1
|
Anttila V, Bulik-Sullivan B, Finucane HK, Walters RK, Bras J, Duncan L, Escott-Price V, Falcone GJ, Gormley P, Malik R, Patsopoulos NA, Ripke S, Wei Z, Yu D, Lee PH, Turley P, Grenier-Boley B, Chouraki V, Kamatani Y, Berr C, Letenneur L, Hannequin D, Amouyel P, Boland A, Deleuze JF, Duron E, Vardarajan BN, Reitz C, Goate AM, Huentelman MJ, Kamboh MI, Larson EB, Rogaeva E, St George-Hyslop P, Hakonarson H, Kukull WA, Farrer LA, Barnes LL, Beach TG, Demirci FY, Head E, Hulette CM, Jicha GA, Kauwe JSK, Kaye JA, Leverenz JB, Levey AI, Lieberman AP, Pankratz VS, Poon WW, Quinn JF, Saykin AJ, Schneider LS, Smith AG, Sonnen JA, Stern RA, Van Deerlin VM, Van Eldik LJ, Harold D, Russo G, Rubinsztein DC, Bayer A, Tsolaki M, Proitsi P, Fox NC, Hampel H, Owen MJ, Mead S, Passmore P, Morgan K, Nöthen MM, Rossor M, Lupton MK, Hoffmann P, Kornhuber J, Lawlor B, McQuillin A, Al-Chalabi A, Bis JC, Ruiz A, Boada M, Seshadri S, Beiser A, Rice K, van der Lee SJ, De Jager PL, Geschwind DH, Riemenschneider M, Riedel-Heller S, Rotter JI, Ransmayr G, Hyman BT, Cruchaga C, Alegret M, Winsvold B, Palta P, Farh KH, Cuenca-Leon E, Furlotte N, Kurth T, et alAnttila V, Bulik-Sullivan B, Finucane HK, Walters RK, Bras J, Duncan L, Escott-Price V, Falcone GJ, Gormley P, Malik R, Patsopoulos NA, Ripke S, Wei Z, Yu D, Lee PH, Turley P, Grenier-Boley B, Chouraki V, Kamatani Y, Berr C, Letenneur L, Hannequin D, Amouyel P, Boland A, Deleuze JF, Duron E, Vardarajan BN, Reitz C, Goate AM, Huentelman MJ, Kamboh MI, Larson EB, Rogaeva E, St George-Hyslop P, Hakonarson H, Kukull WA, Farrer LA, Barnes LL, Beach TG, Demirci FY, Head E, Hulette CM, Jicha GA, Kauwe JSK, Kaye JA, Leverenz JB, Levey AI, Lieberman AP, Pankratz VS, Poon WW, Quinn JF, Saykin AJ, Schneider LS, Smith AG, Sonnen JA, Stern RA, Van Deerlin VM, Van Eldik LJ, Harold D, Russo G, Rubinsztein DC, Bayer A, Tsolaki M, Proitsi P, Fox NC, Hampel H, Owen MJ, Mead S, Passmore P, Morgan K, Nöthen MM, Rossor M, Lupton MK, Hoffmann P, Kornhuber J, Lawlor B, McQuillin A, Al-Chalabi A, Bis JC, Ruiz A, Boada M, Seshadri S, Beiser A, Rice K, van der Lee SJ, De Jager PL, Geschwind DH, Riemenschneider M, Riedel-Heller S, Rotter JI, Ransmayr G, Hyman BT, Cruchaga C, Alegret M, Winsvold B, Palta P, Farh KH, Cuenca-Leon E, Furlotte N, Kurth T, Ligthart L, Terwindt GM, Freilinger T, Ran C, Gordon SD, Borck G, Adams HHH, Lehtimäki T, Wedenoja J, Buring JE, Schürks M, Hrafnsdottir M, Hottenga JJ, Penninx B, Artto V, Kaunisto M, Vepsäläinen S, Martin NG, Montgomery GW, Kurki MI, Hämäläinen E, Huang H, Huang J, Sandor C, Webber C, Muller-Myhsok B, Schreiber S, Salomaa V, Loehrer E, Göbel H, Macaya A, Pozo-Rosich P, Hansen T, Werge T, Kaprio J, Metspalu A, Kubisch C, Ferrari MD, Belin AC, van den Maagdenberg AMJM, Zwart JA, Boomsma D, Eriksson N, Olesen J, Chasman DI, Nyholt DR, Avbersek A, Baum L, Berkovic S, Bradfield J, Buono RJ, Catarino CB, Cossette P, De Jonghe P, Depondt C, Dlugos D, Ferraro TN, French J, Hjalgrim H, Jamnadas-Khoda J, Kälviäinen R, Kunz WS, Lerche H, Leu C, Lindhout D, Lo W, Lowenstein D, McCormack M, Møller RS, Molloy A, Ng PW, Oliver K, Privitera M, Radtke R, Ruppert AK, Sander T, Schachter S, Schankin C, Scheffer I, Schoch S, Sisodiya SM, Smith P, Sperling M, Striano P, Surges R, Thomas GN, Visscher F, Whelan CD, Zara F, Heinzen EL, Marson A, Becker F, Stroink H, Zimprich F, Gasser T, Gibbs R, Heutink P, Martinez M, Morris HR, Sharma M, Ryten M, Mok KY, Pulit S, Bevan S, Holliday E, Attia J, Battey T, Boncoraglio G, Thijs V, Chen WM, Mitchell B, Rothwell P, Sharma P, Sudlow C, Vicente A, Markus H, Kourkoulis C, Pera J, Raffeld M, Silliman S, Boraska Perica V, Thornton LM, Huckins LM, William Rayner N, Lewis CM, Gratacos M, Rybakowski F, Keski-Rahkonen A, Raevuori A, Hudson JI, Reichborn-Kjennerud T, Monteleone P, Karwautz A, Mannik K, Baker JH, O'Toole JK, Trace SE, Davis OSP, Helder SG, Ehrlich S, Herpertz-Dahlmann B, Danner UN, van Elburg AA, Clementi M, Forzan M, Docampo E, Lissowska J, Hauser J, Tortorella A, Maj M, Gonidakis F, Tziouvas K, Papezova H, Yilmaz Z, Wagner G, Cohen-Woods S, Herms S, Julià A, Rabionet R, Dick DM, Ripatti S, Andreassen OA, Espeseth T, Lundervold AJ, Steen VM, Pinto D, Scherer SW, Aschauer H, Schosser A, Alfredsson L, Padyukov L, Halmi KA, Mitchell J, Strober M, Bergen AW, Kaye W, Szatkiewicz JP, Cormand B, Ramos-Quiroga JA, Sánchez-Mora C, Ribasés M, Casas M, Hervas A, Arranz MJ, Haavik J, Zayats T, Johansson S, Williams N, Dempfle A, Rothenberger A, Kuntsi J, Oades RD, Banaschewski T, Franke B, Buitelaar JK, Arias Vasquez A, Doyle AE, Reif A, Lesch KP, Freitag C, Rivero O, Palmason H, Romanos M, Langley K, Rietschel M, Witt SH, Dalsgaard S, Børglum AD, Waldman I, Wilmot B, Molly N, Bau CHD, Crosbie J, Schachar R, Loo SK, McGough JJ, Grevet EH, Medland SE, Robinson E, Weiss LA, Bacchelli E, Bailey A, Bal V, Battaglia A, Betancur C, Bolton P, Cantor R, Celestino-Soper P, Dawson G, De Rubeis S, Duque F, Green A, Klauck SM, Leboyer M, Levitt P, Maestrini E, Mane S, De-Luca DM, Parr J, Regan R, Reichenberg A, Sandin S, Vorstman J, Wassink T, Wijsman E, Cook E, Santangelo S, Delorme R, Rogé B, Magalhaes T, Arking D, Schulze TG, Thompson RC, Strohmaier J, Matthews K, Melle I, Morris D, Blackwood D, McIntosh A, Bergen SE, Schalling M, Jamain S, Maaser A, Fischer SB, Reinbold CS, Fullerton JM, Guzman-Parra J, Mayoral F, Schofield PR, Cichon S, Mühleisen TW, Degenhardt F, Schumacher J, Bauer M, Mitchell PB, Gershon ES, Rice J, Potash JB, Zandi PP, Craddock N, Ferrier IN, Alda M, Rouleau GA, Turecki G, Ophoff R, Pato C, Anjorin A, Stahl E, Leber M, Czerski PM, Cruceanu C, Jones IR, Posthuma D, Andlauer TFM, Forstner AJ, Streit F, Baune BT, Air T, Sinnamon G, Wray NR, MacIntyre DJ, Porteous D, Homuth G, Rivera M, Grove J, Middeldorp CM, Hickie I, Pergadia M, Mehta D, Smit JH, Jansen R, de Geus E, Dunn E, Li QS, Nauck M, Schoevers RA, Beekman AT, Knowles JA, Viktorin A, Arnold P, Barr CL, Bedoya-Berrio G, Bienvenu OJ, Brentani H, Burton C, Camarena B, Cappi C, Cath D, Cavallini M, Cusi D, Darrow S, Denys D, Derks EM, Dietrich A, Fernandez T, Figee M, Freimer N, Gerber G, Grados M, Greenberg E, Hanna GL, Hartmann A, Hirschtritt ME, Hoekstra PJ, Huang A, Huyser C, Illmann C, Jenike M, Kuperman S, Leventhal B, Lochner C, Lyon GJ, Macciardi F, Madruga-Garrido M, Malaty IA, Maras A, McGrath L, Miguel EC, Mir P, Nestadt G, Nicolini H, Okun MS, Pakstis A, Paschou P, Piacentini J, Pittenger C, Plessen K, Ramensky V, Ramos EM, Reus V, Richter MA, Riddle MA, Robertson MM, Roessner V, Rosário M, Samuels JF, Sandor P, Stein DJ, Tsetsos F, Van Nieuwerburgh F, Weatherall S, Wendland JR, Wolanczyk T, Worbe Y, Zai G, Goes FS, McLaughlin N, Nestadt PS, Grabe HJ, Depienne C, Konkashbaev