1
|
Beitollahi H, Karimi-Maleh H, Khabazzadeh H. Nanomolar and Selective Determination of Epinephrine in the Presence of Norepinephrine Using Carbon Paste Electrode Modified with Carbon Nanotubes and Novel 2-(4-Oxo-3-phenyl-3,4-dihydro-quinazolinyl)-N′-phenyl-hydrazinecarbothioamide. Anal Chem 2008; 80:9848-51. [DOI: 10.1021/ac801854j] [Citation(s) in RCA: 294] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
|
17 |
294 |
2
|
Karimi-Maleh H, Tahernejad-Javazmi F, Atar N, Yola ML, Gupta VK, Ensafi AA. A Novel DNA Biosensor Based on a Pencil Graphite Electrode Modified with Polypyrrole/Functionalized Multiwalled Carbon Nanotubes for Determination of 6-Mercaptopurine Anticancer Drug. Ind Eng Chem Res 2015. [DOI: 10.1021/ie504438z] [Citation(s) in RCA: 261] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
|
10 |
261 |
3
|
Karimi-Maleh H, Tahernejad-Javazmi F, Ensafi AA, Moradi R, Mallakpour S, Beitollahi H. A high sensitive biosensor based on FePt/CNTs nanocomposite/N-(4-hydroxyphenyl)-3,5-dinitrobenzamide modified carbon paste electrode for simultaneous determination of glutathione and piroxicam. Biosens Bioelectron 2014; 60:1-7. [DOI: 10.1016/j.bios.2014.03.055] [Citation(s) in RCA: 249] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 03/11/2014] [Accepted: 03/26/2014] [Indexed: 11/16/2022]
|
|
11 |
249 |
4
|
Ensafi AA, Karimi-Maleh H. Modified multiwall carbon nanotubes paste electrode as a sensor for simultaneous determination of 6-thioguanine and folic acid using ferrocenedicarboxylic acid as a mediator. J Electroanal Chem (Lausanne) 2010. [DOI: 10.1016/j.jelechem.2010.01.010] [Citation(s) in RCA: 232] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
|
15 |
232 |
5
|
Karimi-Maleh H, Karimi F, Alizadeh M, Sanati AL. Electrochemical Sensors, a Bright Future in the Fabrication of Portable Kits in Analytical Systems. CHEM REC 2019; 20:682-692. [PMID: 31845511 DOI: 10.1002/tcr.201900092] [Citation(s) in RCA: 228] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/28/2019] [Accepted: 12/04/2019] [Indexed: 12/16/2022]
Abstract
Analysis of food, pharmaceutical, and environmental compounds is an inevitable issue to evaluate quality of the compounds used in human life. Quality of drinking water, food products, and pharmaceutical compounds is directly associated with human health. Presence of forbidden additives in food products, toxic compounds in water samples and drugs with low quality lead to important problems for human health. Therefore, attention to analytical strategy for investigation of quality of food, pharmaceutical, and environmental compounds and monitoring presence of forbidden compounds in materials used by humans has increased in recent years. Analytical methods help to identify and quantify both permissible and unauthorized compounds present in the materials used in human daily life. Among analytical methods, electrochemical methods have been shown to have more advantages compared to other analytical methods due to their portability and low cost. Most of big companies have applied this type of analytical methods because of their fast and selective analysis. Due to simple operation and high diversity of electroanalytical sensors, these types of sensors are expected to be the future generation of analytical systems. Therefore, many scientists and researchers have focused on designing and fabrication of electroanalytical sensors with good selectivity and high sensitivity for different types of compounds such as drugs, food, and environmental pollutants. In this paper, we described the mechanism and different examples of DNA, enzymatic and electro-catalytic methods for electroanalytical determination of drug, food and environmental compounds.
