1
|
Ma J, Ketkar H, Geng T, Lo E, Wang L, Xi J, Sun Q, Zhu Z, Cui Y, Yang L, Wang P. Zika Virus Non-structural Protein 4A Blocks the RLR-MAVS Signaling. Front Microbiol 2018; 9:1350. [PMID: 29988497 PMCID: PMC6026624 DOI: 10.3389/fmicb.2018.01350] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/04/2018] [Indexed: 11/18/2022] Open
Abstract
Flaviviruses have evolved complex mechanisms to evade the mammalian host immune systems including the RIG-I (retinoic acid-inducible gene I) like receptor (RLR) signaling. Zika virus (ZIKV) is a re-emerging flavivirus that is associated with severe neonatal microcephaly and adult Guillain-Barre syndrome. However, the molecular mechanisms underlying ZIKV pathogenesis remain poorly defined. Here we report that ZIKV non-structural protein 4A (NS4A) impairs the RLR-mitochondrial antiviral-signaling protein (MAVS) interaction and subsequent induction of antiviral immune responses. In human trophoblasts, both RIG-I and melanoma differentiation-associated protein 5 (MDA5) contribute to type I interferon (IFN) induction and control ZIKV replication. Type I IFN induction by ZIKV is almost completely abolished in MAVS-/- cells. NS4A represses RLR-, but not Toll-like receptor-mediated immune responses. NS4A specifically binds the N-terminal caspase activation and recruitment domain (CARD) of MAVS and thus blocks its accessibility by RLRs. Our study provides in-depth understanding of the molecular mechanisms of immune evasion by ZIKV and its pathogenesis.
Collapse
|
Journal Article |
7 |
84 |
2
|
Yang L, Wang L, Ketkar H, Ma J, Yang G, Cui S, Geng T, Mordue DG, Fujimoto T, Cheng G, You F, Lin R, Fikrig E, Wang P. UBXN3B positively regulates STING-mediated antiviral immune responses. Nat Commun 2018; 9:2329. [PMID: 29899553 PMCID: PMC5998066 DOI: 10.1038/s41467-018-04759-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 05/23/2018] [Indexed: 01/05/2023] Open
Abstract
The ubiquitin regulatory X domain-containing proteins (UBXNs) are likely involved in diverse biological processes. Their physiological functions, however, remain largely unknown. Here we present physiological evidence that UBXN3B positively regulates stimulator-of-interferon genes (STING) signaling. We employ a tamoxifen-inducible Cre-LoxP approach to generate systemic Ubxn3b knockout in adult mice as the Ubxn3b-null mutation is embryonically lethal. Ubxn3b-/-, like Sting-/- mice, are highly susceptible to lethal herpes simplex virus 1 (HSV-1) and vesicular stomatitis virus (VSV) infection, which is correlated with deficient immune responses when compared to Ubxn3b+/+ littermates. HSV-1 and STING agonist-induced immune responses are also reduced in several mouse and human Ubxn3b-/- primary cells. Mechanistic studies demonstrate that UBXN3B interacts with both STING and its E3 ligase TRIM56, and facilitates STING ubiquitination, dimerization, trafficking, and consequent recruitment and phosphorylation of TBK1. These results provide physiological evidence that links the UBXN family with antiviral immune responses.
Collapse
|
research-article |
7 |
52 |
3
|
Yang L, Geng T, Yang G, Ma J, Wang L, Ketkar H, Yang D, Lin T, Hwang J, Zhu S, Wang Y, Dai J, You F, Cheng G, Vella AT, Flavell RA, Fikrig E, Wang P. Macrophage scavenger receptor 1 controls Chikungunya virus infection through autophagy in mice. Commun Biol 2020; 3:556. [PMID: 33033362 PMCID: PMC7545163 DOI: 10.1038/s42003-020-01285-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 09/11/2020] [Indexed: 02/06/2023] Open
Abstract
Macrophage scavenger receptor 1 (MSR1) mediates the endocytosis of modified low-density lipoproteins and plays an important antiviral role. However, the molecular mechanism underlying MSR1 antiviral actions remains elusive. We report that MSR1 activates autophagy to restrict infection of Chikungunya virus (CHIKV), an arthritogenic alphavirus that causes acute and chronic crippling arthralgia. Msr1 expression was rapidly upregulated after CHIKV infection in mice. Msr1 knockout mice had elevated viral loads and increased susceptibility to CHIKV arthritis along with a normal type I IFN response. Induction of LC3 lipidation by CHIKV, a marker of autophagy, was reduced in Msr1-/- cells. Mechanistically, MSR1 interacted with ATG12 through its cytoplasmic tail and this interaction was enhanced by CHIKV nsP1 protein. MSR1 repressed CHIKV replication through ATG5-ATG12-ATG16L1 and this was dependent on the FIP200-and-WIPI2-binding domain, but not the WD40 domain of ATG16L1. Our results elucidate an antiviral role for MSR1 involving the autophagic function of ATG5-ATG12-ATG16L1.