A, Lanzagorta N, Valencia-Duarte A, Bramon E, Buccola N, Cahn W, Cairns M, Chong SA, Cohen D, Crespo-Facorro B, Crowley J, Davidson M, DeLisi L, Dinan T, Donohoe G, Drapeau E, Duan J, Haan L, Hougaard D, Karachanak-Yankova S, Khrunin A, Klovins J, Kučinskas V, Lee Chee Keong J, Limborska S, Loughland C, Lönnqvist J, Maher B, Mattheisen M, McDonald C, Murphy KC, Nenadic I, van Os J, Pantelis C, Pato M, Petryshen T, Quested D, Roussos P, Sanders AR, Schall U, Schwab SG, Sim K, So HC, Stögmann E, Subramaniam M, Toncheva D, Waddington J, Walters J, Weiser M, Cheng W, Cloninger R, Curtis D, Gejman PV, Henskens F, Mattingsdal M, Oh SY, Scott R, Webb B, Breen G, Churchhouse C, Bulik CM, Daly M, Dichgans M, Faraone SV, Guerreiro R, Holmans P, Kendler KS, Koeleman B, Mathews CA, Price A, Scharf J, Sklar P, Williams J, Wood NW, Cotsapas C, Palotie A, Smoller JW, Sullivan P, Rosand J, Corvin A, Neale BM, Schott JM, Anney R, Elia J, Grigoroiu-Serbanescu M, Edenberg HJ, Murray R. Analysis of shared heritability in common disorders of the brain. Science 2018; 360:eaap8757. [PMID: 29930110 PMCID: PMC6097237 DOI: 10.1126/science.aap8757] [Show More Authors] [Citation(s) in RCA: 933] [Impact Index Per Article: 133.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 02/07/2017] [Accepted: 04/24/2018] [Indexed: 01/01/2023]
Abstract
Disorders of the brain can exhibit considerable epidemiological comorbidity and often share symptoms, provoking debate about their etiologic overlap. We quantified the genetic sharing of 25 brain disorders from genome-wide association studies of 265,218 patients and 784,643 control participants and assessed their relationship to 17 phenotypes from 1,191,588 individuals. Psychiatric disorders share common variant risk, whereas neurological disorders appear more distinct from one another and from the psychiatric disorders. We also identified significant sharing between disorders and a number of brain phenotypes, including cognitive measures. Further, we conducted simulations to explore how statistical power, diagnostic misclassification, and phenotypic heterogeneity affect genetic correlations. These results highlight the importance of common genetic variation as a risk factor for brain disorders and the value of heritability-based methods in understanding their etiology.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
933 |
2
|
Folgueira MAAK, Carraro DM, Brentani H, Patrão DFDC, Barbosa EM, Netto MM, Caldeira JRF, Katayama MLH, Soares FA, Oliveira CT, Reis LFL, Kaiano JHL, Camargo LP, Vêncio RZN, Snitcovsky IML, Makdissi FBA, e Silva PJDS, Góes JCGS, Brentani MM. Gene expression profile associated with response to doxorubicin-based therapy in breast cancer. Clin Cancer Res 2006; 11:7434-43. [PMID: 16243817 DOI: 10.1158/1078-0432.ccr-04-0548] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE This study was designed to identify genes that could predict response to doxorubicin-based primary chemotherapy in breast cancer patients. EXPERIMENTAL DESIGN Biopsy samples were obtained before primary treatment with doxorubicin and cyclophosphamide. RNA was extracted and amplified and gene expression was analyzed using cDNA microarrays. RESULTS Response to chemotherapy was evaluated in 51 patients, and based on Response Evaluation Criteria in Solid Tumors guidelines, 42 patients, who presented at least a partial response (> or =30% reduction in tumor dimension), were classified as responsive. Gene profile of samples, divided into training set (n = 38) and independent validation set (n = 13), were at first analyzed against a cDNA microarray platform containing 692 genes. Unsupervised clustering could not separate responders from nonresponders. A classifier was identified comprising EMILIN1, FAM14B, and PBEF, which however could not correctly classify samples included in the validation set. Our next step was to analyze gene profile in a more comprehensive cDNA microarray platform, containing 4,608 open reading frame expressed sequence tags. Seven samples of the initial training set (all responder patients) could not be analyzed. Unsupervised clustering could correctly group all the resistant samples as well as at least 85% of the sensitive samples. Additionally, a classifier, including PRSS11, MTSS1, and CLPTM1, could correctly distinguish 95.4% of the 44 samples analyzed, with only two misclassifications, one sensitive sample and one resistant tumor. The robustness of this classifier is 2.5 greater than the first one. CONCLUSION A trio of genes might potentially distinguish doxorubicin-responsive from nonresponsive tumors, but further validation by a larger number of samples is still needed.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
144 |
3
|
Salum GA, Gadelha A, Pan PM, Moriyama TS, Graeff-Martins AS, Tamanaha AC, Alvarenga P, Valle Krieger F, Fleitlich-Bilyk B, Jackowski A, Sato JR, Brietzke E, Polanczyk GV, Brentani H, de Jesus Mari J, Do Rosário MC, Manfro GG, Bressan RA, Mercadante MT, Miguel EC, Rohde LA. High risk cohort study for psychiatric disorders in childhood: rationale, design, methods and preliminary results. Int J Methods Psychiatr Res 2015; 24:58-73. [PMID: 25469819 PMCID: PMC6878239 DOI: 10.1002/mpr.1459] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Revised: 03/05/2014] [Accepted: 04/08/2014] [Indexed: 01/19/2023] Open
Abstract
The objective of this study is to present the rationale, methods, design and preliminary results from the High Risk Cohort Study for the Development of Childhood Psychiatric Disorders. We describe the sample selection and the components of each phases of the study, its instruments, tasks and procedures. Preliminary results are limited to the baseline phase and encompass: (i) the efficacy of the oversampling procedure used to increase the frequency of both child and family psychopathology; (ii) interrater reliability and (iii) the role of differential participation rate. A total of 9937 children from 57 schools participated in the screening procedures. From those 2512 (random = 958; high risk = 1554) were further evaluated with diagnostic instruments. The prevalence of any child mental disorder in the random strata and high-risk strata was 19.9% and 29.7%. The oversampling procedure was successful in selecting a sample with higher family rates of any mental disorders according to diagnostic instruments. Interrater reliability (kappa) for the main diagnostic instrument range from 0.72 (hyperkinetic disorders) to 0.84 (emotional disorders). The screening instrument was successful in selecting a sub-sample with "high risk" for developing mental disorders. This study may help advance the field of child psychiatry and ultimately provide useful clinical information.
