months (95% CI 10.7-14.0) versus 13.1 months (95% CI 11.8-17.0), respectively]. PFS results were consistent with OS. No trends were evident with the other antiangiogenic candidate biomarkers. Conclusions The RAISE biomarker program identified VEGF-D as a potential predictive biomarker for ramucirumab efficacy in second-line mCRC. Development of an assay appropriate for testing in clinical practice is currently ongoing. Clinical trials registration NCT01183780.
Collapse
|
Clinical Trial, Phase III |
7 |
80 |
15
|
Yuan T, Ouyang H, Vogel HJ. Surface exposure of the methionine side chains of calmodulin in solution. A nitroxide spin label and two-dimensional NMR study. J Biol Chem 1999; 274:8411-20. [PMID: 10085072 DOI: 10.1074/jbc.274.13.8411] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Binding of calcium to calmodulin (CaM) causes a conformational change in this ubiquitous calcium regulatory protein that allows the activation of many target proteins. Met residues make up a large portion of its hydrophobic target binding surfaces. In this work, we have studied the surface exposure of the Met residues in the apo- and calcium-bound states of CaM in solution. Complexes of calcium-CaM with synthetic peptides derived from the CaM-binding domains of myosin light chain kinase, constitutive nitric-oxide synthase, and CaM-dependent protein kinase I were also studied. The surface exposure was measured by NMR by studying the effects of the soluble nitroxide spin label, 4-hydroxyl-2,2,6, 6-tetramethylpiperidinyl-1-oxy, on the line widths and relaxation rates of the Met methyl resonances in samples of biosynthetically 13C-methyl-Met-labeled CaM. The Met residues move from an almost completely buried state in apo-CaM to an essentially fully exposed state in Ca2+4-CaM. Binding of two Ca2+ to the C-terminal lobe of CaM causes full exposure of the C-terminal Met residues and a partial exposure of the N-terminal Met side chains. Binding of the three target peptides blocks the access of the nitroxide surface probe to nearly all Met residues, although the mode of binding is distinct for the three peptides studied. These data show that calcium binding to CaM controls the surface exposure of the Met residues, thereby providing the switch for target protein binding.
Collapse
|
|
26 |
69 |
16
|
Liu Y, Ye X, Zhang JB, Ouyang H, Shen Z, Wu Y, Wang W, Wu J, Tao S, Yang X, Qiao K, Zhang J, Liu J, Fu Q, Xie Y. PROX1 promotes hepatocellular carcinoma proliferation and sorafenib resistance by enhancing β-catenin expression and nuclear translocation. Oncogene 2015; 34:5524-5535. [PMID: 25684142 DOI: 10.1038/onc.2015.7] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 11/19/2014] [Accepted: 11/25/2014] [Indexed: 12/13/2022]
Abstract
Aberrant activation of the Wnt/β-catenin pathway is frequent in hepatocellular carcinoma (HCC) and contributes to HCC initiation and progression. This abnormal activation may result from somatic mutations in the genes of the Wnt/β-catenin pathway and/or dysregulation of the Wnt/β-catenin pathway. The mechanism for the latter remains poorly understood. Prospero-related homeobox 1 (PROX1) is a downstream target of the Wnt/β-catenin pathway in human colorectal cancer and elevated PROX1 expression promotes malignant progression. However, the Wnt/β-catenin pathway does not regulate PROX1 expression in the liver and HCC cells. Here we report that PROX1 promotes HCC cell proliferation in vitro and tumor growth in HCC xenograft mice. PROX1 and β-catenin levels are positively correlated in tumor tissues as well as in cultured HCC cells. PROX1 can upregulate β-catenin transcription by stimulating the β-catenin promoter and enhance the nuclear translocation of β-catenin in HCC cells, which leads to the activation of the Wnt/β-catenin pathway. Moreover, we show that increase in PROX1 expression renders HCC cells more resistant to sorafenib treatment, which is the standard therapy for advanced HCC. Overall, we have pinpointed PROX1 as a critical factor activating the Wnt/β-catenin pathway in HCC, which promotes HCC proliferation and sorafenib resistance.
