1
|
George J, Lim JS, Jang SJ, Cun Y, Ozretić L, Kong G, Leenders F, Lu X, Fernández-Cuesta L, Bosco G, Müller C, Dahmen I, Jahchan NS, Park KS, Yang D, Karnezis AN, Vaka D, Torres A, Wang MS, Korbel JO, Menon R, Chun SM, Kim D, Wilkerson M, Hayes N, Engelmann D, Pützer B, Bos M, Michels S, Vlasic I, Seidel D, Pinther B, Schaub P, Becker C, Altmüller J, Yokota J, Kohno T, Iwakawa R, Tsuta K, Noguchi M, Muley T, Hoffmann H, Schnabel PA, Petersen I, Chen Y, Soltermann A, Tischler V, Choi CM, Kim YH, Massion PP, Zou Y, Jovanovic D, Kontic M, Wright GM, Russell PA, Solomon B, Koch I, Lindner M, Muscarella LA, la Torre A, Field JK, Jakopovic M, Knezevic J, Castaños-Vélez E, Roz L, Pastorino U, Brustugun OT, Lund-Iversen M, Thunnissen E, Köhler J, Schuler M, Botling J, Sandelin M, Sanchez-Cespedes M, Salvesen HB, Achter V, Lang U, Bogus M, Schneider PM, Zander T, Ansén S, Hallek M, Wolf J, Vingron M, Yatabe Y, Travis WD, Nürnberg P, Reinhardt C, Perner S, Heukamp L, Büttner R, Haas SA, Brambilla E, Peifer M, Sage J, Thomas RK. Comprehensive genomic profiles of small cell lung cancer. Nature 2015; 524:47-53. [PMID: 26168399 DOI: 10.1038/nature14664] [Citation(s) in RCA: 1657] [Impact Index Per Article: 165.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 06/15/2015] [Indexed: 02/06/2023]
Abstract
We have sequenced the genomes of 110 small cell lung cancers (SCLC), one of the deadliest human cancers. In nearly all the tumours analysed we found bi-allelic inactivation of TP53 and RB1, sometimes by complex genomic rearrangements. Two tumours with wild-type RB1 had evidence of chromothripsis leading to overexpression of cyclin D1 (encoded by the CCND1 gene), revealing an alternative mechanism of Rb1 deregulation. Thus, loss of the tumour suppressors TP53 and RB1 is obligatory in SCLC. We discovered somatic genomic rearrangements of TP73 that create an oncogenic version of this gene, TP73Δex2/3. In rare cases, SCLC tumours exhibited kinase gene mutations, providing a possible therapeutic opportunity for individual patients. Finally, we observed inactivating mutations in NOTCH family genes in 25% of human SCLC. Accordingly, activation of Notch signalling in a pre-clinical SCLC mouse model strikingly reduced the number of tumours and extended the survival of the mutant mice. Furthermore, neuroendocrine gene expression was abrogated by Notch activity in SCLC cells. This first comprehensive study of somatic genome alterations in SCLC uncovers several key biological processes and identifies candidate therapeutic targets in this highly lethal form of cancer.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
1657 |
2
|
Hoshida Y, Villanueva A, Kobayashi M, Peix J, Chiang DY, Camargo A, Gupta S, Moore J, Wrobel MJ, Lerner J, Reich M, Chan JA, Glickman JN, Ikeda K, Hashimoto M, Watanabe G, Daidone MG, Roayaie S, Schwartz M, Thung S, Salvesen HB, Gabriel S, Mazzaferro V, Bruix J, Friedman SL, Kumada H, Llovet JM, Golub TR. Gene expression in fixed tissues and outcome in hepatocellular carcinoma. N Engl J Med 2008; 359:1995-2004. [PMID: 18923165 PMCID: PMC2963075 DOI: 10.1056/nejmoa0804525] [Citation(s) in RCA: 1002] [Impact Index Per Article: 58.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND It is a challenge to identify patients who, after undergoing potentially curative treatment for hepatocellular carcinoma, are at greatest risk for recurrence. Such high-risk patients could receive novel interventional measures. An obstacle to the development of genome-based predictors of outcome in patients with hepatocellular carcinoma has been the lack of a means to carry out genomewide expression profiling of fixed, as opposed to frozen, tissue. METHODS We aimed to demonstrate the feasibility of gene-expression profiling of more than 6000 human genes in formalin-fixed, paraffin-embedded tissues. We applied the method to tissues from 307 patients with hepatocellular carcinoma, from four series of patients, to discover and validate a gene-expression signature associated with survival. RESULTS The expression-profiling method for formalin-fixed, paraffin-embedded tissue was highly effective: samples from 90% of the patients yielded data of high quality, including samples that had been archived for more than 24 years. Gene-expression profiles of tumor tissue failed to yield a significant association with survival. In contrast, profiles of the surrounding nontumoral liver tissue were highly correlated with survival in a training set of tissue samples from 82 Japanese patients, and the signature was validated in tissues from an independent group of 225 patients from the United States and Europe (P=0.04). CONCLUSIONS We have demonstrated the feasibility of genomewide expression profiling of formalin-fixed, paraffin-embedded tissues and have shown that a reproducible gene-expression signature correlated with survival is present in liver tissue adjacent to the tumor in patients with hepatocellular carcinoma.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