Collapse
|
research-article |
10 |
143 |
4
|
Paulsen BDS, de Moraes Maciel R, Galina A, Souza da Silveira M, dos Santos Souza C, Drummond H, Nascimento Pozzatto E, Silva H, Chicaybam L, Massuda R, Setti-Perdigão P, Bonamino M, Belmonte-de-Abreu PS, Castro NG, Brentani H, Rehen SK. Altered oxygen metabolism associated to neurogenesis of induced pluripotent stem cells derived from a schizophrenic patient. Cell Transplant 2013; 21:1547-59. [PMID: 21975034 DOI: 10.3727/096368911x600957] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Schizophrenia has been defined as a neurodevelopmental disease that causes changes in the process of thoughts, perceptions, and emotions, usually leading to a mental deterioration and affective blunting. Studies have shown altered cell respiration and oxidative stress response in schizophrenia; however, most of the knowledge has been acquired from postmortem brain analyses or from nonneural cells. Here we describe that neural cells, derived from induced pluripotent stem cells generated from skin fibroblasts of a schizophrenic patient, presented a twofold increase in extramitochondrial oxygen consumption as well as elevated levels of reactive oxygen species (ROS), when compared to controls. This difference in ROS levels was reverted by the mood stabilizer valproic acid. Our model shows evidence that metabolic changes occurring during neurogenesis are associated with schizophrenia, contributing to a better understanding of the development of the disease and highlighting potential targets for treatment and drug screening.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
123 |
5
|
Yu D, Mathews CA, Scharf JM, Neale BM, Davis LK, Gamazon ER, Derks EM, Evans P, Edlund CK, Crane J, Fagerness JA, Osiecki L, Gallagher P, Gerber G, Haddad S, Illmann C, McGrath LM, Mayerfeld C, Arepalli S, Barlassina C, Barr CL, Bellodi L, Benarroch F, Berrió GB, Bienvenu OJ, Black DW, Bloch MH, Brentani H, Bruun RD, Budman CL, Camarena B, Campbell DD, Cappi C, Silgado JCC, Cavallini MC, Chavira DA, Chouinard S, Cook EH, Cookson MR, Coric V, Cullen B, Cusi D, Delorme R, Denys D, Dion Y, Eapen V, Egberts K, Falkai P, Fernandez T, Fournier E, Garrido H, Geller D, Gilbert DL, Girard SL, Grabe HJ, Grados MA, Greenberg BD, Gross-Tsur V, Grünblatt E, Hardy J, Heiman GA, Hemmings SMJ, Herrera LD, Hezel DM, Hoekstra PJ, Jankovic J, Kennedy JL, King RA, Konkashbaev AI, Kremeyer B, Kurlan R, Lanzagorta N, Leboyer M, Leckman JF, Lennertz L, Liu C, Lochner C, Lowe TL, Lupoli S, Macciardi F, Maier W, Manunta P, Marconi M, McCracken JT, Mesa Restrepo SC, Moessner R, Moorjani P, Morgan J, Muller H, Murphy DL, Naarden AL, Nurmi E, Ochoa WC, Ophoff RA, Pakstis AJ, Pato MT, Pato CN, Piacentini J, Pittenger C, Pollak Y, et alYu D, Mathews CA, Scharf JM, Neale BM, Davis LK, Gamazon ER, Derks EM, Evans P, Edlund CK, Crane J, Fagerness JA, Osiecki L, Gallagher P, Gerber G, Haddad S, Illmann C, McGrath LM, Mayerfeld C, Arepalli S, Barlassina C, Barr CL, Bellodi L, Benarroch F, Berrió GB, Bienvenu OJ, Black DW, Bloch MH, Brentani H, Bruun RD, Budman CL, Camarena B, Campbell DD, Cappi C, Silgado JCC, Cavallini MC, Chavira DA, Chouinard S, Cook EH, Cookson MR, Coric V, Cullen B, Cusi D, Delorme R, Denys D, Dion Y, Eapen V, Egberts K, Falkai P, Fernandez T, Fournier E, Garrido H, Geller D, Gilbert DL, Girard SL, Grabe HJ, Grados MA, Greenberg BD, Gross-Tsur V, Grünblatt E, Hardy J, Heiman GA, Hemmings SMJ, Herrera LD, Hezel DM, Hoekstra PJ, Jankovic J, Kennedy JL, King RA, Konkashbaev AI, Kremeyer B, Kurlan R, Lanzagorta N, Leboyer M, Leckman JF, Lennertz L, Liu C, Lochner C, Lowe TL, Lupoli S, Macciardi F, Maier W, Manunta P, Marconi M, McCracken JT, Mesa Restrepo SC, Moessner R, Moorjani P, Morgan J, Muller H, Murphy DL, Naarden AL, Nurmi E, Ochoa WC, Ophoff RA, Pakstis AJ, Pato MT, Pato CN, Piacentini J, Pittenger C, Pollak Y, Rauch SL, Renner T, Reus VI, Richter MA, Riddle MA, Robertson MM, Romero R, Rosário MC, Rosenberg D, Ruhrmann S, Sabatti C, Salvi E, Sampaio AS, Samuels J, Sandor P, Service SK, Sheppard B, Singer HS, Smit JH, Stein DJ, Strengman E, Tischfield JA, Turiel M, Valencia Duarte AV, Vallada H, Veenstra-VanderWeele J, Walitza S, Wang Y, Weale M, Weiss R, Wendland JR, Westenberg HGM, Shugart YY, Hounie AG, Miguel EC, Nicolini H, Wagner M, Ruiz-Linares A, Cath DC, McMahon W, Posthuma D, Oostra BA, Nestadt G, Rouleau GA, Purcell S, Jenike MA, Heutink P, Hanna GL, Conti DV, Arnold PD, Freimer NB, Stewart SE, Knowles JA, Cox NJ, Pauls DL. Cross-disorder genome-wide analyses suggest a complex genetic relationship between Tourette's syndrome and OCD. Am J Psychiatry 2015; 172:82-93. [PMID: 25158072 PMCID: PMC4282594 DOI: 10.1176/appi.ajp.2014.13101306] [Show More Authors] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Obsessive-compulsive disorder (OCD) and Tourette's syndrome are highly heritable neurodevelopmental disorders that are thought to share genetic risk factors. However, the identification of definitive susceptibility genes for these etiologically complex disorders remains elusive. The authors report a combined genome-wide association study (GWAS) of Tourette's syndrome and OCD. METHOD The authors conducted a GWAS in 2,723 cases (1,310 with OCD, 834 with Tourette's syndrome, 579 with OCD plus Tourette's syndrome/chronic tics), 5,667 ancestry-matched controls, and 290 OCD parent-child trios. GWAS summary statistics were examined for enrichment of functional variants associated with gene expression levels in brain regions. Polygenic score analyses were conducted to investigate the genetic architecture within and across the two disorders. RESULTS Although no individual single-nucleotide polymorphisms (SNPs) achieved genome-wide significance, the GWAS signals were enriched for SNPs strongly associated with variations in brain gene expression levels (expression quantitative loci, or eQTLs), suggesting the presence of true functional variants that contribute to risk of these disorders. Polygenic score analyses identified a significant polygenic component for OCD (p=2×10(-4)), predicting 3.2% of the phenotypic variance in an independent data set. In contrast, Tourette's syndrome had a smaller, nonsignificant polygenic component, predicting only 0.6% of the phenotypic variance (p=0.06). No significant polygenic signal was detected across the two disorders, although the sample is likely underpowered to detect a modest shared signal. Furthermore, the OCD polygenic signal was significantly attenuated when cases with both OCD and co-occurring Tourette's syndrome/chronic tics were included in the analysis (p=0.01). CONCLUSIONS Previous work has shown that Tourette's syndrome and OCD have some degree of shared genetic variation. However, the data from this study suggest that there are also distinct components to the genetic architectures of these two disorders. Furthermore, OCD with co-occurring Tourette's syndrome/chronic tics may have different underlying genetic susceptibility compared with OCD alone.