Collapse
|
research-article |
5 |
11 |
4
|
Ketkar H, Harrison AG, Graziano VR, Geng T, Yang L, Vella AT, Wang P. UBX Domain Protein 6 Positively Regulates JAK-STAT1/2 Signaling. THE JOURNAL OF IMMUNOLOGY 2021; 206:2682-2691. [PMID: 34021047 DOI: 10.4049/jimmunol.1901337] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 03/24/2021] [Indexed: 01/03/2023]
Abstract
Type I/III IFNs induce expression of hundreds of IFN-stimulated genes through the JAK/STAT pathway to combat viral infections. Although JAK/STAT signaling is seemingly straightforward, it is nevertheless subjected to complex cellular regulation. In this study, we show that an ubiquitination regulatory X (UBX) domain-containing protein, UBXN6, positively regulates JAK-STAT1/2 signaling. Overexpression of UBXN6 enhanced type I/III IFNs-induced expression of IFN-stimulated genes, whereas deletion of UBXN6 inhibited their expression. RNA viral replication was increased in human UBXN6-deficient cells, accompanied by a reduction in both type I/III IFN expression, when compared with UBXN6-sufficient cells. Mechanistically, UBXN6 interacted with tyrosine kinase 2 (TYK2) and inhibited IFN-β-induced degradation of both TYK2 and type I IFNR. These results suggest that UBXN6 maintains normal JAK-STAT1/2 signaling by stabilizing key signaling components during viral infection.
Collapse
|
Journal Article |
4 |
4 |
5
|
Harrison AG, Ketkar H, Wang P. UBX Domain Protein 6 Positively Regulates JAK-STAT1/2 Signaling. THE JOURNAL OF IMMUNOLOGY 2022. [DOI: 10.4049/jimmunol.208.supp.52.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Abstract
Type I/III IFNs induce expression of hundreds of IFN-stimulated genes through the JAK/STAT pathway to combat viral infections. Although JAK/STAT signaling is seemingly straightforward, it is nevertheless subjected to complex cellular regulation. In this study, we show that an ubiquitination regulatory X (UBX) domain-containing protein, UBXN6, positively regulates JAK-STAT1/2 signaling. Overexpression of UBXN6 enhanced type I/III IFNs–induced expression of IFN-stimulated genes, whereas deletion of UBXN6 inhibited their expression. RNA viral replication was increased in human UBXN6-deficient cells, accompanied by a reduction in both type I/III IFN expression, when compared with UBXN6-sufficient cells. Mechanistically, UBXN6 interacted with tyrosine kinase 2 (TYK2) and inhibited IFN-β–induced degradation of both TYK2 and type I IFNAR. These results suggest that UBXN6 maintains normal JAK-STAT1/2 signaling by stabilizing key signaling components during viral infection.