Collapse
MESH Headings
- Animals
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Cell Line
- Cell Line, Tumor
- Cell Nucleus/metabolism
- Cell Proliferation/drug effects
- Cell Proliferation/genetics
- Drug Resistance, Neoplasm/genetics
- HEK293 Cells
- Homeodomain Proteins/genetics
- Humans
- Liver/metabolism
- Liver/pathology
- Liver Neoplasms/drug therapy
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Niacinamide/analogs & derivatives
- Niacinamide/pharmacology
- Phenylurea Compounds/pharmacology
- Promoter Regions, Genetic/drug effects
- Promoter Regions, Genetic/genetics
- Sorafenib
- Transcription, Genetic/drug effects
- Transcription, Genetic/genetics
- Tumor Suppressor Proteins/genetics
- Up-Regulation/drug effects
- Up-Regulation/genetics
- Wnt Proteins/genetics
- beta Catenin/genetics
- beta Catenin/metabolism
- Prospero-Related Homeobox 1 Protein
Collapse
|
|
10 |
69 |
17
|
Kim D, Ouyang H, Li GC. Heat shock protein hsp70 accelerates the recovery of heat-shocked mammalian cells through its modulation of heat shock transcription factor HSF1. Proc Natl Acad Sci U S A 1995; 92:2126-30. [PMID: 7892235 PMCID: PMC42436 DOI: 10.1073/pnas.92.6.2126] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The role of mammalian 70-kDa heat shock protein (hsp70) in regulating cellular response to heat shock was examined by using three closely related rat cells: control Rat-1 cells, thermotolerant Rat-1 (TT Rat-1) cells, and heat-resistant M21 cells, a derivative of Rat-1 cells that constitutively overexpress human hsp70. In all these cells, after a prescribed heat shock, the level of the phosphorylated form of heat shock transcription factor HSF1 and that of HSF1 capable of binding to its cognitive DNA sequence heat shock element (HSE) exhibit similar time dependence. The amount of a constitutive HSE-binding activity (CHBA), on the other hand, inversely correlates with those of the two aforementioned forms of HSF1. The recovery kinetics from heat shock are different for the three cell lines, with the thermal-resistant TT Rat-1 and M21 cells showing faster recovery in terms of the state of phosphorylation of HSF1 and its ability to bind HSE or in terms of the reappearance of CHBA. Treatment with okadaic acid, a serine/threonine phosphatase inhibitor, delays the recovery kinetics of Rat-1 cells but not that of thermal-resistant M21 cells. These results are interpreted in terms of a role for hsp70 in the recovery of heat-shocked mammalian cells.
Collapse
|
research-article |
30 |
69 |
18
|
Burma S, Kurimasa A, Xie G, Taya Y, Araki R, Abe M, Crissman HA, Ouyang H, Li GC, Chen DJ. DNA-dependent protein kinase-independent activation of p53 in response to DNA damage. J Biol Chem 1999; 274:17139-43. [PMID: 10358069 DOI: 10.1074/jbc.274.24.17139] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphorylation at serine 15 of the human p53 tumor suppressor protein is induced by DNA damage and correlates with accumulation of p53 and its activation as a transcription factor. The DNA-dependent protein kinase (DNA-PK) can phosphorylate serine 15 of human p53 and the homologous serine 18 of murine p53 in vitro. Contradictory reports exist about the requirement for DNA-PK in vivo for p53 activation and cell cycle arrest in response to ionizing radiation. While primary SCID (severe combined immunodeficiency) cells, that have defective DNA-PK, show normal p53 activation and cell cycle arrest, a transcriptionally inert form of p53 is induced in the SCID cell line SCGR11. In order to unambiguously define the role of the DNA-PK catalytic subunit (DNA-PKcs) in p53 activation, we examined p53 phosphorylation in mouse embryonic fibroblasts (MEFs) from DNA-PKcs-null mice. We found a similar pattern of serine 18 phosphorylation and accumulation of p53 in response to irradiation in both control and DNA-PKcs-null MEFs. The induced p53 was capable of sequence-specific DNA binding even in the absence of DNA-PKcs. Transactivation of the cyclin-dependent-kinase inhibitor p21, a downstream target of p53, and the G1 cell cycle checkpoint were also found to be normal in the DNA-PKcs -/- MEFs. Our results demonstrate that DNA-PKcs, unlike the related ATM protein, is not essential for the activation of p53 and G1 cell cycle arrest in response to ionizing radiation.