Collapse
|
Research Support, American Recovery and Reinvestment Act |
10 |
99 |
6
|
McGrath LM, Yu D, Marshall C, Davis LK, Thiruvahindrapuram B, Li B, Cappi C, Gerber G, Wolf A, Schroeder FA, Osiecki L, O'Dushlaine C, Kirby A, Illmann C, Haddad S, Gallagher P, Fagerness JA, Barr CL, Bellodi L, Benarroch F, Bienvenu OJ, Black DW, Bloch MH, Bruun RD, Budman CL, Camarena B, Cath DC, Cavallini MC, Chouinard S, Coric V, Cullen B, Delorme R, Denys D, Derks EM, Dion Y, Rosário MC, Eapen V, Evans P, Falkai P, Fernandez TV, Garrido H, Geller D, Grabe HJ, Grados MA, Greenberg BD, Gross-Tsur V, Grünblatt E, Heiman GA, Hemmings SMJ, Herrera LD, Hounie AG, Jankovic J, Kennedy JL, King RA, Kurlan R, Lanzagorta N, Leboyer M, Leckman JF, Lennertz L, Lochner C, Lowe TL, Lyon GJ, Macciardi F, Maier W, McCracken JT, McMahon W, Murphy DL, Naarden AL, Neale BM, Nurmi E, Pakstis AJ, Pato MT, Pato CN, Piacentini J, Pittenger C, Pollak Y, Reus VI, Richter MA, Riddle M, Robertson MM, Rosenberg D, Rouleau GA, Ruhrmann S, Sampaio AS, Samuels J, Sandor P, Sheppard B, Singer HS, Smit JH, Stein DJ, Tischfield JA, Vallada H, Veenstra-VanderWeele J, Walitza S, Wang Y, Wendland JR, Shugart YY, Miguel EC, Nicolini H, Oostra BA, et alMcGrath LM, Yu D, Marshall C, Davis LK, Thiruvahindrapuram B, Li B, Cappi C, Gerber G, Wolf A, Schroeder FA, Osiecki L, O'Dushlaine C, Kirby A, Illmann C, Haddad S, Gallagher P, Fagerness JA, Barr CL, Bellodi L, Benarroch F, Bienvenu OJ, Black DW, Bloch MH, Bruun RD, Budman CL, Camarena B, Cath DC, Cavallini MC, Chouinard S, Coric V, Cullen B, Delorme R, Denys D, Derks EM, Dion Y, Rosário MC, Eapen V, Evans P, Falkai P, Fernandez TV, Garrido H, Geller D, Grabe HJ, Grados MA, Greenberg BD, Gross-Tsur V, Grünblatt E, Heiman GA, Hemmings SMJ, Herrera LD, Hounie AG, Jankovic J, Kennedy JL, King RA, Kurlan R, Lanzagorta N, Leboyer M, Leckman JF, Lennertz L, Lochner C, Lowe TL, Lyon GJ, Macciardi F, Maier W, McCracken JT, McMahon W, Murphy DL, Naarden AL, Neale BM, Nurmi E, Pakstis AJ, Pato MT, Pato CN, Piacentini J, Pittenger C, Pollak Y, Reus VI, Richter MA, Riddle M, Robertson MM, Rosenberg D, Rouleau GA, Ruhrmann S, Sampaio AS, Samuels J, Sandor P, Sheppard B, Singer HS, Smit JH, Stein DJ, Tischfield JA, Vallada H, Veenstra-VanderWeele J, Walitza S, Wang Y, Wendland JR, Shugart YY, Miguel EC, Nicolini H, Oostra BA, Moessner R, Wagner M, Ruiz-Linares A, Heutink P, Nestadt G, Freimer N, Petryshen T, Posthuma D, Jenike MA, Cox NJ, Hanna GL, Brentani H, Scherer SW, Arnold PD, Stewart SE, Mathews CA, Knowles JA, Cook EH, Pauls DL, Wang K, Scharf JM. Copy number variation in obsessive-compulsive disorder and tourette syndrome: a cross-disorder study. J Am Acad Child Adolesc Psychiatry 2014; 53:910-9. [PMID: 25062598 PMCID: PMC4218748 DOI: 10.1016/j.jaac.2014.04.022] [Show More Authors] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 03/16/2014] [Accepted: 06/18/2014] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Obsessive-compulsive disorder (OCD) and Tourette syndrome (TS) are heritable neurodevelopmental disorders with a partially shared genetic etiology. This study represents the first genome-wide investigation of large (>500 kb), rare (<1%) copy number variants (CNVs) in OCD and the largest genome-wide CNV analysis in TS to date. METHOD The primary analyses used a cross-disorder design for 2,699 case patients (1,613 ascertained for OCD, 1,086 ascertained for TS) and 1,789 controls. Parental data facilitated a de novo analysis in 348 OCD trios. RESULTS Although no global CNV burden was detected in the cross-disorder analysis or in secondary, disease-specific analyses, there was a 3.3-fold increased burden of large deletions previously associated with other neurodevelopmental disorders (p = .09). Half of these neurodevelopmental deletions were located in a single locus, 16p13.11 (5 case patient deletions: 0 control deletions, p = .08 in the current study, p = .025 compared to published controls). Three 16p13.11 deletions were confirmed de novo, providing further support for the etiological significance of this region. The overall OCD de novo rate was 1.4%, which is intermediate between published rates in controls (0.7%) and in individuals with autism or schizophrenia (2-4%). CONCLUSION Several converging lines of evidence implicate 16p13.11 deletions in OCD, with weaker evidence for a role in TS. The trend toward increased overall neurodevelopmental CNV burden in TS and OCD suggests that deletions previously associated with other neurodevelopmental disorders may also contribute to these phenotypes.
Collapse
|
Research Support, American Recovery and Reinvestment Act |
11 |
96 |
7
|
Brentani H, Caballero OL, Camargo AA, da Silva AM, da Silva WA, Dias Neto E, Grivet M, Gruber A, Guimaraes PEM, Hide W, Iseli C, Jongeneel CV, Kelso J, Nagai MA, Ojopi EPB, Osorio EC, Reis EMR, Riggins GJ, Simpson AJG, de Souza S, Stevenson BJ, Strausberg RL, Tajara EH, Verjovski-Almeida S, Acencio ML, Bengtson MH, Bettoni F, Bodmer WF, Briones MRS, Camargo LP, Cavenee W, Cerutti JM, Coelho Andrade LE, Costa dos Santos PC, Ramos Costa MC, da Silva IT, Estécio MRH, Sa Ferreira K, Furnari FB, Faria M, Galante PAF, Guimaraes GS, Holanda AJ, Kimura ET, Leerkes MR, Lu X, Maciel RMB, Martins EAL, Massirer KB, Melo ASA, Mestriner CA, Miracca EC, Miranda LL, Nobrega FG, Oliveira PS, Paquola ACM, Pandolfi JRC, Campos Pardini MIDM, Passetti F, Quackenbush J, Schnabel B, Sogayar MC, Souza JE, Valentini SR, Zaiats AC, Amaral EJ, Arnaldi LAT, de Araújo AG, de Bessa SA, Bicknell DC, Ribeiro de Camaro ME, Carraro DM, Carrer H, Carvalho AF, Colin C, Costa F, Curcio C, Guerreiro da Silva IDC, Pereira da Silva N, Dellamano M, El-Dorry H, Espreafico EM, Scattone Ferreira AJ, Ayres Ferreira C, Fortes MAHZ, Gama AH, Giannella-Neto D, Giannella MLCC, Giorgi RR, Goldman GH, Goldman MHS, Hackel C, Ho PL, Kimura EM, Kowalski LP, Krieger JE, Leite LCC, Lopes A, Luna AMSC, Mackay A, et alBrentani H, Caballero OL, Camargo AA, da Silva AM, da Silva WA, Dias Neto E, Grivet M, Gruber A, Guimaraes PEM, Hide W, Iseli C, Jongeneel CV, Kelso J, Nagai MA, Ojopi EPB, Osorio EC, Reis EMR, Riggins GJ, Simpson AJG, de Souza S, Stevenson BJ, Strausberg RL, Tajara EH, Verjovski-Almeida S, Acencio ML, Bengtson MH, Bettoni F, Bodmer WF, Briones MRS, Camargo LP, Cavenee W, Cerutti JM, Coelho Andrade LE, Costa dos Santos PC, Ramos Costa MC, da Silva IT, Estécio MRH, Sa Ferreira K, Furnari FB, Faria M, Galante PAF, Guimaraes GS, Holanda AJ, Kimura ET, Leerkes MR, Lu X, Maciel RMB, Martins EAL, Massirer KB, Melo ASA, Mestriner CA, Miracca EC, Miranda LL, Nobrega FG, Oliveira PS, Paquola ACM, Pandolfi JRC, Campos Pardini MIDM, Passetti F, Quackenbush J, Schnabel B, Sogayar MC, Souza JE, Valentini SR, Zaiats AC, Amaral EJ, Arnaldi LAT, de Araújo AG, de Bessa SA, Bicknell DC, Ribeiro de Camaro ME, Carraro DM, Carrer H, Carvalho AF, Colin C, Costa F, Curcio C, Guerreiro da Silva IDC, Pereira da Silva N, Dellamano M, El-Dorry H, Espreafico EM, Scattone Ferreira AJ, Ayres Ferreira C, Fortes MAHZ, Gama AH, Giannella-Neto D, Giannella MLCC, Giorgi RR, Goldman GH, Goldman MHS, Hackel C, Ho PL, Kimura EM, Kowalski LP, Krieger JE, Leite LCC, Lopes A, Luna AMSC, Mackay A, Mari SKN, Marques AA, Martins WK, Montagnini A, Mourão Neto M, Nascimento ALTO, Neville AM, Nobrega MP, O'Hare MJ, Otsuka AY, Ruas de Melo AI, Paco-Larson ML, Guimarães Pereira G, Pereira da Silva N, Pesquero JB, Pessoa JG, Rahal P, Rainho CA, Rodrigues V, Rogatto SR, Romano CM, Romeiro JG, Rossi BM, Rusticci M, Guerra de Sá R, Sant' Anna SC, Sarmazo ML, Silva TCDLE, Soares FA, Sonati MDF, de Freitas Sousa J, Queiroz D, Valente V, Vettore AL, Villanova FE, Zago MA, Zalcberg H. The generation and utilization of a cancer-oriented representation of the human transcriptome by using expressed sequence tags. Proc Natl Acad Sci U S A 2003; 100:13418-23. [PMID: 14593198 PMCID: PMC263829 DOI: 10.1073/pnas.1233632100] [Show More Authors] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Whereas genome sequencing defines the genetic potential of an organism, transcript sequencing defines the utilization of this potential and links the genome with most areas of biology. To exploit the information within the human genome in the fight against cancer, we have deposited some two million expressed sequence tags (ESTs) from human tumors and their corresponding normal tissues in the public databases. The data currently define approximately 23,500 genes, of which only approximately 1,250 are still represented only by ESTs. Examination of the EST coverage of known cancer-related (CR) genes reveals that <1% do not have corresponding ESTs, indicating that the representation of genes associated with commonly studied tumors is high. The careful recording of the origin of all ESTs we have produced has enabled detailed definition of where the genes they represent are expressed in the human body. More than 100,000 ESTs are available for seven tissues, indicating a surprising variability of gene usage that has led to the discovery of a significant number of genes with restricted expression, and that may thus be therapeutically useful. The ESTs also reveal novel nonsynonymous germline variants (although the one-pass nature of the data necessitates careful validation) and many alternatively spliced transcripts. Although widely exploited by the scientific community, vindicating our totally open source policy, the EST data generated still provide extensive information that remains to be systematically explored, and that may further facilitate progress toward both the understanding and treatment of human cancers.