Supported by R01AI132526 and R21AI155820 to Penghua Wang
Collapse
|
|
3 |
|
6
|
Ketkar H, Alqahtani M, Tang S, Parambath SP, Bakshi CS, Jain S. Chronically hypertensive transgenic mice expressing human AT1R haplotype-I exhibit increased susceptibility to Francisella tularensis. Front Microbiol 2023; 14:1173577. [PMID: 37266014 PMCID: PMC10229887 DOI: 10.3389/fmicb.2023.1173577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 04/13/2023] [Indexed: 06/03/2023] Open
Abstract
Age-related illnesses, including hypertension and accompanying metabolic disorders, compromise immunity and exacerbate infection-associated fatalities. Renin-angiotensin system (RAS) is the key mechanism that controls blood pressure. Upregulation of RAS through angiotensin receptor type 1 (AT1R), a G-protein coupled receptor, contributes to the pathophysiological consequences leading to vascular remodeling, hypertension, and end-organ damage. Genetic variations that increase the expression of human AT1R may cause the above pathological outcomes associated with hypertension. Previously we have shown that our chronically hypertensive transgenic (TG) mice containing the haplotype-I variant (Hap-I, hypertensive genotype) of human AT1R (hAT1R) gene are more prone to develop the metabolic syndrome-related disorders as compared to the TG mice containing the haplotype-II variant (Hap-II, normotensive genotype). Since aging and an increased risk of hypertension can impact multiple organ systems in a complex manner, including susceptibility to various infections, the current study investigated the susceptibility and potential effect of acute bacterial infection using a Gram-negative intracellular bacterial pathogen, Francisella tularensis in our hAT1R TG mice. Our results show that compared to Hap-II, F. tularensis-infected aged Hap-I TG mice have significantly higher mortality post-infection, higher bacterial load and lung pathology, elevated inflammatory cytokines and altered gene expression profile favoring hypertension and inflammation. Consistent with worsened phenotype in aged Hap-I mice post-Francisella infection, gene expression profiles from their lungs revealed significantly altered expression of more than 1,400 genes. Furthermore, bioinformatics analysis identified genes associated with RAS and IFN-γ pathways regulating blood pressure and inflammation. These studies demonstrate that haplotype-dependent over-expression of the hAT1R gene leads to enhanced susceptibility and lethality due to F. tularensis LVS infection, which gets aggravated in aged animals. Clinically, these findings will help in exploring the role of AT1R-induced hypertension and enhanced susceptibility to infection-related respiratory diseases.
Collapse
|
research-article |
2 |
|
7
|
Pizzo E, Cervantes DO, Ketkar H, Ripa V, Nassal DM, Buck B, Parambath SP, Di Stefano V, Singh K, Thompson CI, Mohler PJ, Hund TJ, Jacobson JT, Jain S, Rota M. Phosphorylation of cardiac sodium channel at Ser571 anticipates manifestations of the aging myopathy. Am J Physiol Heart Circ Physiol 2024; 326:H1424-H1445. [PMID: 38639742 PMCID: PMC11932541 DOI: 10.1152/ajpheart.00325.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 03/12/2024] [Accepted: 04/02/2024] [Indexed: 04/20/2024]
Abstract
Diastolic dysfunction and delayed ventricular repolarization are typically observed in the elderly, but whether these defects are intimately associated with the progressive manifestation of the aging myopathy remains to be determined. In this regard, aging in experimental animals is coupled with increased late Na+ current (INa,L) in cardiomyocytes, raising the possibility that INa,L conditions the modality of electrical recovery and myocardial relaxation of the aged heart. For this purpose, aging male and female wild-type (WT) C57Bl/6 mice were studied together with genetically engineered mice with phosphomimetic (gain of function, GoF) or ablated (loss of function, LoF) mutations of the sodium channel Nav1.5 at Ser571 associated with, respectively, increased and stabilized INa,L. At ∼18 mo of age, WT mice developed prolonged duration of the QT interval of the electrocardiogram and impaired diastolic left ventricular (LV) filling, defects that were reversed by INa,L inhibition. Prolonged repolarization and impaired LV filling occurred prematurely in adult (∼5 mo) GoF mutant mice, whereas these alterations were largely attenuated in aging LoF mutant animals. Ca2+ transient decay and kinetics of myocyte shortening/relengthening were delayed in aged (∼24 mo) WT myocytes, with respect to adult cells. In contrast, delayed Ca2+ transients and contractile dynamics occurred at adult stage in GoF myocytes and further deteriorated in old age. Conversely, myocyte mechanics were minimally affected in aging LoF cells. Collectively, these results document that Nav1.5 phosphorylation at Ser571 and the late Na+ current modulate the modality of myocyte relaxation, constituting the mechanism linking delayed ventricular repolarization and diastolic dysfunction.NEW & NOTEWORTHY We have investigated the impact of the late Na current (INa,L) on cardiac and myocyte function with aging by using genetically engineered animals with enhanced or stabilized INa,L, due to phosphomimetic or phosphoablated mutations of Nav1.5. Our findings support the notion that phosphorylation of Nav1.5 at Ser571 prolongs myocardial repolarization and impairs diastolic function, contributing to the manifestations of the aging myopathy.
