1
|
Alafari HA, Freeg H, Abdelrahman M, Attia KA, Jalal AS, El-Banna A, Aboshosha A, Fiaz S. Author Correction: Integrated analysis of yield response and early stage biochemical, molecular, and gene expression profiles of pre-breeding rice lines under water deficit stress. Sci Rep 2024; 14:24459. [PMID: 39424924 PMCID: PMC11489697 DOI: 10.1038/s41598-024-76463-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024] Open
|
2
|
Alafari HA, Freeg H, Abdelrahman M, Attia KA, Jalal AS, El-Banna A, Aboshosha A, Fiaz S. Integrated analysis of yield response and early stage biochemical, molecular, and gene expression profiles of pre-breeding rice lines under water deficit stress. Sci Rep 2024; 14:17855. [PMID: 39090142 PMCID: PMC11294455 DOI: 10.1038/s41598-024-60863-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/29/2024] [Indexed: 08/04/2024] Open
Abstract
Breeding high yielding water-deficit tolerant rice is considered a primary goal for achieving the objectives of the sustainable development goals, 2030. However, evaluating the performance of the pre-breeding-promising parental-lines for water deficit tolerance prior to their incorporation in the breeding program is crucial for the success of the breeding programs. The aim of the current investigation is to assess the performance of a set of pre-breeding lines compared with their parents. To achieve this goal a set of 7 pre-breeding rice lines along with their parents (5 genotypes) were field evaluated under well-irrigated and water-stress conditions. Water stress was applied by flush irrigation every 12 days without keeping standing water after irrigation. Based on the field evaluation results, a pre-breeding line was selected to conduct physiological and expression analysis of drought related genes at the green house. Furthermore, a greenhouse trial was conducted in pots, where the genotypes were grown under well and stress irrigation conditions at seedling stage for physiological analysis and expression profiling of the genotypes. Results indicated that the pre-breeding lines which were high yielding under water shortage stress showed low drought susceptibility index. Those lines exhibited high proline, SOD, TSS content along with low levels of MDA content in their leaves. Moreover, the genotypes grain yield positively correlated with proline, SOD, TSS content in their leaves. The SSR markers RM22, RM525, RM324 and RM3805 were able to discriminate the tolerant parents from the sensitive one. Expression levels of the tested drought responsive genes revealed the upregulation of OsLEA3, OsAPX2, OsNAC1, OSDREB2A, OsDREB1C, OsZIP23, OsP5CS, OsAHL1 and OsCATA genes in response to water deficit stress as compared to their expression under normal irrigated condition. Taken together among the tested pre-breeding lines the RBL112 pre-breeding line is high yielding under water-deficit and could be used as donor for high yielding genes in the breeding for water deficit resistance. This investigation withdraws attention to evaluate the promising pre-breeding lines before their incorporation in the water deficit stress breeding program.
Collapse
|
3
|
Alafari HA, Hafez Y, Omara R, Murad R, Abdelaal K, Attia K, Khedr A. Physio-Biochemical, Anatomical, and Molecular Analysis of Resistant and Susceptible Wheat Cultivars Infected with TTKSK, TTKST, and TTTSK Novel Puccinia graminis Races. PLANTS (BASEL, SWITZERLAND) 2024; 13:1045. [PMID: 38611573 PMCID: PMC11013933 DOI: 10.3390/plants13071045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/18/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024]
Abstract
Stem rust, caused by Puccinia graminis f.sp. tritici, is one of the most dangerous rust diseases on wheat. Through physiological, biochemical, and molecular analysis, the relationship between the change in resistance of 15 wheat cultivars to stem rust disease and the response of 41 stem rust resistance genes (Sr,s) as well as TTKSK, TTKST, and TTTSK races was explained. Some cultivars and Sr genes, such as Gemmeiza-9, Gemmeiza-11, Sids-13, Sakha-94, Misr-1, Misr-2, Sr31, and Sr38, became susceptible to infection. Other new cultivars include Mir-3 and Sakha-95, and Sr genes 13, 37, 40, GT, and FR*2/SRTT3-SRTT3-SR10 remain resistant. Some resistance genes have been identified in these resistant cultivars: Sr2, Sr13, Sr24, Sr36, and Sr40. Sr31 was not detected in any cultivars. Reactive oxygen species such as hydrogen peroxide and superoxide, enzymes activities (catalase, peroxidase, and polyphenoloxidase), and electrolyte leakage were increased in the highly susceptible cultivars, while they decreased in the resistant ones. Anatomical characteristics such as the thickness of the epidermis, ground tissue, phloem tissue and vascular bundle diameter in the midrib were decreased in susceptible cultivars compared with resistant cultivars. Our results indicated that some races (TTKSK, TTKST, and TTTSK) appeared for the first time in Egypt and many other countries, which broke the resistant cultivars. The wheat rust breeding program must rely on land races and pyramiding genes in order to develop new resistance genes that will survive for a very long time.