Collapse
|
Review |
6 |
228 |
6
|
Karimi-Maleh H, Alizadeh M, Orooji Y, Karimi F, Baghayeri M, Rouhi J, Tajik S, Beitollahi H, Agarwal S, Gupta VK, Rajendran S, Rostamnia S, Fu L, Saberi-Movahed F, Malekmohammadi S. Guanine-Based DNA Biosensor Amplified with Pt/SWCNTs Nanocomposite as Analytical Tool for Nanomolar Determination of Daunorubicin as an Anticancer Drug: A Docking/Experimental Investigation. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c04698] [Citation(s) in RCA: 223] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
|
4 |
223 |
7
|
Elyasi M, Khalilzadeh MA, Karimi-Maleh H. High sensitive voltammetric sensor based on Pt/CNTs nanocomposite modified ionic liquid carbon paste electrode for determination of Sudan I in food samples. Food Chem 2013; 141:4311-7. [PMID: 23993620 DOI: 10.1016/j.foodchem.2013.07.020] [Citation(s) in RCA: 221] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 07/02/2013] [Accepted: 07/03/2013] [Indexed: 11/18/2022]
Abstract
In this work, a simple and high sensitivity electrochemical sensor was developed to determine Sudan I based on Pt/CNTs nanocomposite ionic liquid modified carbon paste electrode (Pt/CNTs/ILCPE) using cyclic voltammetry, electrochemical impedance spectroscopy (EIS) and square wave voltammetry (SWV) methods. The novel sensor exhibited an obviously catalytic activity towards the oxidation of Sudan I, which can be confirmed by the increased oxidation peak current and the decreased oxidation peak potential when compared with the bare carbon paste electrode (CPE). The electron transfer coefficient (α), diffusion coefficient (D), and charge transfer resistance (Rct) of Sudan I at the modified electrode were calculated. The linear response range and detection limit were found to be 0.008-600 μmol L(-1) and 0.003 μmol L(-1), respectively. Other species did not interfere with the determination of Sudan I at a surface of propose sensor in the optimum condition. The proposed sensor was successfully applied for the determination of Sudan I in food samples with satisfactory results.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
221 |
8
|
Karimi-Maleh H, Orooji Y, Karimi F, Alizadeh M, Baghayeri M, Rouhi J, Tajik S, Beitollahi H, Agarwal S, Gupta VK, Rajendran S, Ayati A, Fu L, Sanati AL, Tanhaei B, Sen F, Shabani-Nooshabadi M, Asrami PN, Al-Othman A. A critical review on the use of potentiometric based biosensors for biomarkers detection. Biosens Bioelectron 2021; 184:113252. [PMID: 33895688 DOI: 10.1016/j.bios.2021.113252] [Citation(s) in RCA: 210] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/01/2021] [Accepted: 04/12/2021] [Indexed: 12/21/2022]
Abstract
Potentiometric-based biosensors have the potential to advance the detection of several biological compounds and help in early diagnosis of various diseases. They belong to the portable analytical class of biosensors for monitoring biomarkers in the human body. They contain ion-sensitive membranes sensors can be used to determine potassium, sodium, and chloride ions activity while being used as a biomarker to gauge human health. The potentiometric based ion-sensitive membrane systems can be coupled with various techniques to create a sensitive tool for the fast and early detection of cancer biomarkers and other critical biological compounds. This paper discusses the application of potentiometric-based biosensors and classifies them into four major categories: photoelectrochemical potentiometric biomarkers, potentiometric biosensors amplified with molecular imprinted polymer systems, wearable potentiometric biomarkers and light-addressable potentiometric biosensors. This review demonstrated the development of several innovative biosensor-based techniques that could potentially provide reliable tools to test biomarkers. Some challenges however remain, but these can be removed by coupling techniques to maximize the testing sensitivity.