Collapse
|
|
26 |
63 |
19
|
Kim D, Ouyang H, Yang SH, Nussenzweig A, Burgman P, Li GC. A constitutive heat shock element-binding factor is immunologically identical to the Ku autoantigen. J Biol Chem 1995; 270:15277-84. [PMID: 7797514 DOI: 10.1074/jbc.270.25.15277] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Analysis of the heat shock element (HSE)-binding proteins in extracts of rodent cells, during heat shock and their post-heat shock recovery, indicates that the regulation of heat shock response involves a constitutive HSE-binding factor (CHBF), in addition to the heat-inducible heat shock factor HSF1. We purified the CHBF to apparent homogeneity from HeLa cells using column chromatographic techniques including an HSE oligonucleotide affinity column. The purified CHBF consists of two polypeptides with apparent molecular masses of 70 and 86 kDa. Immunoblot and gel mobility shift analysis verify that CHBF is identical or closely related to the Ku autoantigen. The DNA binding characteristics of CHBF to double-stranded or single-stranded DNA are similar to that of Ku autoantigen. In gel mobility shift analysis using purified CHBF and recombinant human HSF1, CHBF competes with HSF1 for the binding of DNA sequences containing HSEs in vitro. Furthermore, when Rat-1 cells were co-transfected with human Ku expression vectors and the hsp70-promoter-driven luciferase reporter gene, thermal induction of luciferase is significantly suppressed relative to cells transfected with only the hsp70-luciferase construct. These data suggest a role of CHBF (or Ku protein) in the regulation of heat response in vivo.
Collapse
|
Comparative Study |
30 |
54 |
20
|
Lei Y, Kansy BA, Li J, Cong L, Liu Y, Trivedi S, Wen H, Ting JPY, Ouyang H, Ferris RL. EGFR-targeted mAb therapy modulates autophagy in head and neck squamous cell carcinoma through NLRX1-TUFM protein complex. Oncogene 2016; 35:4698-707. [PMID: 26876213 PMCID: PMC5257174 DOI: 10.1038/onc.2016.11] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 10/07/2015] [Accepted: 12/11/2015] [Indexed: 01/06/2023]
Abstract
EGFR-targeted therapy in head and neck squamous cell carcinoma (HNSCC) patients frequently results in tumor resistance to treatment. Autophagy is an emerging underlying resistance mechanism, however, the molecular autophagy machinery in HNSCC cells and potential biomarkers of patient response to EGFR-targeted therapy remain insufficiently characterized. Here we show that the EGFR blocking with cetuximab leads to varied autophagic responses, which modulate cancer cell susceptibility to EGFR inhibition. Inhibition of autophagy sensitizes HNSCC cells to EGFR blockade. Importantly, we identify a novel signaling hub centering on the NLRX1-TUFM protein complex, promoting autophagic flux. Defects in the expression of either NLRX1 or TUFM result in compromised autophagy when treated with EGFR inhibitors. As a previously undefined autophagy-promoting mechanism, we found that TUFM serves as a novel anchorage site, recruiting Beclin-1 to mitochondria, promoting its polyubiquitination, and interfering with its interaction with Rubicon. This protein complex is also essential for endoplasmic reticulum (ER) stress signaling induction, possibly as an additional mechanism to promote autophagy. Utilizing tumor specimens from a novel neoadjuvant clinical trial, we show that increased expression of the autophagy adaptor protein, SQSTM1/p62, is associated with poor response to cetuximab therapy. These findings expand our understanding of the components involved in HNSCC autophagy machinery that responds to EGFR inhibitors, and suggest potential combinatorial approaches to enhance its therapeutic efficacy.
