1
|
Cavali M, Libardi Junior N, de Sena JD, Woiciechowski AL, Soccol CR, Belli Filho P, Bayard R, Benbelkacem H, de Castilhos Junior AB. A review on hydrothermal carbonization of potential biomass wastes, characterization and environmental applications of hydrochar, and biorefinery perspectives of the process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159627. [PMID: 36280070 DOI: 10.1016/j.scitotenv.2022.159627] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
It is imperative to search for appropriate processes to convert wastes into energy, chemicals, and materials to establish a circular bio-economy toward sustainable development. Concerning waste biomass valorization, hydrothermal carbonization (HTC) is a promising route given its advantages over other thermochemical processes. From that perspective, this article reviewed the HTC of potential biomass wastes, the characterization and environmental utilization of hydrochar, and the biorefinery potential of this process. Crop and forestry residues and sewage sludge are two categories of biomass wastes (lignocellulosic and non-lignocellulosic, respectively) readily available for HTC or even co-hydrothermal carbonization (Co-HTC). The temperature, reaction time, and solid-to-liquid ratio utilized in HTC/Co-HTC of those biomass wastes were reported to range from 140 to 370 °C, 0.05 to 48 h, and 1/47 to 1/1, respectively, providing hydrochar yields of up to 94 % according to the process conditions. Hydrochar characterization by different techniques to determine its physicochemical properties is crucial to defining the best applications for this material. In the environmental field, hydrochar might be suitable for removing pollutants from aqueous systems, ameliorating soils, adsorbing atmospheric pollutants, working as an energy carrier, and performing carbon sequestration. But this material could also be employed in other areas (e.g., catalysis). Regarding the effluent from HTC/Co-HTC, this byproduct has the potential for serving as feedstock in other processes, such as anaerobic digestion and microalgae cultivation. These opportunities have aroused the industry interest in HTC since 2010, and the number of industrial-scale HTC plants and patent document applications has increased. The hydrochar patents are concentrated in China (77.6 %), the United States (10.6 %), the Republic of Korea (3.5 %), and Germany (3.5 %). Therefore, considering the possibilities of converting their product (hydrochar) and byproduct (effluent) into energy, chemicals, and materials, HTC or Co-HTC could work as the first step of a biorefinery. And this approach would completely agree with circular bioeconomy principles.
Collapse
|
Review |
2 |
48 |
2
|
Benbelkacem H, Bayard R, Abdelhay A, Zhang Y, Gourdon R. Effect of leachate injection modes on municipal solid waste degradation in anaerobic bioreactor. BIORESOURCE TECHNOLOGY 2010; 101:5206-5212. [PMID: 20206511 DOI: 10.1016/j.biortech.2010.02.049] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 02/08/2010] [Accepted: 02/09/2010] [Indexed: 05/28/2023]
Abstract
Three pilots simulated landfill bioreactors were used to investigate the effect of leachate injection modes on anaerobic digestion and biogas production from municipal solid waste. The technical modes used to increase waste moisture consisted of an initial saturation of the waste by flushing with leachate followed by a quick drainage, or weekly leachate injections with two different rates. The results confirmed that increasing moisture content is a key parameter to boost the biological reactions. Weekly leachate injection with high flow rate led to better results than the initial saturation of the waste in terms of biogas production kinetics. Water percolation was found to be an important factor to accelerate the degradation of solid waste. However, a modelling of the collected data by Gompertz model clearly showed that the intrinsic biogas potential determined on the initial solid waste was not reached with any of the progressive leachate injection modes.