Collapse
|
Research Support, Non-U.S. Gov't |
22 |
87 |
8
|
Silva ART, Santos ACF, Farfel JM, Grinberg LT, Ferretti REL, Campos AHJFM, Cunha IW, Begnami MD, Rocha RM, Carraro DM, de Bragança Pereira CA, Jacob-Filho W, Brentani H. Repair of oxidative DNA damage, cell-cycle regulation and neuronal death may influence the clinical manifestation of Alzheimer's disease. PLoS One 2014; 9:e99897. [PMID: 24936870 PMCID: PMC4061071 DOI: 10.1371/journal.pone.0099897] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 05/20/2014] [Indexed: 12/26/2022] Open
Abstract
Alzheimer’s disease (AD) is characterized by progressive cognitive decline associated with a featured neuropathology (neuritic plaques and neurofibrillary tangles). Several studies have implicated oxidative damage to DNA, DNA repair, and altered cell-cycle regulation in addition to cell death in AD post-mitotic neurons. However, there is a lack of studies that systematically assess those biological processes in patients with AD neuropathology but with no evidence of cognitive impairment. We evaluated markers of oxidative DNA damage (8-OHdG, H2AX), DNA repair (p53, BRCA1, PTEN), and cell-cycle (Cdk1, Cdk4, Cdk5, Cyclin B1, Cyclin D1, p27Kip1, phospho-Rb and E2F1) through immunohistochemistry and cell death through TUNEL in autopsy hippocampal tissue samples arrayed in a tissue microarray (TMA) composed of three groups: I) “clinical-pathological AD” (CP-AD) - subjects with neuropathological AD (Braak≥IV and CERAD = B or C) and clinical dementia (CDR≥2, IQCODE>3.8); II) “pathological AD” (P-AD) - subjects with neuropathological AD (Braak≥IV and CERAD = B or C) and without cognitive impairment (CDR 0, IQCODE<3.2); and III) “normal aging” (N) - subjects without neuropathological AD (Braak≤II and CERAD 0 or A) and with normal cognitive function (CDR 0, IQCODE<3.2). Our results show that high levels of oxidative DNA damage are present in all groups. However, significant reductions in DNA repair and cell-cycle inhibition markers and increases in cell-cycle progression and cell death markers in subjects with CP-AD were detected when compared to both P-AD and N groups, whereas there were no significant differences in the studied markers between P-AD individuals and N subjects. This study indicates that, even in the setting of pathological AD, healthy cognition may be associated with a preserved repair to DNA damage, cell-cycle regulation, and cell death in post-mitotic neurons.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
75 |
9
|
Marques F, Sousa JC, Coppola G, Gao F, Puga R, Brentani H, Geschwind DH, Sousa N, Correia-Neves M, Palha JA. Transcriptome signature of the adult mouse choroid plexus. Fluids Barriers CNS 2011; 8:10. [PMID: 21349147 PMCID: PMC3042978 DOI: 10.1186/2045-8118-8-10] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Accepted: 01/18/2011] [Indexed: 12/31/2022] Open
Abstract
Background Although the gene expression profile of several tissues in humans and in rodent animal models has been explored, analysis of the complete choroid plexus (CP) transcriptome is still lacking. A better characterization of the CP transcriptome can provide key insights into its functions as one of the barriers that separate the brain from the periphery and in the production of cerebrospinal fluid. Methods This work extends further what is known about the mouse CP transcriptome through a microarray analysis of CP tissue from normal mice under physiological conditions. Results We found that the genes most highly expressed are those implicated in energy metabolism (oxidative phosphorylation, glycolysis/gluconeogenesis) and in ribosomal function, which is in agreement with the secretory nature of the CP. On the other hand, genes encoding for immune mediators are among those with lower expression in basal conditions. In addition, we found genes known to be relevant during brain development, and not previously identified to be expressed in the CP, including those encoding for various axonal guidance and angiogenesis molecules and for growth factors. Some of these are known to influence the neural stem cell niche in the subventricular zone, highlighting the involvement of the CP as a likely modulator of neurogenesis. Interestingly, our observations confirm that the CP transcriptome is unique, displaying low homology with that of other tissues. Of note, we describe here that the closest similarity is with the transcriptome of the endothelial cells of the blood-brain barrier. Conclusions Based on the data presented here, it will now be possible to further explore the function of particular proteins of the CP secretome in health and in disease.
Collapse
|
Journal Article |
14 |
72 |
10
|
Krepischi AC, Achatz MIW, Santos EM, Costa SS, Lisboa BC, Brentani H, Santos TM, Gonçalves A, Nóbrega AF, Pearson PL, Vianna-Morgante AM, Carraro DM, Brentani RR, Rosenberg C. Germline DNA copy number variation in familial and early-onset breast cancer. Breast Cancer Res 2012; 14:R24. [PMID: 22314128 PMCID: PMC3496142 DOI: 10.1186/bcr3109] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 01/20/2012] [Accepted: 02/07/2012] [Indexed: 11/10/2022] Open
Abstract
Introduction Genetic factors predisposing individuals to cancer remain elusive in the majority of patients with a familial or clinical history suggestive of hereditary breast cancer. Germline DNA copy number variation (CNV) has recently been implicated in predisposition to cancers such as neuroblastomas as well as prostate and colorectal cancer. We evaluated the role of germline CNVs in breast cancer susceptibility, in particular those with low population frequencies (rare CNVs), which are more likely to cause disease." Methods Using whole-genome comparative genomic hybridization on microarrays, we screened a cohort of women fulfilling criteria for hereditary breast cancer who did not carry BRCA1/BRCA2 mutations. Results The median numbers of total and rare CNVs per genome were not different between controls and patients. A total of 26 rare germline CNVs were identified in 68 cancer patients, however, a proportion that was significantly different (P = 0.0311) from the control group (23 rare CNVs in 100 individuals). Several of the genes affected by CNV in patients and controls had already been implicated in cancer. Conclusions This study is the first to explore the contribution of germline CNVs to BRCA1/2-negative familial and early-onset breast cancer. The data suggest that rare CNVs may contribute to cancer predisposition in this small cohort of patients, and this trend needs to be confirmed in larger population samples.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
70 |
11
|
Sebollela A, Freitas-Correa L, Oliveira FF, Paula-Lima AC, Saraiva LM, Martins SM, Mota LD, Torres C, Alves-Leon S, de Souza JM, Carraro DM, Brentani H, De Felice FG, Ferreira ST. Amyloid-β oligomers induce differential gene expression in adult human brain slices. J Biol Chem 2012; 287:7436-45. [PMID: 22235132 PMCID: PMC3293600 DOI: 10.1074/jbc.m111.298471] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 12/27/2011] [Indexed: 01/01/2023] Open
Abstract
Cognitive decline in Alzheimer disease (AD) is increasingly attributed to the neuronal impact of soluble oligomers of the amyloid-β peptide (AβOs). Current knowledge on the molecular and cellular mechanisms underlying the toxicity of AβOs stems largely from rodent-derived cell/tissue culture experiments or from transgenic models of AD, which do not necessarily recapitulate the complexity of the human disease. Here, we used DNA microarray and RT-PCR to investigate changes in transcription in adult human cortical slices exposed to sublethal doses of AβOs. The results revealed a set of 27 genes that showed consistent differential expression upon exposure of slices from three different donors to AβOs. Functional classification of differentially expressed genes revealed that AβOs impact pathways important for neuronal physiology and known to be dysregulated in AD, including vesicle trafficking, cell adhesion, actin cytoskeleton dynamics, and insulin signaling. Most genes (70%) were down-regulated by AβO treatment, suggesting a predominantly inhibitory effect on the corresponding pathways. Significantly, AβOs induced down-regulation of synaptophysin, a presynaptic vesicle membrane protein, suggesting a mechanism by which oligomers cause synapse failure. The results provide insight into early mechanisms of pathogenesis of AD and suggest that the neuronal pathways affected by AβOs may be targets for the development of novel diagnostic or therapeutic approaches.