Collapse
|
Journal Article |
9 |
54 |
21
|
Abstract
Calmodulin is an important second messenger protein which is involved in a large variety of cellular pathways. Calmodulin is sensitive to fluctuations in the intracellular Ca2+ levels and is activated by the binding of four Ca2+ ions. In spite of the important role it plays in signal transduction pathways, it shows a surprisingly broad specificity for binding metal ions. Using 15N-Gly biosynthetically-labelled calmodulin, we have studied the binding of different metal ions to calmodulin, including K+, Na+, Ca2+, Mg2+, Zn2+, Cd2+, Pb2+, Hg2+, Sr2+, La3+ and Lu3+, by 1H,15N HMQC NMR experiments. The effects of these ions on the substrate-binding ability of calmodulin have also been studied by fluorescence spectroscopy of the single tryptophan residue in a 22-residue synthetic peptide encompassing the skeletal muscle myosin light chain kinase calmodulin-binding domain. Most of these metal ions can activate a calmodulin target enzyme to some extent, though they bind to calmodulin in a different manner. Mg2+, which is of direct physiological interest, has a distinct site-preference for calmodulin, as it shows the highest affinity for site I in the N-terminal domain, while the C-terminal sites III and IV are the high affinity binding sites for Ca2+ (as well as for Cd2+). At a high concentration of Mg2+ and a low concentration of Ca2+, calmodulin can bind Mg2+ in its N-terminal lobe while the C-terminal domain is occupied by Ca2+; this species could exist in resting cells in which the Mg2+ level significantly exceeds that of Ca2+. Moreover, our data suggest that the toxicity of Pb(2+)--which, like Sr2+, binds with an equal and high affinity to all four sites--may be related to its capacity to tightly bind and improperly activate calmodulin.
Collapse
|
|
27 |
51 |
22
|
Ouyang H, Xing J, Chen JDZ. Tachygastria induced by gastric electrical stimulation is mediated via alpha- and beta-adrenergic pathway and inhibits antral motility in dogs. Neurogastroenterol Motil 2005; 17:846-53. [PMID: 16336500 DOI: 10.1111/j.1365-2982.2005.00696.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND It is known that tachygastria is associated with gastric hypomotility and retrograde gastric electrical stimulation (RGES) delays gastric emptying and is proposed for treating obesity. The aim was to investigate the effects and mechanisms of RGES on postprandial antral contraction in dogs. METHODS Seven dogs were implanted with a gastric cannula and three pairs of gastric serosal electrodes. Antral contractions and gastric myoelectrical activity were recorded immediately after a solid meal, with or without RGES, or with GES on the corpus, or with RGES under administration of propranolol. The stimulus was composed of long pulses with a tachygastrial frequency. RESULTS (i) GES at the tachygastrial frequency impaired gastric myoelectrical activity and induced tachygastria (anovaP<0.05). (ii) GES at the tachygastrial frequency suppressed antral contractions (anovaP<0.01) and the effect was stronger with retrograde stimulation than forward stimulation (P<0.05). (iii) GES-induced tachygastria was correlated with antral hypomotility (r=-0.60, P=0.01). (iv) Propranolol and phentolamine abolished GES-induced tachygastria and antral hypomotility. CONCLUSIONS Long-pulse RGES at a tachygastrial frequency suppresses postprandial antral contractions, which is attributed to an induction of tachygastria via the alpha- and beta-adrenergic pathway.
Collapse
|
|
20 |
50 |
23
|
Li GC, Yang SH, Kim D, Nussenzweig A, Ouyang H, Wei J, Burgman P, Li L. Suppression of heat-induced hsp70 expression by the 70-kDa subunit of the human Ku autoantigen. Proc Natl Acad Sci U S A 1995; 92:4512-6. [PMID: 7753835 PMCID: PMC41974 DOI: 10.1073/pnas.92.10.4512] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Expression of the 70-kDa polypeptide of human Ku autoantigen in rat cells is shown to suppress specifically the induction of hsp70 upon heat shock. Thermal induction of other heat shock proteins is not significantly affected, nor is the state of phosphorylation or the DNA-binding ability of the heat shock transcription factor HSF1. These findings support a model in which hsp70 gene expression is controlled by a second regulatory factor in addition to the positive activator HSF1. The Ku autoantigen, or a protein closely related to it, is likely to be involved in the regulation of hsp70 expression.