Collapse
|
|
15 |
47 |
3
|
Bollon J, Le-hyaric R, Benbelkacem H, Buffiere P. Development of a kinetic model for anaerobic dry digestion processes: Focus on acetate degradation and moisture content. Biochem Eng J 2011. [DOI: 10.1016/j.bej.2011.06.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
|
14 |
43 |
4
|
Bayard R, Benbelkacem H, Gourdon R, Buffière P. Characterization of selected municipal solid waste components to estimate their biodegradability. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 216:4-12. [PMID: 28506668 DOI: 10.1016/j.jenvman.2017.04.087] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 04/26/2017] [Accepted: 04/26/2017] [Indexed: 06/07/2023]
Abstract
Biological treatments of Residual Municipal Solid Waste (RMSW) allow to divert biodegradable materials from landfilling and recover valuable alternative resources. The biodegradability of the waste components needs however to be assessed in order to design the bioprocesses properly. The present study investigated complementary approaches to aerobic and anaerobic biotests for a more rapid evaluation. A representative sample of residual MSW was collected from a Mechanical Biological Treatment (MBT) plant and sorted out into 13 fractions according to the French standard procedure MODECOM™. The different fractions were analyzed for organic matter content, leaching behavior, contents in biochemical constituents (determined by Van Soest's acid detergent fiber method), Biochemical Oxygen Demand (BOD) and Bio-Methane Potential (BMP). Experimental data were statistically treated by Principal Components Analysis (PCA). Cumulative oxygen consumption from BOD tests and cumulative methane production from BMP tests were found to be positively correlated in all waste fractions. No correlation was observed between the results from BOD or BMP bioassays and the contents in cellulose-like, hemicelluloses-like or labile organic compounds. No correlation was observed either with the results from leaching tests (Soluble COD). The contents in lignin-like compounds, evaluated as the non-extracted RES fraction in Van Soest's method, was found however to impact negatively the biodegradability assessed by BOD or BMP tests. Since cellulose, hemicelluloses and lignin are the polymers responsible for the structuration of lignocellulosic complexes, it was concluded that the structural organization of the organic matter in the different waste fractions was more determinant on biodegradability than the respective contents in individual biopolymers.
Collapse
|
|
7 |
20 |
5
|
Lopez A, Benbelkacem H, Pic JS, Debellefontaine H. Oxidation pathways for ozonation of azo dyes in a semi-batch reactor: a kinetic parameters approach. ENVIRONMENTAL TECHNOLOGY 2004; 25:311-321. [PMID: 15176746 DOI: 10.1080/09593330409355465] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In this study ozone and the H2O2/O3 oxidation system are used to decolorize aqueous solutions of Orange II (Or-II) and Acid Red 27 (AR-27). Investigations are carried out in a semi-batch bubble column reactor. A system of series-parallel reactions is proposed to describe the mechanism of dye oxidation. The stoichiometric ratio for the first reaction is found to be 1 mol dye per mol O3, while the overall ozone demand for both reactions one and two is found to be 5 and 6 moles for Or-II and AR-27 respectively. Molecular and radical kinetics are compared: a radical scavenger, t-butanol, can be added to ensure only the molecular reaction of ozone, or hydrogen peroxide can be supplied through a peristaltic pump, to initiate radical reactivity. Results reveal that colour removal is ensured by direct ozone attack. For both dyes, TOC removal efficiencies of 50 - 60 % are obtained by the action of the hydroxyl free radical. However, this is not improved by addition of H2O2, thus demonstrating that organic species alone ensure HO degrees radical production during ozonation. Both the mass transfer and the ozone reactivity with the dyes are considered to evaluate the kinetic parameters for the molecular pathway.