Collapse
|
Review |
4 |
210 |
9
|
Karimi-Maleh H, Yola ML, Atar N, Orooji Y, Karimi F, Senthil Kumar P, Rouhi J, Baghayeri M. A novel detection method for organophosphorus insecticide fenamiphos: Molecularly imprinted electrochemical sensor based on core-shell Co3O4@MOF-74 nanocomposite. J Colloid Interface Sci 2021; 592:174-185. [DOI: 10.1016/j.jcis.2021.02.066] [Citation(s) in RCA: 198] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 01/28/2023]
|
|
4 |
198 |
10
|
Tahernejad-Javazmi F, Shabani-Nooshabadi M, Karimi-Maleh H. Analysis of glutathione in the presence of acetaminophen and tyrosine via an amplified electrode with MgO/SWCNTs as a sensor in the hemolyzed erythrocyte. Talanta 2018; 176:208-213. [DOI: 10.1016/j.talanta.2017.08.027] [Citation(s) in RCA: 198] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/05/2017] [Accepted: 08/07/2017] [Indexed: 01/22/2023]
|
|
7 |
198 |
11
|
Karimi-Maleh H, Karimi F, Malekmohammadi S, Zakariae N, Esmaeili R, Rostamnia S, Yola ML, Atar N, Movaghgharnezhad S, Rajendran S, Razmjou A, Orooji Y, Agarwal S, Gupta VK. An amplified voltammetric sensor based on platinum nanoparticle/polyoxometalate/two-dimensional hexagonal boron nitride nanosheets composite and ionic liquid for determination of N-hydroxysuccinimide in water samples. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113185] [Citation(s) in RCA: 195] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
|
5 |
195 |
12
|
Karimi-Maleh H, Karimi F, Fu L, Sanati AL, Alizadeh M, Karaman C, Orooji Y. Cyanazine herbicide monitoring as a hazardous substance by a DNA nanostructure biosensor. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127058. [PMID: 34488091 DOI: 10.1016/j.jhazmat.2021.127058] [Citation(s) in RCA: 194] [Impact Index Per Article: 64.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/17/2021] [Accepted: 08/26/2021] [Indexed: 05/13/2023]
Abstract
Cyanazine is a beneficial herbicide in the triazines group that inhibits photosynthesis in plants and monitoring of this herbicide is so important for study agriculture products. The present researches have been focused on monitoring of cyanazine by a straightforward and fast electrochemical strategy. Herein, to monitor the cyanazine level, Pt and Pd doped CdO nanoparticle decorated SWCNTs composite (Pt-Pd-CdO/SWCNTs) has been synthesized as a conductive mediator and characterized by EDS, SEM and TEM techniques. The Pt-Pd-CdO/SWCNTs and ds-DNA have been used for modification of the gold electrode (GE). Moreover, the oxidation signal of guanine relative to ds-DNA at the surface of Pt-Pd-CdO/SWCNTs/ds-DNA/GE has been considered as an bioelectroanalytical issue to monitoring cyanazine for the first time. Electrochemical impedance spectroscopic (EIS) signals have confirmed that the inclusion of Pt-Pd-CdO/SWCNTs at the surface of the GE has lowered charge-transfer resistance by ca.1.54 times and created a highly conductive state for monitoring of cyanazine in nanomolar concentration. On the other hand, differential pulse voltammograms (DPV) of Pt-Pd-CdO/SWCNTs/ds-DNA/GE have indicated a linear dynamic range of 4.0 nM-70 µM with a detection limit of 0.8 nM to the monitoring of cyanazine. In addition, the molecular docking study has emphasized that cyanazine herbicide is capable of binding to ds-DNA preferably at the guanine-cytosine rich sequences, and confirmed experimental results. In the final step, Pt-Pd-CdO/SWCNTs/ds-DNA/GE has been successfully utilized for the monitoring of cyanazine herbicide in food and water samples.