Collapse
|
4
|
Al-Hazani TMI, Al-Qahtani WS, Alwaili MA, Domiaty DM, Alshehri E, Al-Shamrani SM, Alotaibi AM, Alghamdi HS, Alahmari A, Mohammedsaleh ZM, Jalal MM, Alafari HA, Safhi FA, Abboosh TS. The function of long non-coding RNA SNHG11 and its working mechanism in triple-negative breast cancer. Pathol Res Pract 2023; 248:154578. [PMID: 37320865 DOI: 10.1016/j.prp.2023.154578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/23/2023] [Accepted: 05/27/2023] [Indexed: 06/17/2023]
Abstract
Triple-negative breast cancer (TNBC) seriously affects woman's health. The present work is to study the working mechanism of lncRNA SNHG11 in TNBC. The expressions of SNHG11, microRNA (miR)- 7-5p, specificity protein 2 (SP2) and mucin 1 (MUC-1) in TNBC tissues and cells were detected. SNHG11, miR-7-5p and SP2 expressions were then evaluated for TNBC cell malignant behaviors. The relationships among SNHG11, miR-7-5p and SP2 were predicted and verified. Finally, the binding of the transcription factor SP2 to MUC-1 promoter was detected. Abnormally elevated SNHG11, SP2 and MUC-1 expressions were observed in cultured TNBC cells and tumor tissues. SNHG11 knockdown in TNBC cells. Silencing SP2 weakened the promoting effect of SNHG11 on TNBC progression. SNHG11 negatively regulated miR-7-5p expression and positively regulated SP2 expression. SP2 bound to the P2 site of MUC-1 promoter, and SP2 knockdown suppressed MUC-1 expression. It was demonstrated that lncRNA SNHG11 promoted TNBC cell malignant behaviors to facilitate TNBC progression. The study is first of its kinds to unravel the potential of lncRNA SNHG11 in relation to TNBC.
Collapse
|
5
|
Al-Hazani TMI, Al-Qahtani WS, Abboosh TS, Safhi FA, Alshaya DS, Jalal AS, Al-Shamrani SM, Al-Ghamdi NA, Alotaibi AM, Alotaibi MA, Alghamdi HS, Alafari HA, ALMatrafi TA, Alshehri E. Detecting STR profiles from degrading menstrual blood samples and their use as possible evidence in forensic investigations. Forensic Sci Int 2023; 343:111562. [PMID: 36657183 DOI: 10.1016/j.forsciint.2023.111562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/29/2022] [Accepted: 01/05/2023] [Indexed: 01/08/2023]
Abstract
This research explores DNA consistency and attempts to detect STR profiles from the degrading menstrual blood samples (MBS) as reliable forensic evidence. Peripheral (PBS) and MBS of 30 healthy fertile females were taken on the menstrual cycle's second day. They were obtained at different time periods (0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 24, and 48 h) at 25 °C. DNA evaluation was fulfilled to analyze DNA profiles. A considerable elevation in the median concentrations of DNA between 0 and 14-h intervals were documented, whereas decreased extents were registered between 16 and 48 h. Moreover, complete STR profiles (24/24) for DNA were discovered in all the intervals (0, 2, and 48 h). Periods of 0-8 h demonstrated the maximum extents of DNA materials. Full STR were discovered in all the intervals (0, 2, and 48 h). Eventually, MBS can be utilized as forensic evidence.
Collapse
|
6
|
Ahmad HM, Alafari HA, Fiaz S, Alshaya DS, Toor S, Ijaz M, Rasool N, Attia KA, Zaynab M, Azmat S, Abushady AM, Chen Y. Genome-wide comparison and identification of myosin gene family in Arabidopsis thaliana and Helianthus annuus. Heliyon 2022; 8:e12070. [PMID: 36561675 PMCID: PMC9763749 DOI: 10.1016/j.heliyon.2022.e12070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/05/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
Abstract
Myosins are essential components of organelle trafficking in all the eukaryotic cells. Myosin driven movement plays a vital role in the development of pollen tubes, root hairs and root tips of flowering plants. The present research characterized the myosin genes in Arabidopsis thaliana and Helianthus annuus by using different computational tools. We discovered a total of 50 myosin genes and their splice variants in both pant species. Phylogenetic analysis indicated that myosin genes were divided into four subclasses. Chromosomal location revealed that myosin genes were located on all five chromosomes in A. thaliana, whereas they were present on nine chromosomes in H. annuus. Conserved motifs showed that conserved regions were closely similar within subgroups. Gene structure analysis showed that Atmyosin2.2 and Atmyosin2.3 had the highest number of introns/exons. Gene ontology analysis indicated that myosin genes were involved in vesicle transport along actin filament and cytoskeleton trafficking. Expression analysis showed that expression of myosin genes was higher during the flowering stage as compared to the seedling and budding stages. Tissue specific expression indicated that HanMYOSIN11.2, HanMYOSIN16.2 were highly expressed in stamen, whereas HanMYOSIN 2.2, HanMYOSIN 12.1 and HanMYOSIN 17.1 showed higher expression in nectary. This study enhance our understanding the function of myosins in plant development, and forms the basis for future research about the comparative genomics of plant myosin in other crop plants.