Collapse
|
|
21 |
15 |
6
|
Dooms M, Benbelkacem H, Buffière P. High solid temperature phased anaerobic digestion from agricultural wastes: Putting several reactors in sequence. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2017.11.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
|
7 |
12 |
7
|
Le Hyaric R, Chardin C, Benbelkacem H, Bollon J, Bayard R, Escudié R, Buffière P. Influence of substrate concentration and moisture content on the specific methanogenic activity of dry mesophilic municipal solid waste digestate spiked with propionate. BIORESOURCE TECHNOLOGY 2011; 102:822-7. [PMID: 20863691 DOI: 10.1016/j.biortech.2010.08.124] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 08/30/2010] [Accepted: 08/31/2010] [Indexed: 05/15/2023]
Abstract
The objective of this study was to evaluate the influence of substrate concentration and moisture content on the specific methanogenic activity (SMA) of a fresh dry mesophilic digestate from a municipal solid waste digester plant. For this purpose, SMA tests were performed under mesophilic conditions into glass bottles of 500 mL volume used as batch reactors, during a period of 20-25 days. Propionate was used as substrate at concentrations ranging from 1 to 10 gCOD/kg. Four moisture contents were studied: 65%, 75%, 80% and 82%. Experimental results showed that propionate concentration and moisture content strongly influenced the SMA. The highest SMA was observed at a substrate concentration of 10 gCOD/kg (11.3 mgCOD gVS(-1) d(-1) for the second dose of propionate) and at a moisture content of 82% (7.8 mgCOD gVS(-1) d(-1) for the second dose of propionate, at a concentration of 5 gCOD/kg). SMA was found to decrease linearly when decreasing the moisture content.
Collapse
|
|
14 |
12 |
8
|
Le Hyaric R, Chardin C, Benbelkacem H, Bollon J, Bayard R, Escudié R, Buffière P. Influence of substrate concentration and moisture content on the specific methanogenic activity of dry mesophilic municipal solid waste digestate spiked with propionate. BIORESOURCE TECHNOLOGY 2011; 102:822-827. [PMID: 20863691 DOI: 10.1002/jctb.2722] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 08/30/2010] [Accepted: 08/31/2010] [Indexed: 05/18/2023]
Abstract
The objective of this study was to evaluate the influence of substrate concentration and moisture content on the specific methanogenic activity (SMA) of a fresh dry mesophilic digestate from a municipal solid waste digester plant. For this purpose, SMA tests were performed under mesophilic conditions into glass bottles of 500 mL volume used as batch reactors, during a period of 20-25 days. Propionate was used as substrate at concentrations ranging from 1 to 10 gCOD/kg. Four moisture contents were studied: 65%, 75%, 80% and 82%. Experimental results showed that propionate concentration and moisture content strongly influenced the SMA. The highest SMA was observed at a substrate concentration of 10 gCOD/kg (11.3 mgCOD gVS(-1) d(-1) for the second dose of propionate) and at a moisture content of 82% (7.8 mgCOD gVS(-1) d(-1) for the second dose of propionate, at a concentration of 5 gCOD/kg). SMA was found to decrease linearly when decreasing the moisture content.
Collapse
|
|
14 |
10 |
9
|
Amodeo C, Hattou S, Buffiere P, Benbelkacem H. Temperature phased anaerobic digestion (TPAD) of organic fraction of municipal solid waste (OFMSW) and digested sludge (DS): Effect of different hydrolysis conditions. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 126:21-29. [PMID: 33740710 DOI: 10.1016/j.wasman.2021.02.049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
Hydrolysis is the most critical stage in high solids Temperature Phased Anaerobic Digestion (TPAD). In this paper two different Organic Fraction of Municipal Solid Waste (OFMSW) types were tested in co-digestion with Digested Sludge (DS) at different temperatures: 37, 55 and 65 °C. Volatile fatty acids (VFAs), soluble chemical oxygen demand (CODs) and Biochemical Methane Production (BMP) were measured and calculated after 0, 24, 48 and 72 h hydrolysis. The results showed that both the BMP and the methane production rate improved. A Solids Retention Time (SRT) of 72 h at a temperature of 55 °C gave the best results: the reaction rate constant k was 0.34 d-1 and the BMP was 250 mLCH4/gMV, which were 47% and 19% higher compared to the reference (0 h hydrolysis). The CODs and VFAs profiles during hydrolysis showed how OFMSW initial characteristics can affect the performance of temperature phased anaerobic digestion.