Collapse
|
Research Support, N.I.H., Extramural |
1 |
|
8
|
Ketkar H, Tang S, Alqahtani M, Bakshi C, Jain S. Chronically Hypertensive Transgenic Mice Expressing Human AT1R Haplotype‐I Exhibit Increased Susceptibility To
Francisella Tularensis. FASEB J 2021. [DOI: 10.1096/fasebj.2021.35.s1.00150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
|
4 |
|
9
|
Pizzo E, Cervantes DO, Ripa V, Filardo A, Berrettoni S, Ketkar H, Jagana V, Di Stefano V, Singh K, Ezzati A, Ghadirian K, Kouril A, Jacobson JT, Bisserier M, Jain S, Rota M. The cAMP/PKA signaling pathway conditions cardiac performance in experimental animals with metabolic syndrome. J Mol Cell Cardiol 2024; 196:35-51. [PMID: 39251059 PMCID: PMC11534532 DOI: 10.1016/j.yjmcc.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 07/20/2024] [Accepted: 09/05/2024] [Indexed: 09/11/2024]
Abstract
Metabolic syndrome (MetS) increases the risk of coronary artery disease, but effects of this condition on the working myocardium remain to be fully elucidated. In the present study we evaluated the consequences of diet-induced metabolic disorders on cardiac function and myocyte performance using female mice fed with Western diet. Animals maintained on regular chow were used as control (Ctrl). Mice on the Western diet (WesD) had increased body weight, impaired glucose metabolism, preserved diastolic and systolic function, but increased left ventricular (LV) mass, with respect to Ctrl animals. Moreover, WesD mice had reduced heart rate variability (HRV), indicative of altered cardiac sympathovagal balance. Myocytes from WesD mice had increased volume, enhanced cell mechanics, and faster kinetics of contraction and relaxation. Moreover, levels of cAMP and protein kinase A (PKA) activity were enhanced in WesD myocytes, and interventions aimed at stabilizing cAMP/PKA abrogated functional differences between Ctrl and WesD cells. Interestingly, in vivo β-adrenergic receptor (β-AR) blockade normalized the mechanical properties of WesD myocytes and revealed defective cardiac function in WesD mice, with respect to Ctrl. Collectively, these results indicate that metabolic disorders induced by Western diet enhance the cAMP/PKA signaling pathway, a possible adaptation required to maintain cardiac function.
Collapse
|
research-article |
1 |
|
10
|
Ketkar H, Tang S, Alqahtani M, Bakshi CS, Jain S. Abstract MP56: Transcriptomic Analysis Of Francisella Tularensis Infected Lungs From Human Angiotensin-II Receptor Type-1 Over-expressing Hypertensive Mice. Hypertension 2021. [DOI: 10.1161/hyp.78.suppl_1.mp56] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Human angiotensin-II receptor type-I (hAT1R) over-expression may cause adverse pathological outcomes due to renin-angiotensin system overactivity. We have shown that transgenic (TG) mice containing Hap-I (hypertensive genotype) of hAT1R gene are more prone to develop metabolic syndrome (MetS) disorders as compared to the TG mice with Hap-II (normotensive genotype). Aging together with an increased risk of hypertension, can affect multiple organ systems, including increased susceptibility to various pathogenic infections. The current study, therefore, was designed to examine the potential role of aging and hypertension on lung pathology and altered transcriptome, in our TG mice, in response to
Francisella tularensis
live vaccine strain (LVS) intranasal infection. Our results showed that in comparison to Hap-II, aged Hap-I TG mice had a significantly higher mortality post-infection; elevated lung pathology; and altered gene expression profile. Consistent with worsened phenotype in aged Hap-I mice post LVS infection, RNA-seq data from their lungs revealed that >1400 genes (p <0.005) were significantly altered. Bioinformatics analysis identified major alterations in canonical pathways related to immune responses including interferon signaling, antigen presentation, agranulocyte adhesion and dendritic cell maturation. These alterations in turn resulted in disorders including, lung infection, inflammation, and immunological diseases. Importantly, IFNG, STAT1, STAT3 and TNF were among the top upstream regulators significantly affected by LVS infection. Overall, these results provide a deeper insight in molecular signaling associated with hypertension associated lung infections in aged subjects.