Collapse
|
|
3 |
194 |
13
|
Karimi-Maleh H, Biparva P, Hatami M. A novel modified carbon paste electrode based on NiO/CNTs nanocomposite and (9, 10-dihydro-9, 10-ethanoanthracene-11, 12-dicarboximido)-4-ethylbenzene-1, 2-diol as a mediator for simultaneous determination of cysteamine, nicotinamide adenine dinucleotide and folic acid. Biosens Bioelectron 2013; 48:270-5. [PMID: 23707873 DOI: 10.1016/j.bios.2013.04.029] [Citation(s) in RCA: 191] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 04/07/2013] [Accepted: 04/16/2013] [Indexed: 10/26/2022]
Abstract
A carbon paste electrode (CPE) modified with (9, 10-dihydro-9, 10-ethanoanthracene-11, 12-dicarboximido)-4-ethylbenzene-1, 2-diol (DEDE) and NiO/CNTs nanocomposite was used for the sensitive voltammetric determination of cysteamine (CA), nicotinamide adenine dinucleotide (NADH) and folic acid (FA) for the first time. The synthesized materials were characterized with different methods such as XRD, cyclic voltammetry, electrochemical impedance spectroscopy (EIS) and square wave voltammetry (SWV). The modified electrode exhibited a potent and persistent electron mediating behavior followed by well-separated oxidation peaks of CA, NADH and FA. The peak currents were linearly dependent on CA, NADH and FA concentrations using square wave voltammetry (SWV) method in the ranges of 0.01-250, 1.0-500, and 3.0-550 µmol L⁻¹, with detection limits of 0.007, 0.6, and 0.9 µmol L⁻¹, respectively. The modified electrode was used for the determination of CA, NADH and FA in biological and pharmaceutical samples.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
191 |
14
|
Karimi-Maleh H, Sheikhshoaie M, Sheikhshoaie I, Ranjbar M, Alizadeh J, Maxakato NW, Abbaspourrad A. A novel electrochemical epinine sensor using amplified CuO nanoparticles and an-hexyl-3-methylimidazolium hexafluorophosphate electrode. NEW J CHEM 2019. [DOI: 10.1039/c8nj05581e] [Citation(s) in RCA: 185] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This study suggests a carbon paste electrode modified with CuO nanoparticles andn-hexyl-3-methylimidazolium hexafluorophosphate (CPE/CuO-NPs/HMIPF6) as a powerful tool for the analysis of epinine for the first time.
Collapse
|
|
6 |
185 |
15
|
Karimi-Maleh H, Kumar BG, Rajendran S, Qin J, Vadivel S, Durgalakshmi D, Gracia F, Soto-Moscoso M, Orooji Y, Karimi F. Tuning of metal oxides photocatalytic performance using Ag nanoparticles integration. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113588] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
|
5 |
178 |
16
|
Najafi M, Khalilzadeh MA, Karimi-Maleh H. A new strategy for determination of bisphenol A in the presence of Sudan I using a ZnO/CNTs/ionic liquid paste electrode in food samples. Food Chem 2014; 158:125-31. [DOI: 10.1016/j.foodchem.2014.02.082] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 02/13/2014] [Accepted: 02/18/2014] [Indexed: 01/31/2023]
|
|
11 |
174 |
17
|
Tavana T, Khalilzadeh MA, Karimi-Maleh H, Ensafi AA, Beitollahi H, Zareyee D. Sensitive voltammetric determination of epinephrine in the presence of acetaminophen at a novel ionic liquid modified carbon nanotubes paste electrode. J Mol Liq 2012. [DOI: 10.1016/j.molliq.2012.01.009] [Citation(s) in RCA: 167] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
|
13 |
167 |
18
|
Karimi-Maleh H, Beitollahi H, Senthil Kumar P, Tajik S, Jahani PM, Karimi F, Karaman C, Vasseghian Y, Baghayeri M, Rouhi J, Show PL, Rajendran S, Fu L, Zare N. Recent advances in carbon nanomaterials-based electrochemical sensors for food azo dyes detection. Food Chem Toxicol 2022; 164:112961. [PMID: 35395340 DOI: 10.1016/j.fct.2022.112961] [Citation(s) in RCA: 164] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 01/24/2023]
Abstract
Azo dyes as widely applied food colorants are popular for their stability and affordability. On the other hand, many of these dyes can have harmful impacts on living organs, which underscores the need to control the content of this group of dyes in food. Among the various analytical approaches for detecting the azo dyes, special attention has been paid to electro-analytical techniques for reasons such as admirable sensitivity, excellent selectivity, reproducibility, miniaturization, green nature, low cost, less time to prepare and detect of specimens and the ability to modify the electrode. Satisfactory results have been obtained so far for carbon-based nanomaterials in the fabrication of electrochemical sensing systems in detecting the levels of these materials in various specimens. The purpose of this review article is to investigate carbon nanomaterial-supported techniques for electrochemical sensing systems on the analysis of azo dyes in food samples in terms of carbon nanomaterials used, like carbon nanotubes (CNT) and grapheme (Gr).