Collapse
|
|
4 |
6 |
10
|
Gasquet V, Kim B, Bonhomme A, Benbelkacem H. Sewage sludge ash-derived materials for H 2S removal from a landfill biogas. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 136:230-237. [PMID: 34700163 DOI: 10.1016/j.wasman.2021.10.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/29/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
H2S removal is a key step for biogas cleaning because this component can lead to premature corrosion of the equipment and its cleaning has a significant cost. The aim of the present work was to assess the use of sewage sludge derived ash (SSA)-materials for H2S removal from a landfill biogas. SSA and mixtures made with SSA, activated carbon (AC) and sand were tested for H2S removal. The best removal efficiency was obtained with the mixture 80%m SSA and 20%m AC, while SSA alone was not a good adsorbent under tested experimental conditions. The materials characterization helped the adsorption mechanism understanding. Indeed, results highlighted that SSA presence stabilizes the pH on a basic range, favorable for H2S dissociation into HS- then its chemisorption. On the other hand, with the microporosity of AC, the contact surface between H2S and oxygen was sufficiently large for chemisorption kinetics. It also appeared that the mixture with sand and AC adorbs non selectively H2S but also other volatile organic pollutants present in biogas. Contrariwise, with SSA/AC mixtures, H2S seems to be selectively chemisorbed.
Collapse
|
|
4 |
5 |
11
|
Buffière P, Dooms M, Hattou S, Benbelkacem H. The hydrolytic stage in high solids temperature phased anaerobic digestion improves the downstream methane production rate. BIORESOURCE TECHNOLOGY 2018; 259:111-118. [PMID: 29549830 DOI: 10.1016/j.biortech.2018.03.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/05/2018] [Accepted: 03/06/2018] [Indexed: 06/08/2023]
Abstract
The role of the hydrolytic stage in high solids temperature phased anaerobic digestion was investigated with a mixture of cattle slurry and maize silage with variable ratios (100, 70 and 30% volatile solids coming from cattle slurry). It was incubated for 48 h at 37, 55, 65 and 72 °C. Soluble chemical oxygen demand and biochemical methane potential were measured at 0, 24 and 48 h. Higher temperatures improved the amount of solubilized COD, which confirmed previously reported results. Nevertheless, solubilization mostly took place during the first 24 h. The rate of methane production in post-hydrolysis BMPs increased after 48 h hydrolysis time, but not after 24 h. The first order kinetic constant rose by 40% on average. No correlation was observed between soluble COD and downstream methane production rate, indicating a possible modification of the physical structure of the particulate solids during the hydrolytic stage.
Collapse
|
|
7 |
4 |
12
|
Fontseré Obis M, Germain P, Troesch O, Spillemaecker M, Benbelkacem H. Valorization of MSWI bottom ash for biogas desulfurization: Influence of biogas water content. WASTE MANAGEMENT (NEW YORK, N.Y.) 2017; 60:388-396. [PMID: 27324926 DOI: 10.1016/j.wasman.2016.06.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/26/2016] [Accepted: 06/09/2016] [Indexed: 06/06/2023]
Abstract
In this study an alternative valorization of Municipal Solid Waste Incineration (MSWI) Bottom Ash (BA) for H2S elimination from landfill biogas was evaluated. Emphasis was given to the influence of water content in biogas on H2S removal efficiency by BA. A small-scale pilot was developed and implemented in a landfill site located in France. A new biogas analyzer was used and allowed real-time continuous measurement of CH4, CO2, O2, H2S and H2O in raw and treated biogas. The H2S removal efficiency of bottom ash was evaluated for different inlet biogas humidities: from 4 to 24gwater/m3. The biogas water content was found to greatly affect bottom ash efficiency regarding H2S removal. With humid inlet biogas the H2S removal was almost 3 times higher than with a dry inlet biogas. Best removal capacity obtained was 56gH2S/kgdryBA. A humid inlet biogas allows to conserve the bottom ash moisture content for a maximum H2S retention.