Collapse
|
|
4 |
|
11
|
Ketkar H, Tang S, Kumar A, Jain S. Kidney Transcriptomic Analysis of Aged Mice Overexpressing Human Angiotensinogen Receptor Type 2. FASEB J 2021. [DOI: 10.1096/fasebj.2021.35.s1.05434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
|
4 |
|
12
|
Ketkar H, Tang S, Jain S. Abstract P479: Pathogenesis And Altered Cardiac Transcriptomic Landscape In Western Diet Treated Aged Mice Overexpressing Human Angiotensin Type 1 Receptor. Circ Res 2021. [DOI: 10.1161/res.129.suppl_1.p479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Overexpression of human angiotensin II type 1 receptor (hAT1R) may lead to pathophysiological outcomes due to overactivation of the renin angiotensin system. We have shown that transgenic (TG) mice containing Hap-I (hypertensive genotype) of human AT1R gene are more prone to develop metabolic syndrome (MetS) as compared to TG mice with Hap-II (normotensive genotype). The increased risk of MetS, especially in hypertension, compounded by the effects of aging and Western diet (WD), which may lead to cardiac complications. However, the underlying mechanisms are not well examined. For this purpose, we studied the pathophysiological changes and gene expression profile alterations in the heart of aged Hap-I and Hap-II TG mice following exposure to WD. Aged mice (20-24 months of age) were maintained on a regular diet or high fat diet with 2% NaCl (WD) for 16 weeks. On regular diet, aged Hap-I mice presented higher (~9 mmHg) systolic blood pressure with respect to age-matched Hap-II animals. Following administration of WD, blood pressure increased in both groups of mice, but to a larger extent in Hap-I animals (~15 mmHg), in comparison to Hap-II (~7 mmHg). With respect to Hap-II, aged Hap-I mice on regular diet tended to have larger heart weight-to-body weight ratio and higher levels of fibrosis. Western Diet treatment exacerbated these differences. RNA sequencing data from cardiac tissue of WD treated Hap-I aged mice (compared to control diet treated age-matched mice) revealed that WD significantly altered the expression of >500 genes (p-adj. <0.05). Bioinformatics analysis, using Qiagen IPA software, identified major alterations in main canonical pathways involved in cardiac function, inflammation, and oxidative damage. Top hits in the disease and biological function category included arrhythmia, chamber enlargement, and cell death. Importantly, IRF3, IRF7, IFNG and STAT1 were among the top upstream regulators significantly affected by WD. Overall, these results indicate that Western diet promotes hypertension, hypertrophy, and fibrosis in the heart of aged mice. Results from these studies will assist in the identification of novel molecules and mechanisms involved in hypertension and associated cardiac pathophysiology.
Collapse
|
|
4 |
|
13
|
Ketkar H, Tang S, Rota M, Jain S. Metabolic Environment Alters the Transcriptomic Landscape of the Aged Heart. FASEB J 2021. [DOI: 10.1096/fasebj.2021.35.s1.04504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
|
4 |
|
14
|
Ketkar H, Hoffmann R. [Fibrodysplasia ossificans progressiva. Case report]. HANDCHIR MIKROCHIR P 1999; 31:51-2. [PMID: 10080062 DOI: 10.1055/s-1999-13492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
Abstract
A case of a nine-year-old boy with a rare connective tissue disorder is presented. Fibrodysplasia ossificans progressiva is a chronic progressive hereditary disease of unknown etiology and unfavourable prognosis. Any injury to tissue must be avoided as it induces further progression of the disease.