Collapse
|
|
3 |
164 |
19
|
Eren T, Atar N, Yola ML, Karimi-Maleh H. A sensitive molecularly imprinted polymer based quartz crystal microbalance nanosensor for selective determination of lovastatin in red yeast rice. Food Chem 2015; 185:430-6. [DOI: 10.1016/j.foodchem.2015.03.153] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 03/10/2015] [Accepted: 03/11/2015] [Indexed: 01/17/2023]
|
|
10 |
157 |
20
|
Yola ML, Atar N, Eren T, Karimi-Maleh H, Wang S. Sensitive and selective determination of aqueous triclosan based on gold nanoparticles on polyoxometalate/reduced graphene oxide nanohybrid. RSC Adv 2015. [DOI: 10.1039/c5ra07443f] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
A novel molecular-imprinted electrochemical sensor based on gold nanoparticles decorating polyoxometalate (H3PW12O40)/reduced graphene oxide was developed for determination of trace TCS in wastewater.
Collapse
|
|
10 |
154 |
21
|
Bijad M, Karimi-Maleh H, Khalilzadeh MA. Application of ZnO/CNTs Nanocomposite Ionic Liquid Paste Electrode as a Sensitive Voltammetric Sensor for Determination of Ascorbic Acid in Food Samples. FOOD ANAL METHOD 2013. [DOI: 10.1007/s12161-013-9585-9] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
|
12 |
151 |
22
|
Karimi-Maleh H, Ranjbari S, Tanhaei B, Ayati A, Orooji Y, Alizadeh M, Karimi F, Salmanpour S, Rouhi J, Sillanpää M, Sen F. Novel 1-butyl-3-methylimidazolium bromide impregnated chitosan hydrogel beads nanostructure as an efficient nanobio-adsorbent for cationic dye removal: Kinetic study. ENVIRONMENTAL RESEARCH 2021; 195:110809. [PMID: 33515581 DOI: 10.1016/j.envres.2021.110809] [Citation(s) in RCA: 148] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/12/2021] [Accepted: 01/22/2021] [Indexed: 06/12/2023]
Abstract
In the present study, a novel 1-butyl-3-methylimidazolium bromide (BmImBr) impregnated chitosan beads were prepared and characterized using different methods, including XRD, FT-IR, EDX, SEM and BET. The FTIR analysis revealed that the BmImBr was successfully conjugated with the chitosan in the beads structure. The prepared beads were used as an efficient sorbent for the fast removal of methylene blue, as cationic dye model, from aqueous solution, whereas just 25 min was required to reach 86% removal efficiency. The increasing of BmImBr amount improved the adsorption performance of prepared beads. Also, it was found that the dye can be higher adsorbed on the beads surface by increasing the sorbent dosage and pH of solution, while the optimum dosage and pH were obtained 3 mg/L and 11, respectively. The kinetic study showed that the MB adsorption onto the CS-BmImBr beads follows the pseudo-fist order model and the intrinsic penetration controls the adsorption process. The properties of prepared chitosan- BmImBr IL conjugation confirmed that it can be exploited as an efficient adsorbent in the wastewater treatment.
Collapse
|
Retracted Publication |
4 |
148 |
23
|
Atar N, Eren T, Yola ML, Karimi-Maleh H, Demirdögen B. Magnetic iron oxide and iron oxide@gold nanoparticle anchored nitrogen and sulfur-functionalized reduced graphene oxide electrocatalyst for methanol oxidation. RSC Adv 2015. [DOI: 10.1039/c5ra03735b] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Fuel cells have been attracting more and more attention in recent decades due to high-energy demands, fossil fuel depletions and environmental pollution throughout world.