Collapse
|
|
8 |
3 |
13
|
Figueras J, Benbelkacem H, Dumas C, Buffiere P. "Biomethanation of syngas by enriched mixed anaerobic consortium in pressurized agitated column". BIORESOURCE TECHNOLOGY 2021; 338:125548. [PMID: 34284292 DOI: 10.1016/j.biortech.2021.125548] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/06/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
In a circular economy approach, heterogeneous wastes can be upgraded to energy in the form of syngas via pyrogasification, and then to methane via biomethanation. Working at high pressure is a promising approach to intensify the process and to reduce gas-liquid transfer limitations. However, raising the pressure could lead to reaching the CO inhibition threshold of the microorganisms involved in syngas-biomethanation. To investigate the impact on pressure on the process, a 10L continuous stirred tank reactor working at 4 bars and 55 °C was implemented. Syngas (40% CO, 40% H2, 20% CO2) biomethanation was performed successfully and methane productivity as high as 6.8 mmolCH4/Lreactor/h with almost full conversion of CO (97%) and H2 (98%) was achieved. CO inhibition was investigated and carboxydotrophs appeared less resistant to high CO exposition than methanogens.
Collapse
|
|
4 |
3 |
14
|
Cavali M, Benbelkacem H, Kim B, Bayard R, Libardi Junior N, Gonzaga Domingos D, Woiciechowski AL, Castilhos Junior ABD. Co-hydrothermal carbonization of pine residual sawdust and non-dewatered sewage sludge - effect of reaction conditions on hydrochar characteristics. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 340:117994. [PMID: 37119630 DOI: 10.1016/j.jenvman.2023.117994] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/01/2023] [Accepted: 04/18/2023] [Indexed: 05/12/2023]
Abstract
Waste valorization is mandatory to develop and consolidate a circular bioeconomy. It is necessary to search for appropriate processes to add value to different wastes by utilizing them as feedstocks to provide energy, chemicals, and materials. For instance, hydrothermal carbonization (HTC) is an alternative thermochemical process that has been suggested for waste valorization aiming at hydrochar production. Thus, this study proposed the Co-HTC of pine residual sawdust (PRS) with non-dewatered sewage sludge (SS) - two wastes largely produced in sawmills and wastewater treatment plants, respectively - without adding extra water. The influence of temperature (180, 215, and 250 °C), reaction time (1, 2, and 3 h), and PRS/SS mass ratio (1/30, 1/20, and 1/10) on the yield and characteristics of the hydrochar were evaluated. The hydrochars obtained at 250 °C had the best coalification degree, showing the highest fuel ratio, high heating value (HHV), surface area, and N, P, and K retention, although presenting the lowest yields. Conversely, hydrochar functional groups were generally reduced by increasing Co-HTC temperatures. Regarding the Co-HTC effluent, it presented acidic pH (3.66-4.39) and high COD values (6.2-17.3 g·L-1). In general, this new approach could be a promising alternative to conventional HTC, in which a high amount of extra water is required. Besides, the Co-HTC process can be an option for managing lignocellulosic wastes and sewage sludges while producing hydrochar. This carbonaceous material has the potential for several applications, and its production is a step towards a circular bioeconomy.
Collapse
|
|
2 |
3 |
15
|
Benbelkacem H, Garcia-Bernet D, Bollon J, Loisel D, Bayard R, Steyer JP, Gourdon R, Buffière P, Escudié R. Liquid mixing and solid segregation in high-solid anaerobic digesters. BIORESOURCE TECHNOLOGY 2013; 147:387-394. [PMID: 24001563 DOI: 10.1016/j.biortech.2013.08.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 07/31/2013] [Accepted: 08/05/2013] [Indexed: 06/02/2023]
Abstract
An experimental procedure (Residence Time Distribution technique) was used to characterize the macro-mixing of both liquid and solid phases of a laboratory-scale dry anaerobic digester using appropriate tracers. The effects of the waste origin and total solid content were studied. An increase in TS content from 22% to 30% TS (w/w) induced a macro-mixing mode closer to a theoretical Plug Flow Reactor. The segregation of particles having different densities was investigated regarding the RTD of the solid phase. Segregation of dense particles occurred at low TS content. By using different TS content and waste origins, it was also determined that the yield stress was a key parameter in the mechanism of segregation. At high yield stress, dense particles were more stable and thus less subjected to settling. As a consequence, operating at high TS content may permit to prevent the sedimentation of the denser particles.