Collapse
|
7
|
Ijaz M, Ansari MUR, Alafari HA, Iqbal M, Alshaya DS, Fiaz S, Ahmad HM, Zubair M, Ramzani PMA, Iqbal J, Abushady AM, Attia K. Citric acid assisted phytoextraction of nickle from soil helps to tolerate oxidative stress and expression profile of NRAMP genes in sunflower at different growth stages. FRONTIERS IN PLANT SCIENCE 2022; 13:1072671. [PMID: 36531389 PMCID: PMC9751920 DOI: 10.3389/fpls.2022.1072671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/11/2022] [Indexed: 06/17/2023]
Abstract
Introduction Soil polluted with Nickel (Ni) adversely affects sunflower growth resulting in reduced yield. Counterbalancing Ni toxicity requires complex molecular, biochemical, and physiological mechanisms at the cellular, tissue, and whole plant levels, which might improve crop productivity. One of the primary adaptations to tolerate Ni toxicity is the enhanced production of antioxidant enzymes and the elevated expression of Ni responsive genes. Methods In this study, biochemical parameters, production of ROS, antioxidants regulation, and expression of NRAMP metal transporter genes were studied under Ni stress in sunflower. There were four soil Ni treatments (0, 50, 100, and 200 mg kg-1 soil), while citric acid (CA, 5 mM kg-1 soil) was applied on the 28th and 58th days of plant growth. The samples for all analyses were obtained on the 30th and 60th day of plant growth, respectively. Results and discussion The results indicated that the concentrations of Ni in roots and shoots were increased with increasing concentrations of Ni at both time intervals. Proline contents, ascorbic acid, protein, and total phenolics were reduced under Ni-stress, but with the application of CA, improvement was witnessed in their contents. The levels of malondialdehyde and hydrogen peroxide were enhanced with the increasing concentration of Ni, and after applying CA, they were reduced. The contents of antioxidants, i.e., catalase, peroxidase, superoxide dismutase, ascorbate peroxidase, dehydroascorbate reductase, and glutathione reductase, were increased at 50 ppm Ni concentration and decreased at higher concentrations of Ni. The application of CA significantly improved antioxidants at all concentrations of Ni. The enhanced expression of NRAMP1 (4, 51 and 81 folds) and NRAMP3 (1.05, 4 and 6 folds) was found at 50, 100 and 200ppm Ni-stress, respectively in 30 days old plants and the same pattern of expression was recorded in 60 days old plants. CA further enhanced the expression at both developmental stages. Conclusion In conclusion, CA enhances Ni phytoextraction efficiency as well as protect plant against oxidative stress caused by Ni in sunflower.
Collapse
|
8
|
Saleem B, Farooq U, Rehman OU, Aqeel M, Farooq MS, Naeem MK, Inam S, Ajmal W, Rahim AA, Chen M, Kalsoom R, Uzair M, Fiaz S, Attia K, Alafari HA, Khan MR, Yu G. Genome-wide and molecular characterization of the DNA replication helicase 2 ( DNA2) gene family in rice under drought and salt stress. Front Genet 2022; 13:1039548. [PMID: 36506305 PMCID: PMC9728955 DOI: 10.3389/fgene.2022.1039548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/31/2022] [Indexed: 11/23/2022] Open
Abstract
Rice plants experience various biotic (such as insect and pest attack) and abiotic (such as drought, salt, heat, and cold etc.) stresses during the growing season, resulting in DNA damage and the subsequent losses in rice production. DNA Replication Helicase/Nuclease2 (DNA2) is known to be involved in DNA replication and repair. In animals and yeast DNA2 are well characterized because it has the abilities of both helicase and nuclease, it plays a crucial role in DNA replication in the nucleus and mitochondrial genomes. However; they are not fully examined in plants due to less focused on plants damage repair. To fill this research gap, the current study focused on the genome-wide identification and characterization of OsDNA2 genes, along with analyses of their transcriptional expression, duplication, and phylogeny in rice. Overall, 17 OsDNA2 members were reported to be found on eight different chromosomes (2, 3, 4, 6, 7, 9, 10, and 11). Among these chromosomes (Chr), Chr4 contained a maximum of six OsDNA2 genes. Based on phylogenetic analysis, the OsDNA2 gene members were clustered into three different groups. Furthermore, the conserved domains, gene structures, and cis-regulatory elements were systematically investigated. Gene duplication analysis revealed that OsDNA2_2 had an evolutionary relationship with OsDNA2_14, OsDNA2_5 with OsDNA2_6, and OsDNA2_1 with OsDNA2_8. Moreover, results showed that the conserved domain (AAA_11 superfamily) were present in the OsDNA2 genes, which belongs to the DEAD-like helicase superfamily. In addition, to understand the post-transcriptional modification of OsDNA2 genes, miRNAs were predicted, where 653 miRNAs were reported to target 17 OsDNA2 genes. The results indicated that at the maximum, OsDNA2_1 and OsDNA2_4 were targeted by 74 miRNAs each, and OsDNA2_9 was less targeted (20 miRNAs). The three-dimensional (3D) structures of 17 OsDNA2 proteins were also predicted. Expression of OsDNA2 members was also carried out under drought and salt stresses, and conclusively their induction indicated the possible involvement of OsDNA2 in DNA repair under stress when compared with the control. Further studies are recommended to confirm where this study will offer valuable basic data on the functioning of DNA2 genes in rice and other crop plants.