Collapse
|
|
10 |
145 |
24
|
Moradi R, Sebt SA, Karimi-Maleh H, Sadeghi R, Karimi F, Bahari A, Arabi H. Synthesis and application of FePt/CNTs nanocomposite as a sensor and novel amide ligand as a mediator for simultaneous determination of glutathione, nicotinamide adenine dinucleotide and tryptophan. Phys Chem Chem Phys 2013; 15:5888-97. [PMID: 23486920 DOI: 10.1039/c3cp00033h] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, we report the synthesis and application of a FePt/CNTs nanocomposite as a highly sensitive sensor and novel amide ligand (9,10-dihydro-9,10-ethanoanthracene-11,12-dicarboximido)-4-ethylbenzene-1,2-diol as a mediator for the determination of glutathione (GSH), nicotinamide adenine dinucleotide (NADH) and tryptophan (Trp). The synthesized materials were characterized with different methods such as NMR, IR spectroscopy, TEM, XRD, FESEM, cyclic voltammetry, electrochemical impedance spectroscopy and square wave voltammetry (SWV). The modified electrode exhibited a potent and persistent electron mediating behavior followed by well-separated oxidation peaks of GSH, NADH and Trp. The peak currents were linearly dependent on GSH, NADH and Trp concentrations in the range of 0.08-220, 1.0-400 and 5.0-500 μmol L(-1), with detection limits of 0.05, 0.8 and 1.0 μmol L(-1), respectively. The modified electrode was used for the determination of these compounds in real samples.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
143 |
25
|
Karimi-Maleh H, Khataee A, Karimi F, Baghayeri M, Fu L, Rouhi J, Karaman C, Karaman O, Boukherroub R. A green and sensitive guanine-based DNA biosensor for idarubicin anticancer monitoring in biological samples: A simple and fast strategy for control of health quality in chemotherapy procedure confirmed by docking investigation. CHEMOSPHERE 2022; 291:132928. [PMID: 34800513 DOI: 10.1016/j.chemosphere.2021.132928] [Citation(s) in RCA: 138] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/01/2021] [Accepted: 11/14/2021] [Indexed: 05/25/2023]
Abstract
Drug efficiency can be considerably boosted while adverse effects can be reduced by precisely monitoring the concentration of anti-cancer drugs. Thus, one of the most important parameters for human health is the monitoring and detection of anticancer drugs during chemotherapy treatment. Herein, a glassy carbon electrode (GCE) was modified by Pt- and Pd-incorporated ZnO nanoparticles-decorated single-wall carbon nanotubes (Pt-Pd-ZnO/SWCNTs) nanocomposites, and ds-DNA (Calf Thymus) that was a biological recognition element, and it was aimed to be utilized as an ultrasensitive and effective electroanalytical biosensor for idarubicin (IDR) monitoring. Various physicochemical characterization techniques including transmission electron microscopy (TEM), field-emission scanning electron microscopy (FE-SEM) with energy-dispersive X-ray spectroscopy (EDS) were used to investigate the morphology and structure of the Pt-Pd-ZnO/SWCNTs nanocomposite, which was produced via straightforward chemical precipitation combined with the one-pot method. The layer-by-layer modification technique was implemented to fabricate the ds-DNA/Pt-Pd-ZnO/SWCNTs/GCE to be further utilized as a voltammetric sensor for sensitive monitoring of idarubicin in biological fluids and pharmaceutical substances. The electroanalytical method implemented to detect idarubicin was based to detect the ds-DNA's guanine base signal on the surface of the modified electrode in the absence and presence of the anticancer drug. The results explicated that the developed biosensor performed well in determining idarubicin in concentrations ranging from 1.0 nM to 65 μM, with a detection limit of 0.8 nM. The idarubicin detection ability of the modified electrode in real samples was evaluated, and the recovery data was acquired in the range of 98.0% and 104.75%. In the final step, the preferential intercalative binding mode of idarubicin drug with ds-DNA was approved by molecular docking study. This study paves the way for engineering highly sensitive DNA biosensors to be employed in the monitoring of anticancer drugs by combining the benefits of nanocomposites and valuable information of a molecular docking study.
Collapse
|
|
3 |
138 |