Collapse
|
|
12 |
3 |
16
|
Boutoute A, Di Miceli Raimondi N, Guilet R, Cabassud M, Amodeo C, Benbelkacem H, Buffiere P, Teixeira Franco R, Hattou S. Development of a Sensitivity Analysis method to highlight key parameters of a dry Anaerobic Digestion reactor model. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
|
4 |
2 |
17
|
Benbelkacem H, Bollon J, Gourdon R, Buffière P. Dry anaerobic digestion modelling: Parameter sensitivity. CAN J CHEM ENG 2014. [DOI: 10.1002/cjce.22089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
|
11 |
1 |
18
|
Staub MJ, Gourc JP, Laurent JP, Kintzuger C, Oxarango L, Benbelkacem H, Bayard R, Morra C. Long-term moisture measurements in large-scale bioreactor cells using TDR and neutron probes. JOURNAL OF HAZARDOUS MATERIALS 2010; 180:165-172. [PMID: 20451321 DOI: 10.1016/j.jhazmat.2010.04.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 04/02/2010] [Accepted: 04/02/2010] [Indexed: 05/29/2023]
Abstract
This paper investigates the measurement of moisture content in municipal solid waste using two different indirect techniques: neutron scattering and time-domain reflectometry (TDR). Therefore, six laboratory-scale landfill bioreactors were instrumented with both neutron and TDR probes; in addition to that a gravimetric moisture balance was established for each cell. Different leachate recirculation modes were applied to perform different wetting conditions. In a first step, both probes were calibrated based on the water balance from three cells presenting homogeneous water distributions and sufficient temporal moisture variations. The calibration functions were then used for temporal and spatial moisture monitoring of all six cells. The results show that both methods are sensitive to moisture variations and provide interesting information on the complexity of vertical flows within the municipal solid waste. Nevertheless, it appears that neutron scattering offers better accuracy at the laboratory scale.
Collapse
|
|
15 |
1 |
19
|
Tinet AJ, Oxarango L, Bayard R, Benbelkacem H, Stoltz G, Staub MJ, Gourc JP. Experimental and theoretical assessment of the multi-domain flow behaviour in a waste body during leachate infiltration. WASTE MANAGEMENT (NEW YORK, N.Y.) 2011; 31:1797-1806. [PMID: 21489774 DOI: 10.1016/j.wasman.2011.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 03/02/2011] [Accepted: 03/04/2011] [Indexed: 05/30/2023]
Abstract
The optimisation of landfill operation is a key challenge for the upcoming years. A promising solution to improve municipal solid waste (MSW) management is the bioreactor technology. A meso-scale (around 1m(3)) experimental set-up was performed to study the effect of moisture control in low density conditions with different leachate injection operations and bioreactor monitoring including the use of a neutron probe. The moisture content distribution evolution demonstrates a multi-domain flow behaviour. A classic van Genuchten-Mualem description of the connected porosity proved insufficient to correctly describe the observed phenomena. A bimodal description of the connected porosity is proposed as solution and a connected/non-connected porosities numerical model was applied to the results. The model explains the experimental results reasonably well.
Collapse
|
|
14 |
1 |
20
|
Fontseré Obis M, Germain P, Bouzahzah H, Richioud A, Benbelkacem H. The effect of the origin of MSWI bottom ash on the H 2S elimination from landfill biogas. WASTE MANAGEMENT (NEW YORK, N.Y.) 2017; 70:158-169. [PMID: 28935375 DOI: 10.1016/j.wasman.2017.09.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 09/06/2017] [Accepted: 09/12/2017] [Indexed: 06/07/2023]
Abstract
Municipal Solid Waste Incineration (MSWI) Bottom Ash (BA) is a potential alternative adsorbent for biogas treatment due to its reactivity with hydrogen sulfide (H2S). The quality of BA depends however on the nature of the waste and the process technology of the waste incineration facility. To determine whether the origin of the BA could have an influence on its H2S elimination efficiency, comparative experimental tests were conducted in a landfill site with six bottom ashes from different MSW incinerators. Results showed that one of the BAs (A) had a much higher adsorption capacity than the rest (B-F), with 37g H2S/kg dry BA, compared to 11-16g H2S/kg dry BA for the other bottom ashes. Detailed physico-chemical analyses of the six BA were performed and complemented by principal component analysis to understand the different behaviors. BA iron content and specific surface area provided by the quench product stood out as key factors that promote the elimination of H2S.