Collapse
|
research-article |
30 |
44 |
24
|
Ouyang H, McCauley LK, Berry JE, D'Errico JA, Strayhorn CL, Somerman MJ. Response of immortalized murine cementoblasts/periodontal ligament cells to parathyroid hormone and parathyroid hormone-related protein in vitro. Arch Oral Biol 2000; 45:293-303. [PMID: 10708669 DOI: 10.1016/s0003-9969(99)00142-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cementum is an essential component of the periodontium, but the mechanisms involved in regulating the activity of this tissue are poorly understood. As one approach to better defining the cellular and molecular properties of cementum and the associated ligament, immortalized murine cell populations expressing gene markers associated with both cementoblasts (CM) and periodontal ligament cells (PDL), termed CM/PDL cells, were established. To further characterize these cells, their responsiveness to parathyroid hormone (PTH) and parathyroid hormone-related protein (PTHrP) was examined. CM/PDL cells were tested for the presence of steady state PTH-1 receptor mRNA using Northern blot analysis. In addition, the ability of PTH and PTHrP to stimulate cAMP production and c-fos mRNA expression in CM/PDL cells was determined, using a cAMP-binding assay and northern blot hybridization, respectively. Rat osteosarcoma cells (ROS 17/2.8) were used as a positive control and human periodontal ligament cells as a negative control. Northern blot analysis demonstrated that cells within the CM/PDL cell population expressed PTH-1 receptor mRNA. Both PTH (1-34) and PTHrP (1-34) increased cAMP and c-fos mRNA in CM/PDL cells. Furthermore, PTHrP treatment for either 24 or 48 h downregulated expression of transcripts for bone sialoprotein, osteocalcin and PTH-1 receptor by CM/PDL cells and abolished CM/PDL cell-mediated mineralization in vitro. These results indicate that cells within the CM/PDL population are targets for PTH and PTHrP action and that PTHrP may play an important part in regulating the biomineralization of cementum.
Collapse
|
|
25 |
40 |
25
|
MacNeil RL, D'Errico JA, Ouyang H, Berry J, Strayhorn C, Somerman MJ. Isolation of murine cementoblasts: unique cells or uniquely-positioned osteoblasts? Eur J Oral Sci 1998; 106 Suppl 1:350-6. [PMID: 9541247 DOI: 10.1111/j.1600-0722.1998.tb02197.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
While cementoblasts express a number of mineral-related proteins, including bone sialoprotein (BSP), osteopontin (OPN) and osteocalcin (OC), these proteins do not appear to be expressed by cells of the intermediate dental follicle/periodontal ligament (PDL). This information was utilized in an experimental strategy to isolate presumptive cementoblasts from the root surface of day 24 murine mandibular first molars. Using microscopic dissection techniques, molars were carefully extracted from their alveolar crypts and subjected to trypsin-collagenase digestion to remove adherent cells. Primary cultures were established and assayed for expression of proteins known to be expressed by cementoblasts at this timepoint in vivo (i.e. BSP, OPN, OC) and also an odontoblast-specific protein (i.e. DSP) to rule out contamination by pulpal cells. A subgroup of cells were found to express Type I collagen (89% of cells), BSP (46%), OPN (23%) and OC (30%); DSP was not detected within these cultures. We propose that cells within this heterogeneous population, which express this profile of osteogenic proteins, represent cementoblasts. The availability of a cementoblast cell line will make possible rigorous and controlled in vitro analysis of these cells and allow for determination of the unique characteristics of these cells not shared with other cells, particularly osteoblasts.
Collapse
|
Comparative Study |
27 |
39 |