Collapse
|
Case Reports |
26 |
|
15
|
Ketkar H, Tang S, Jain S. Abstract MP09: Effect Of Western Diet On Renal Transcriptome Of Hypertensive Mice Overexpressing Human Angiotensin Receptor Type 1. Hypertension 2021. [DOI: 10.1161/hyp.78.suppl_1.mp09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Over-expression of human angiotensin-II receptor type1 (hAT1R) may cause pathological outcomes due to overactivation of renin-angiotensin system. Transgenic (TG) mice containing Hap-I (hypertensive genotype) of human hAT1R gene are more prone to develop metabolic syndrome disorders as compared to TG mice with Hap-II (normotensive genotype). This gene variant associated risk of hypertension together with Western diet and aging may lead to renal disorders. However, mechanisms underlying this process are not well examined. For this purpose, we studied the renal gene expression alterations in aged TG mice containing either Hap-I or Hap-II of hAT1R gene. Aged mice (20-24 months of age) were maintained on a regular diet or high fat diet with 2% NaCl (Western diet, WD) for 16 weeks. On a regular diet, aged Hap-I mice presented higher (~9 mmHg) systolic blood pressure with respect to age-matched Hap-II animals. Following administration of Western diet, blood pressure increased in both groups of mice, but to a larger extent in Hap-I animals (~15 mmHg in comparison to ~7 mmHg in Hap-II). Aged Hap-I mice on Western diet showed increased renal fibrosis. RNA-seq data from renal tissue of Hap-I aged mice revealed that WD significantly altered the expression of >400 genes (p-adj. <0.05). Bioinformatics analysis (Qiagen IPA software) identified major alterations in main canonical pathways involved in renal function and oxidative damage. These changes in turn resulted in kidney failure, renal tubular injury, and renal proliferation. In addition, post WD treatment, RNA seq. analysis from Hap-I and Hap-II kidneys also reveals haplotype specific regulation of genes associated with blood pressure regulation and kidney disorders. Overall, these results indicate that Western diet promotes hypertension and fibrosis in the kidneys of aged mice. These alterations are paralleled by perturbation of renal transcriptional profile. Overall, these studies will assist in the identification of novel mechanisms and molecules involved in hypertension and associated kidney pathophysiology.
Collapse
|
|
4 |
|
16
|
Cervantes DO, Pizzo E, Ketkar H, Parambath SP, Tang S, Cianflone E, Cannata A, Vinukonda G, Jain S, Jacobson JT, Rota M. Scn1b expression in the adult mouse heart modulates Na + influx in myocytes and reveals a mechanistic link between Na + entry and diastolic function. Am J Physiol Heart Circ Physiol 2022; 322:H975-H993. [PMID: 35394857 PMCID: PMC9076421 DOI: 10.1152/ajpheart.00465.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 03/09/2022] [Accepted: 03/23/2022] [Indexed: 11/22/2022]
Abstract
Voltage-gated sodium channels (VGSCs) are macromolecular assemblies composed of a number of proteins regulating channel conductance and properties. VGSCs generate Na+ current (INa) in myocytes and play fundamental roles in excitability and impulse conduction in the heart. Moreover, VGSCs condition mechanical properties of the myocardium, a process that appears to involve the late component of INa. Variants in the gene SCN1B, encoding the VGSC β1- and β1B-subunits, result in inherited neurological disorders and cardiac arrhythmias. But the precise contributions of β1/β1B-subunits and VGSC integrity to the overall function of the adult heart remain to be clarified. For this purpose, adult mice with cardiac-restricted, inducible deletion of Scn1b (conditional knockout, cKO) were studied. Myocytes from cKO mice had increased densities of fast (+20%)- and slow (+140%)-inactivating components of INa, with respect to control cells. By echocardiography and invasive hemodynamics, systolic function was preserved in cKO mice, but diastolic properties and ventricular compliance were compromised, with respect to control animals. Importantly, inhibition of late INa with GS967 normalized left ventricular filling pattern and isovolumic relaxation time in cKO mice. At the cellular level, cKO myocytes presented delayed kinetics of Ca2+ transients and cell mechanics, defects that were corrected by inhibition of INa. Collectively, these results document that VGSC β1/β1B-subunits modulate electrical and mechanical function of the heart by regulating, at least in part, Na+ influx in cardiomyocytes.NEW & NOTEWORTHY We have investigated the consequences of deletion of Scn1b, the gene encoding voltage-gated sodium channel β1-subunits, on myocyte and cardiac function. Our findings support the notion that Scn1b expression controls properties of Na+ influx and Ca2+ cycling in cardiomyocytes affecting the modality of cell contraction and relaxation. These effects at the cellular level condition electrical recovery and diastolic function in vivo, substantiating the multifunctional role of β1-subunits in the physiology of the heart.
Collapse
|
Research Support, N.I.H., Extramural |
3 |
|