Collapse
|
|
8 |
1 |
21
|
Benbelkacem H, Mathé S, Debellefontaine H. Taking mass transfer limitation into account during ozonation of pollutants reacting fairly quickly. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2004; 49:25-30. [PMID: 15077943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Various situations observed when oxidizing organic compounds via ozone in a semi-batch reactor are illustrated. The resistance to the transfer of ozone from gas to liquid is accounted for using the film model. The mass balances are numerically solved simultaneously within the reactor and within the film to produce time dependent profiles of concentrations, Hatta, enhancement and depletion factors. Firstly, theoretical profiles are exemplified for various kinetic regimes from slow to fast; reaction occurs either in the bulk, in the film or in both. This shows the drastic importance of the shapes of the gas concentration profiles both at the exit of the reactor and in the liquid phase - in determining the regime. Then, a typical example dealing with fumaric acid ozonation is shown. Firstly, the acid itself oxidizes rapidly producing an intermediate regime: part of the reaction occurs within the film, part within the bulk and the rate constant can be determined. Then, the by-products oxidize more slowly producing a typical regime: reaction occurs within the bulk, the concentration of dissolved ozone is almost 0 and the mass transfer coefficient can be determined. Finally, when all organics have oxidized, the self-decomposition of ozone governs a slow kinetic regime: the concentration of dissolved ozone is close to equilibrium.
Collapse
|
|
21 |
|
22
|
Vautherin R, Métivier H, Reguer A, Benbelkacem H. Use of a numerical model to evaluate SO 2 absorption efficiency by sodium sulfite in packed and spray columns. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2025; 91:907-922. [PMID: 40307964 DOI: 10.2166/wst.2025.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 03/25/2025] [Indexed: 05/02/2025]
Abstract
Numerical modeling has been used extensively to simulate gas-liquid transfer of sulfur dioxide, assessing how operational parameters affect absorption efficiency in packed or spray columns. Despite individual studies on these contactors, comparative analyses on the same flue gas have been rare. This study uses a numerical model for both packed and spray columns to examine how parameters influence SO2 absorption by sodium sulfite, describing packed and spray columns, is used to investigate the influence of operational parameters on SO2 absorption by sodium sulfite. The model's predictions are validated against experimental data from an industrial pilot plant. Across varying conditions (L/G ratio, temperature, initial SO2 content or initial S(IV) concentration), the packed column achieves higher absorption efficiencies compared to the spray column, with lower assumed energy costs due to a reduced L/G ratio. Temperature proves to be a significant factor, decreasing absorption efficiency by approximately 40% between 40 and 70 °C. SO2 absorption efficiency declines with increasing concentrations of bisulfite and sulfite ions in the absorption solution, dropping to 50% at an S(IV) concentration of 2 kmol m-3 in the liquid phase. Considering the objective of producing a concentrated bisulfite solution and a clean gas, a two-column system is recommended: one for bisulfite solution concentration at acidic pH and the other for gas purification enhancement at basic pH.