Collapse
|
9
|
Alafari HA, Abd-Elgawad ME. Differential expression gene/protein contribute to heat stress-responsive in Tetraena propinqua in Saudi Arabia. Saudi J Biol Sci 2021; 28:5017-5027. [PMID: 34466077 PMCID: PMC8380999 DOI: 10.1016/j.sjbs.2021.05.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 12/27/2022] Open
Abstract
Within their natural habitat, plants are subjected to abiotic stresses that include heat stress. In the current study, the effect of 4 h, 24 h, and 48 h of heat stress on Tetraena propinqua ssp. migahidii seedling's protein profile and proteomic analyses were investigated. Total soluble protein SDS-PAGE (Sodium dodecyl sulfate-polyacrylamide gel electrophoresis) profile showed 18-protein bands, the newly synthesized protein band (with molecular weights 86.5, 30.2 and 31.4 KD) at 24 h of heat stress and 48 of normal conditions. Proteomic analysis showed that 81 and 930 targets are involved in gene and protein expression respectively. At 4 h, 57 genes and 110 proteins in C4 reached 56 genes and 173 proteins in T4. At 24 h, 63 genes and 180 proteins in C24 decreased to 54 genes and 151 protein in T24. After 48 h, 56 genes and 136 proteins in C48 increased to 64 genes and 180 proteins in T48. The genes and proteins involved in transcription, translation, photosynthesis, transport, and other unknown metabolic processes, were differentially expressed under treatments of heat stress. These findings provide insights into the molecular mechanisms related to heat stress, in addition to its influence on the physiological traits of T. propinqua seedlings. Heat stress-mediated differential regulation genes indicate a role in the development and stress response of T. propinqua. The candidate dual-specificity genes and proteins identified in this study paves way for more molecular analysis of up-and-down-regulation.
Collapse
|
10
|
Ali Alafari H, Elsayed Abd-Elgawad M. Heat-Induced Protein and Superoxide Dismutase Changes in Wild Tetraena propinqua ssp. Migahidii Seedlings. Pak J Biol Sci 2021; 24:310-318. [PMID: 34486315 DOI: 10.3923/pjbs.2021.310.318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
<b>Background and Objective:</b> Heat stress is known as a raise of 5°C or more than the optimal temperature. In this study, we analyzed the effect of heat stress on protein content, protein electrophoretic pattern and Superoxide Dismutase (SOD) profile in three populations of <i>Tetraena propinqua</i> subspecies migahidii. <b>Materials and Methods:</b> Populations of <i>Tetraena propinqua</i> ssp. migahidii were studied. The seeds were subjected to 25 (control), 30, 35 and 40°C for 4, 24 and 48 hrs and 10 days. <b>Results:</b> Heat stress (35 and 40°C) elicited total soluble protein in populations 1 and 2 however reduced in population 3 with increasing exposure time to 10 days. New polypeptides of 23 KD at 4 hrs in population 3 below 35°C and population 2 below 40°C and 28 KD at 48 hrs in population one below 30°C however 20 KD altogether populations below 40°C. The expression of most polypeptides diminished for 4 hrs however induced for 24, 48 hrs and 10 days with increase heat temperature to 40°C relative to their expression among the management seedlings. SOD1 and SOD2 have detected altogether most of the genotypes, however, heat stress (35, 40°C) induced the expression of SOD2 and SOD1 and was altogether genotyped for 10 days as compared with the control. <b>Conclusion:</b> The heat stress caused protein degradation and conjointly induced expression of new synthesized HSPs throughout heat acclimatization may be related to heat injury and the improved thermotolerance in early hours of germination and additional studies are required for its protein identification.
Collapse
|