Collapse
|
Clinical Trial |
13 |
69 |
12
|
Brentani H, Paula CSD, Bordini D, Rolim D, Sato F, Portolese J, Pacifico MC, McCracken JT. Autism spectrum disorders: an overview on diagnosis and treatment. BRAZILIAN JOURNAL OF PSYCHIATRY 2013; 35 Suppl 1:S62-72. [DOI: 10.1590/1516-4446-2013-s104] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
|
12 |
65 |
13
|
Carraro DM, Koike Folgueira MAA, Garcia Lisboa BC, Ribeiro Olivieri EH, Vitorino Krepischi AC, de Carvalho AF, de Carvalho Mota LD, Puga RD, do Socorro Maciel M, Michelli RAD, de Lyra EC, Grosso SHG, Soares FA, Achatz MIADSW, Brentani H, Moreira-Filho CA, Brentani MM. Comprehensive analysis of BRCA1, BRCA2 and TP53 germline mutation and tumor characterization: a portrait of early-onset breast cancer in Brazil. PLoS One 2013; 8:e57581. [PMID: 23469205 PMCID: PMC3586086 DOI: 10.1371/journal.pone.0057581] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 01/22/2013] [Indexed: 11/25/2022] Open
Abstract
Germline mutations in BRCA1, BRCA2 and TP53 genes have been identified as one of the most important disease-causing issues in young breast cancer patients worldwide. The specific defective biological processes that trigger germline mutation-associated and -negative tumors remain unclear. To delineate an initial portrait of Brazilian early-onset breast cancer, we performed an investigation combining both germline and tumor analysis. Germline screening of the BRCA1, BRCA2, CHEK2 (c.1100delC) and TP53 genes was performed in 54 unrelated patients <35 y; their tumors were investigated with respect to transcriptional and genomic profiles as well as hormonal receptors and HER2 expression/amplification. Germline mutations were detected in 12 out of 54 patients (22%) [7 in BRCA1 (13%), 4 in BRCA2 (7%) and one in TP53 (2%) gene]. A cancer familial history was present in 31.4% of the unrelated patients, from them 43.7% were carriers for germline mutation (37.5% in BRCA1 and in 6.2% in the BRCA2 genes). Fifty percent of the unrelated patients with hormone receptor-negative tumors carried BRCA1 mutations, percentage increasing to 83% in cases with familial history of cancer. Over-representation of DNA damage-, cellular and cell cycle-related processes was detected in the up-regulated genes of BRCA1/2-associated tumors, whereas cell and embryo development-related processes were over-represented in the up-regulated genes of BRCA1/2-negative tumors, suggesting distinct mechanisms driving the tumorigenesis. An initial portrait of the early-onset breast cancer patients in Brazil was generated pointing out that hormone receptor-negative tumors and positive familial history are two major risk factors for detection of a BRCA1 germline mutation. Additionally, the data revealed molecular factors that potentially trigger the tumor development in young patients.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
63 |
14
|
Brentani RR, Carraro DM, Verjovski-Almeida S, Reis EM, Neves EJ, de Souza SJ, Carvalho AF, Brentani H, Reis LFL. Gene expression arrays in cancer research: methods and applications. Crit Rev Oncol Hematol 2005; 54:95-105. [PMID: 15843092 DOI: 10.1016/j.critrevonc.2004.12.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2004] [Indexed: 11/15/2022] Open
Abstract
During the last 5 years, the number of papers describing data obtained by microarray technology increased exponentially with about 3000 papers in 2003. Undoubtedly, cancer is by far the disease that received most of the attention as far as the amount of data generated. As array technology is rather new and highly dependent on bioinformatics, mathematics and statistics, a clear understanding of the knowledge and information derived from array-based experiments is not widely appreciated. We shall review herein some of the issues related to the construction of DNA arrays, quantities and heterogeneity of probes and targets, the consequences of the physical characteristics of the probes, data extraction and data analysis as well as the applications of array technology. Our goal is to bring to the general audience, some of the basics of array technology and its possible application in oncology. By discussing some of the basic aspects of the methodology, we hope to stimulate criticism concerning the conclusions proposed by authors, especially in the light of the very low degree of reproducibility already proven when commercially available platforms were compared . Regardless of its pitfalls, it is unquestionable that array technology will have a great impact in the management of cancer and its applications will range from the discovery of new drug targets, new molecular tools for diagnosis and prognosis as well as for a tailored treatment that will take into account the molecular determinants of a given tumor. Hence, we shall also highlight some of the already available and promising applications of array technology on the day-to-day practice of oncology.
Collapse
|
|
20 |
60 |
15
|
Lima FA, Moreira-Filho CA, Ramos PL, Brentani H, Lima LDA, Arrais M, Bento-de-Souza LC, Bento-de-Souza L, Duarte MI, Coutinho A, Carneiro-Sampaio M. Decreased AIRE expression and global thymic hypofunction in Down syndrome. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 187:3422-30. [PMID: 21856934 DOI: 10.4049/jimmunol.1003053] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The Down syndrome (DS) immune phenotype is characterized by thymus hypotrophy, higher propensity to organ-specific autoimmune disorders, and higher susceptibility to infections, among other features. Considering that AIRE (autoimmune regulator) is located on 21q22.3, we analyzed protein and gene expression in surgically removed thymuses from 14 DS patients with congenital heart defects, who were compared with 42 age-matched controls with heart anomaly as an isolated malformation. Immunohistochemistry revealed 70.48 ± 49.59 AIRE-positive cells/mm(2) in DS versus 154.70 ± 61.16 AIRE-positive cells/mm(2) in controls (p < 0.0001), and quantitative PCR as well as DNA microarray data confirmed those results. The number of FOXP3-positive cells/mm(2) was equivalent in both groups. Thymus transcriptome analysis showed 407 genes significantly hypoexpressed in DS, most of which were related, according to network transcriptional analysis (FunNet), to cell division and to immunity. Immune response-related genes included those involved in 1) Ag processing and presentation (HLA-DQB1, HLA-DRB3, CD1A, CD1B, CD1C, ERAP) and 2) thymic T cell differentiation (IL2RG, RAG2, CD3D, CD3E, PRDX2, CDK6) and selection (SH2D1A, CD74). It is noteworthy that relevant AIRE-partner genes, such as TOP2A, LAMNB1, and NUP93, were found hypoexpressed in DNA microarrays and quantitative real-time PCR analyses. These findings on global thymic hypofunction in DS revealed molecular mechanisms underlying DS immune phenotype and strongly suggest that DS immune abnormalities are present since early development, rather than being a consequence of precocious aging, as widely hypothesized. Thus, DS should be considered as a non-monogenic primary immunodeficiency.
Collapse
|
|
14 |
57 |
16
|
de Andrade DC, Jacobsen Teixeira M, Galhardoni R, Ferreira KSL, Braz Mileno P, Scisci N, Zandonai A, Teixeira WGJ, Saragiotto DF, Silva V, Raicher I, Cury RG, Macarenco R, Otto Heise C, Wilson Iervolino Brotto M, Andrade de Mello A, Zini Megale M, Henrique Curti Dourado L, Mendes Bahia L, Lilian Rodrigues A, Parravano D, Tizue Fukushima J, Lefaucheur JP, Bouhassira D, Sobroza E, Riechelmann RP, Hoff PM, Valério da Silva F, Chile T, Dale CS, Nebuloni D, Senna L, Brentani H, Pagano RL, de Souza ÂM. Pregabalin for the Prevention of Oxaliplatin-Induced Painful Neuropathy: A Randomized, Double-Blind Trial. Oncologist 2017; 22:1154-e105. [PMID: 28652279 PMCID: PMC5634769 DOI: 10.1634/theoncologist.2017-0235] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 05/14/2017] [Indexed: 11/17/2022] Open
Abstract
Lessons Learned.
Pregabalin is a medication that can decrease neuronal hyperexcitability, relieve neuropathic pain, and reach stable plasma levels after a titration period of only a few days. Its use during oxaliplatin infusions was not able to decrease the incidence of chronic, oxalipaltin‐related neuropathic pain, compared with placebo. Background. Patients with colorectal cancer (CRC) receiving oxaliplatin (OXA) develop acute and chronic painful oxaliplatin‐induced peripheral neuropathy (OXAIPN). Acute and chronic OXA‐related neuropathies have different pathophysiological bases, but both lead to a common phenomenon: central sensitization (CS) of nociceptive neuronal networks, leading to increased sensitivity (hyperlgesia, allodynia) in the somatosensory system, the common ground of chronic neuropathic pain. Because CS is related to increased risk of painful OXAIPN, we hypothesized that preemptive use of the anti‐hyperalgesic drug pregabaline (known to decrease CS) during OXA infusions would decrease the incidence of chronic OXAIPN. Methods. Pain‐free, chemotherapy‐naïve CRC patients receiving at least one cycle of modified‐FLOX [5‐FU(500 mg/m2)+leucovorin(20 mg/m2)/week for] 6 weeks+oxaliplatin(85 mg/m2) at weeks 1‐3‐5 every 8 weeks] were randomized (1:1) into the study. Patients received either pregabalin or placebo for 3 days before and 3 days after each OXA infusion and were followed for up to 6 months. Clinical assessments were performed at baseline, at the end of chemotherapy, and after the follow‐up period. The main outcome was average pain at the last visit assessed by the visual analogic scale (0–10) item of the Brief Pain Inventory (BPI). Secondary endpoints were presence of neuropathic pain according to the Douleur Neuropathique‐4 (DN‐4), pain dimensions (short‐ form McGill Pain Questionnaire [MPQ]), Neuropathic Pain Symptom Inventory (NPSI), and changes in nerve conduction studies (NCS) and side effect profile. Results. One hundred ninety‐nine patients (57.0 ± 10.7 years old, 98 female, 101 male) were randomized. Data from 56 patients were not included in the analyses (as they did not receive at least one full cycle of modified FLOX). Data from 78 patients in the pregabalin group and 65 patients in the placebo group were retained for analyses. At the last visit, pain intensity in the pregabalin group was 1.03 (95% confidence interval [CI] = 0.79–1.26), and 0.85 (95% CI = 0.64–1.06) in the placebo group, which did not reach significance. Scores from the BPI, MPQ, DN‐4, NPSI, and NCS and side‐effect profiles and incidence of death did not differ between groups. Quality of life (QoL) score did not differ between groups (placebo = 76.9 ± 23.1, pregabalin group 79.4 ± 20.6). Mood scores were not significantly different between groups (placebo 9.7 [8.1–11.2]; pregabalin 6.8 [5.6–8.0]). Conclusion. The preemptive use of pregabalin during OXA infusions was safe, but did not decrease the incidence of chronic pain related to OXAIPN.