Collapse
|
|
1 |
|
23
|
Figueras J, Benbelkacem H, Dumas C, Buffiere P. Syngas biomethanation: In a transfer limited process, is CO inhibition an issue? WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 162:36-42. [PMID: 36931067 DOI: 10.1016/j.wasman.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/24/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Syngas biomethanation is a promising technology in the process chain converting wastes to methane. However, gas-liquid mass transfer is a limiting factor of the biomethanation process. To reach high methane productivity, increasing the pressure is an interesting strategy to improve mass transfer. However, the CO content in the syngas raises concerns about a potential inhibition of the microorganisms. Therefore, the aim of the research was to assess the ability to work at high CO partial pressures. In this regard, a pressurized continuous stirred column with a working volume of 10L was implemented and a consortium adapted for syngas-biomethanation for 22 months was submitted to 100% CO and increasing pressure. No inhibition phenomenon was observed for logarithmic PCO as high as 1.8 bar (inlet pressure 5.0 bar), which was the first time that such a high CO partial pressure was tested in continuous mode. Mass transfer limitations allowed for the carboxydotrophic microorganisms to consume CO faster than it was transferred, allowing for the dissolved CO concentration to remain under inhibitory concentrations. These results question the habitual consensus that CO inhibition is a limiting factor of syngas biomethanation.
Collapse
|
|
2 |
|
24
|
Buffière P, Ramirez DA, Franco RT, Figueras J, Hattou S, Benbelkacem H. Oxygen traces impact on biological methanation from hydrogen and CO 2. BIORESOURCE TECHNOLOGY 2025; 419:132080. [PMID: 39826758 DOI: 10.1016/j.biortech.2025.132080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/02/2025] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
Biomethane production from biological methanation of CO2 is promising both for biogas upgrading and surplus renewable energy storage. One of the questions for process upscaling is the impact of oxygen (in the biogas or in the purified CO2-rich off-gas) on the biological process. An adapted anaerobic thermophilic consortium was submitted to increasing amounts of oxygen in batch and continuous tests at partial pressures ranging from 0 to 50 mbar. Oxygen was quickly consumed and hydrogen uptake remained similar. In the same time, methane production dropped (-4 % in continuous tests). Part of the oxygen introduced was reduced biologically by hydrogen. The amount of hydrogen diverted to oxygen reduction (up to 15 % at 50 mbar O2) was proportional to the oxygen partial pressure. These results suggest that biological methanation systems tolerate the presence of oxygen. However, additional hydrogen should be added to maintain the conversion of CO2 into methane.
Collapse
|
|
1 |
|
25
|
Vautherin R, Métivier H, Reguer A, Benbelkacem H. Innovative process for sulphur recovery from waste incineration flue gases: production of marketable sodium bisulphite solution. ENVIRONMENTAL TECHNOLOGY 2025; 46:1321-1332. [PMID: 39360820 DOI: 10.1080/09593330.2024.2385066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/16/2024] [Indexed: 04/01/2025]
Abstract
This study presents an innovative process for recovering sulphur from hazardous waste incineration flue gases, designed to produce a marketable sodium bisulphite solution while ensuring complete SO2 removal. This new process is characterized by a double absorption strategy at two different pH levels. The first step, at an acidic pH, generates the desired bisulphite solution, while the second step, at a basic pH, produces the sulphite solution for recycling into the first step and ensures total SO2 removal. The process's performance and feasibility were evaluated on a laboratory scale using a batch reactor with synthetic gas. The parametric study focused on the initial sulphite concentration in the absorption solution and the reactor temperature. A removal efficiency exceeding 95% was achieved across all initial sulphite concentrations and temperature ranges, when the pH was maintained above 6. At pH 5, where bisulphites are the predominant sulphur species, the removal efficiency remained substantial at approximately 70%. The oxidation of sulphites/bisulphites by oxygen in the flue gases was minimal, with less than 5% conversion to sulphate. Additionally, pH-controlled experiments were conducted to optimize plant start-up procedures. For the basic reactor, starting with water and adjusting the pH to 8 during SO2 absorption effectively minimized sodium hydroxide consumption. In contrast, for the acidic reactor at pH 5, initiating the process with a concentrated sulphite solution resulted in more stable absorption rates. These findings underscore the process's potential for efficient sulphur recovery and highlight the importance of pH management in optimizing operational stability and chemical consumption.
Collapse
|
|
1 |
|