Collapse
|
Randomized Controlled Trial |
8 |
51 |
17
|
Cappi C, Diniz JB, Requena GL, Lourenço T, Lisboa BCG, Batistuzzo MC, Marques AH, Hoexter MQ, Pereira CA, Miguel EC, Brentani H. Epigenetic evidence for involvement of the oxytocin receptor gene in obsessive-compulsive disorder. BMC Neurosci 2016; 17:79. [PMID: 27903255 PMCID: PMC5131547 DOI: 10.1186/s12868-016-0313-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 11/24/2016] [Indexed: 12/22/2022] Open
Abstract
Background
Obsessive–compulsive disorder (OCD) is a chronic neurodevelopmental disorder that affects up to 3% of the general population. Although epigenetic mechanisms play a role in neurodevelopment disorders, epigenetic pathways associated with OCD have rarely been investigated. Oxytocin is a neuropeptide involved in neurobehavioral functions. Oxytocin has been shown to be associated with the regulation of complex socio-cognitive processes such as attachment, social exploration, and social recognition, as well as anxiety and other stress-related behaviors. Oxytocin has also been linked to the pathophysiology of OCD, albeit inconsistently. The aim of this study was to investigate methylation in two targets sequences located in the exon III of the oxytocin receptor gene (OXTR), in OCD patients and healthy controls. We used bisulfite sequencing to quantify DNA methylation in peripheral blood samples collected from 42 OCD patients and 31 healthy controls.
Results We found that the level of methylation of the cytosine-phosphate-guanine sites in two targets sequences analyzed was greater in the OCD patients than in the controls. The higher methylation in the OCD patients correlated with OCD severity. We measured DNA methylation in the peripheral blood, which prevented us from drawing any conclusions about processes in the central nervous system. Conclusion To our knowledge, this is the first study investigating DNA methylation of the OXTR in OCD. Further studies are needed to evaluate the roles that DNA methylation and oxytocin play in OCD.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
49 |
18
|
Maschietto M, Bastos LC, Tahira AC, Bastos EP, Euclydes VLV, Brentani A, Fink G, de Baumont A, Felipe-Silva A, Francisco RPV, Gouveia G, Grisi SJFE, Escobar AMU, Moreira-Filho CA, Polanczyk GV, Miguel EC, Brentani H. Sex differences in DNA methylation of the cord blood are related to sex-bias psychiatric diseases. Sci Rep 2017; 7:44547. [PMID: 28303968 PMCID: PMC5355991 DOI: 10.1038/srep44547] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 02/10/2017] [Indexed: 12/19/2022] Open
Abstract
Sex differences in the prevalence of psychiatric disorders are well documented, with exposure to stress during gestation differentially impacting females and males. We explored sex-specific DNA methylation in the cord blood of 39 females and 32 males born at term and with appropriate weight at birth regarding their potential connection to psychiatric outcomes. Mothers were interviewed to gather information about environmental factors (gestational exposure) that could interfere with the methylation profiles in the newborns. Bisulphite converted DNA was hybridized to Illumina HumanMethylation450 BeadChips. Excluding XYS probes, there were 2,332 differentially methylated CpG sites (DMSs) between sexes, which were enriched within brain modules of co-methylated CpGs during brain development and also differentially methylated in the brains of boys and girls. Genes associated with the DMSs were enriched for neurodevelopmental disorders, particularly for CpG sites found differentially methylated in brain tissue between patients with schizophrenia and controls. Moreover, the DMS had an overlap of 890 (38%) CpG sites with a cohort submitted to toxic exposition during gestation. This study supports the evidences that sex differences in DNA methylation of autosomes act as a primary driver of sex differences that are found in psychiatric outcomes.
Collapse
|
research-article |
8 |
49 |
19
|
da Silva SD, Alaoui-Jamali MA, Soares FA, Carraro DM, Brentani HP, Hier M, Rogatto SR, Kowalski LP. TWIST1 is a molecular marker for a poor prognosis in oral cancer and represents a potential therapeutic target. Cancer 2013; 120:352-62. [PMID: 24150986 DOI: 10.1002/cncr.28404] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 08/21/2013] [Accepted: 08/27/2013] [Indexed: 11/11/2022]
Abstract
BACKGROUND Locoregional recurrence and distant metastases are ominous events in patients with advanced oral squamous cell carcinoma (OSCC). The objective of this study was to identify functional biomarkers that are predictive of OSCC progression to metastasis. METHODS The expression profile of a network of epithelial-mesenchymal transition (EMT) genes was investigated in a large cohort of patients with progressive OSCC using a complimentary DNA microarray platform coupled to quantitative reverse transcriptase-polymerase chain reaction and immunohistochemical analyses. Therapeutic potential was investigated in vitro and in vivo using an orthotopic mouse model of metastatic OSCC growing in the tongue microenvironment. RESULTS Among deregulated EMT genes, the Twist-related protein 1 (TWIST1) transcription factor and several of its regulated genes were significantly overexpressed across advanced stages of OSCC. This result was corroborated by the clinical observation that Twist1 up-regulation predicted the occurrence of lymph node and lung metastases as well as poor patient survival. In support of Twist1 as a driver of OSCC progression, the up-regulation of Twist1 was observed in cells isolated from patients with metastatic OSCC. The inhibition of Twist1 in these metastatic cells induced a potent inhibition of cell invasiveness in vitro as well as progression in vivo. CONCLUSIONS The current results provide evidence for the prognostic value and therapeutic potential of a network of Twist genes in patients with advanced OSCC.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
48 |
20
|
Vêncio RZN, Brentani H, Patrão DFC, Pereira CAB. Bayesian model accounting for within-class biological variability in Serial Analysis of Gene Expression (SAGE). BMC Bioinformatics 2004; 5:119. [PMID: 15339345 PMCID: PMC517707 DOI: 10.1186/1471-2105-5-119] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2004] [Accepted: 08/31/2004] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND An important challenge for transcript counting methods such as Serial Analysis of Gene Expression (SAGE), "Digital Northern" or Massively Parallel Signature Sequencing (MPSS), is to carry out statistical analyses that account for the within-class variability, i.e., variability due to the intrinsic biological differences among sampled individuals of the same class, and not only variability due to technical sampling error. RESULTS We introduce a Bayesian model that accounts for the within-class variability by means of mixture distribution. We show that the previously available approaches of aggregation in pools ("pseudo-libraries") and the Beta-Binomial model, are particular cases of the mixture model. We illustrate our method with a brain tumor vs. normal comparison using SAGE data from public databases. We show examples of tags regarded as differentially expressed with high significance if the within-class variability is ignored, but clearly not so significant if one accounts for it. CONCLUSION Using available information about biological replicates, one can transform a list of candidate transcripts showing differential expression to a more reliable one. Our method is freely available, under GPL/GNU copyleft, through a user friendly web-based on-line tool or as R language scripts at supplemental web-site.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
47 |
21
|
Rozenchan PB, Carraro DM, Brentani H, de Carvalho Mota LD, Bastos EP, e Ferreira EN, Torres CH, Katayama MLH, Roela RA, Lyra EC, Soares FA, Folgueira MAAK, Góes JCGS, Brentani MM. Reciprocal changes in gene expression profiles of cocultured breast epithelial cells and primary fibroblasts. Int J Cancer 2009; 125:2767-77. [PMID: 19530251 DOI: 10.1002/ijc.24646] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The importance of epithelial-stroma interaction in normal breast development and tumor progression has been recognized. To identify genes that were regulated by these reciprocal interactions, we cocultured a nonmalignant (MCF10A) and a breast cancer derived (MDA-MB231) basal cell lines, with fibroblasts isolated from breast benign-disease adjacent tissues (NAF) or with carcinoma-associated fibroblasts (CAF), in a transwell system. Gene expression profiles of each coculture pair were compared with the correspondent monocultures, using a customized microarray. Contrariwise to large alterations in epithelial cells genomic profiles, fibroblasts were less affected. In MDA-MB231 highly represented genes downregulated by CAF derived factors coded for proteins important for the specificity of vectorial transport between ER and golgi, possibly affecting cell polarity whereas the response of MCF10A comprised an induction of genes coding for stress responsive proteins, representing a prosurvival effect. While NAF downregulated genes encoding proteins associated to glycolipid and fatty acid biosynthesis in MDA-MB231, potentially affecting membrane biogenesis, in MCF10A, genes critical for growth control and adhesion were altered. NAFs responded to coculture with MDA-MB231 by a decrease in the expression of genes induced by TGFbeta1 and associated to motility. However, there was little change in NAFs gene expression profile influenced by MCF10A. CAFs responded to the presence of both epithelial cells inducing genes implicated in cell proliferation. Our data indicate that interactions between breast fibroblasts and basal epithelial cells resulted in alterations in the genomic profiles of both cell types which may help to clarify some aspects of this heterotypic signaling.
Collapse
|
Research Support, Non-U.S. Gov't |
16 |
45 |
22
|
Schlesinger D, Grinberg LT, Alba JG, Naslavsky MS, Licinio L, Farfel JM, Suemoto CK, de Lucena Ferretti RE, Leite REP, de Andrade MP, dos Santos ACF, Brentani H, Pasqualucci CA, Nitrini R, Jacob-Filho W, Zatz M. African ancestry protects against Alzheimer's disease-related neuropathology. Mol Psychiatry 2013; 18:79-85. [PMID: 22064377 PMCID: PMC3526728 DOI: 10.1038/mp.2011.136] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 09/08/2011] [Accepted: 09/12/2011] [Indexed: 02/07/2023]
Abstract
Previous studies in dementia epidemiology have reported higher Alzheimer's disease rates in African-Americans when compared with White Americans. To determine whether genetically determined African ancestry is associated with neuropathological changes commonly associated with dementia, we analyzed a population-based brain bank in the highly admixed city of São Paulo, Brazil. African ancestry was estimated through the use of previously described ancestry-informative markers. Risk of presence of neuritic plaques, neurofibrillary tangles, small vessel disease, brain infarcts and Lewy bodies in subjects with significant African ancestry versus those without was determined. Results were adjusted for multiple environmental risk factors, demographic variables and apolipoprotein E genotype. African ancestry was inversely correlated with neuritic plaques (P=0.03). Subjects with significant African ancestry (n=112, 55.4%) showed lower prevalence of neuritic plaques in the univariate analysis (odds ratio (OR) 0.72, 95% confidence interval (CI) 0.55-0.95, P=0.01) and when adjusted for age, sex, APOE genotype and environmental risk factors (OR 0.43, 95% CI 0.21-0.89, P=0.02). There were no significant differences for the presence of other neuropathological alterations. We show for the first time, using genetically determined ancestry, that African ancestry may be highly protective of Alzheimer's disease neuropathology, functioning through either genetic variants or unknown environmental factors. Epidemiological studies correlating African-American race/ethnicity with increased Alzheimer's disease rates should not be interpreted as surrogates of genetic ancestry or considered to represent African-derived populations from the developing nations such as Brazil.
Collapse
|
research-article |
12 |
41 |
23
|
Maschietto M, Tahira AC, Puga R, Lima L, Mariani D, Paulsen BDS, Belmonte-de-Abreu P, Vieira H, Krepischi AC, Carraro DM, Palha JA, Rehen S, Brentani H. Co-expression network of neural-differentiation genes shows specific pattern in schizophrenia. BMC Med Genomics 2015; 8:23. [PMID: 25981335 PMCID: PMC4493810 DOI: 10.1186/s12920-015-0098-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 05/05/2015] [Indexed: 12/21/2022] Open
Abstract
Background Schizophrenia is a neurodevelopmental disorder with genetic and environmental factors contributing to its pathogenesis, although the mechanism is unknown due to the difficulties in accessing diseased tissue during human neurodevelopment. The aim of this study was to find neuronal differentiation genes disrupted in schizophrenia and to evaluate those genes in post-mortem brain tissues from schizophrenia cases and controls. Methods We analyzed differentially expressed genes (DEG), copy number variation (CNV) and differential methylation in human induced pluripotent stem cells (hiPSC) derived from fibroblasts from one control and one schizophrenia patient and further differentiated into neuron (NPC). Expression of the DEG were analyzed with microarrays of post-mortem brain tissue (frontal cortex) cohort of 29 schizophrenia cases and 30 controls. A Weighted Gene Co-expression Network Analysis (WGCNA) using the DEG was used to detect clusters of co-expressed genes that werenon-conserved between adult cases and controls brain samples. Results We identified methylation alterations potentially involved with neuronal differentiation in schizophrenia, which displayed an over-representation of genes related to chromatin remodeling complex (adjP = 0.04). We found 228 DEG associated with neuronal differentiation. These genes were involved with metabolic processes, signal transduction, nervous system development, regulation of neurogenesis and neuronal differentiation. Between adult brain samples from cases and controls there were 233 DEG, with only four genes overlapping with the 228 DEG, probably because we compared single cell to tissue bulks and more importantly, the cells were at different stages of development. The comparison of the co-expressed network of the 228 genes in adult brain samples between cases and controls revealed a less conserved module enriched for genes associated with oxidative stress and negative regulation of cell differentiation. Conclusion This study supports the relevance of using cellular approaches to dissect molecular aspects of neurogenesis with impact in the schizophrenic brain. We showed that, although generated by different approaches, both sets of DEG associated to schizophrenia were involved with neocortical development. The results add to the hypothesis that critical metabolic changes may be occurring during early neurodevelopment influencing faulty development of the brain and potentially contributing to further vulnerability to the illness. Electronic supplementary material The online version of this article (doi:10.1186/s12920-015-0098-9) contains supplementary material, which is available to authorized users.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
37 |
24
|
Gouveia FV, Hamani C, Fonoff ET, Brentani H, Alho EJL, de Morais RMCB, de Souza AL, Rigonatti SP, Martinez RCR. Amygdala and Hypothalamus: Historical Overview With Focus on Aggression. Neurosurgery 2019; 85:11-30. [PMID: 30690521 PMCID: PMC6565484 DOI: 10.1093/neuros/nyy635] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 01/08/2019] [Indexed: 12/29/2022] Open
Abstract
Aggressiveness has a high prevalence in psychiatric patients and is a major health problem. Two brain areas involved in the neural network of aggressive behavior are the amygdala and the hypothalamus. While pharmacological treatments are effective in most patients, some do not properly respond to conventional therapies and are considered medically refractory. In this population, surgical procedures (ie, stereotactic lesions and deep brain stimulation) have been performed in an attempt to improve symptomatology and quality of life. Clinical results obtained after surgery are difficult to interpret, and the mechanisms responsible for postoperative reductions in aggressive behavior are unknown. We review the rationale and neurobiological characteristics that may help to explain why functional neurosurgery has been proposed to control aggressive behavior.
Collapse
|
review-article |
6 |
35 |
25
|
Marchi FA, Martins DC, Barros-Filho MC, Kuasne H, Busso Lopes AF, Brentani H, Trindade Filho JCS, Guimarães GC, Faria EF, Scapulatempo-Neto C, Lopes A, Rogatto SR. Multidimensional integrative analysis uncovers driver candidates and biomarkers in penile carcinoma. Sci Rep 2017; 7:6707. [PMID: 28751665 PMCID: PMC5532302 DOI: 10.1038/s41598-017-06659-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 06/19/2017] [Indexed: 01/24/2023] Open
Abstract
Molecular data generation and their combination in penile carcinomas (PeCa), a significant public health problem in poor and underdeveloped countries, remain virtually unexplored. An integrativemethodology combin ing genome-wide copy number alteration, DNA methylation, miRNA and mRNA expression analysis was performed in a set of 20 usual PeCa. The well-ranked 16 driver candidates harboring genomic alterations and regulated by a set of miRNAs, including hsa-miR-31, hsa-miR-34a and hsa-miR-130b, were significantly associated with over-represented pathways in cancer, such as immune-inflammatory system, apoptosis and cell cycle. Modules of co-expressed genes generated from expression matrix were associated with driver candidates and classified according to the over-representation of passengers, thus suggesting an alteration of the pathway dynamics during the carcinogenesis. This association resulted in 10 top driver candidates (AR, BIRC5, DNMT3B, ERBB4, FGFR1, PML, PPARG, RB1, TNFSF10 and STAT1) selected and confirmed as altered in an independent set of 33 PeCa samples. In addition to the potential driver genes herein described, shorter overall survival was associated with BIRC5 and DNMT3B overexpression (log-rank test, P = 0.026 and P = 0.002, respectively) highlighting its potential as novel prognostic marker for penile cancer.
Collapse
|
research-article |
8 |
32 |