1002 |
3
|
Bachmann IM, Halvorsen OJ, Collett K, Stefansson IM, Straume O, Haukaas SA, Salvesen HB, Otte AP, Akslen LA. EZH2 expression is associated with high proliferation rate and aggressive tumor subgroups in cutaneous melanoma and cancers of the endometrium, prostate, and breast. J Clin Oncol 2005; 24:268-73. [PMID: 16330673 DOI: 10.1200/jco.2005.01.5180] [Citation(s) in RCA: 660] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE EZH2 is a member of the polycomb group of genes and important in cell cycle regulation. Increased expression of EZH2 has been associated previously with invasive growth and aggressive clinical behavior in prostate and breast cancer, but the relationship with tumor cell proliferation has not been examined in human tumors. The purpose of this study was to validate previous findings in a population-based setting, also including tumors that have not been studied previously. PATIENTS AND METHODS In our study of nearly 700 patients, we examined EZH2 expression and its association with tumor cell proliferation and other tumor markers, clinical features, and prognosis in cutaneous melanoma and cancers of the endometrium, prostate, and breast. RESULTS Strong EZH2 expression was associated with increased tumor cell proliferation in all four cancer types. Associations were also found between EZH2 and important clinicopathologic variables. EZH2 expression showed significant prognostic impact in melanoma, prostate, and endometrial carcinoma in univariate survival analyses, and revealed independent prognostic importance in carcinoma of the endometrium and prostate. CONCLUSION Our findings point at EZH2 as a novel and independent prognostic marker in endometrial cancer, and validate previous findings on prostate and breast cancer. Further, EZH2 expression was associated with features of aggressive cutaneous melanoma. The fact that EZH2 might identify increased tumor cell proliferation and aggressive subgroups in several cancers may be of practical interest because the polycomb group proteins have been suggested as candidates for targeted therapy. EZH2 expression should, therefore, be further examined as a possible predictive factor.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
660 |
4
|
Ojesina AI, Lichtenstein L, Freeman SS, Pedamallu CS, Imaz-Rosshandler I, Pugh TJ, Cherniack AD, Ambrogio L, Cibulskis K, Bertelsen B, Romero-Cordoba S, Treviño V, Vazquez-Santillan K, Guadarrama AS, Wright AA, Rosenberg MW, Duke F, Kaplan B, Wang R, Nickerson E, Walline HM, Lawrence MS, Stewart C, Carter SL, McKenna A, Rodriguez-Sanchez IP, Espinosa-Castilla M, Woie K, Bjorge L, Wik E, Halle MK, Hoivik EA, Krakstad C, Gabiño NB, Gómez-Macías GS, Valdez-Chapa LD, Garza-Rodríguez ML, Maytorena G, Vazquez J, Rodea C, Cravioto A, Cortes ML, Greulich H, Crum CP, Neuberg DS, Hidalgo-Miranda A, Escareno CR, Akslen LA, Carey TE, Vintermyr OK, Gabriel SB, Barrera-Saldaña HA, Melendez-Zajgla J, Getz G, Salvesen HB, Meyerson M. Landscape of genomic alterations in cervical carcinomas. Nature 2013; 506:371-5. [PMID: 24390348 DOI: 10.1038/nature12881] [Citation(s) in RCA: 658] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 11/13/2013] [Indexed: 12/14/2022]
Abstract
Cervical cancer is responsible for 10-15% of cancer-related deaths in women worldwide. The aetiological role of infection with high-risk human papilloma viruses (HPVs) in cervical carcinomas is well established. Previous studies have also implicated somatic mutations in PIK3CA, PTEN, TP53, STK11 and KRAS as well as several copy-number alterations in the pathogenesis of cervical carcinomas. Here we report whole-exome sequencing analysis of 115 cervical carcinoma-normal paired samples, transcriptome sequencing of 79 cases and whole-genome sequencing of 14 tumour-normal pairs. Previously unknown somatic mutations in 79 primary squamous cell carcinomas include recurrent E322K substitutions in the MAPK1 gene (8%), inactivating mutations in the HLA-B gene (9%), and mutations in EP300 (16%), FBXW7 (15%), NFE2L2 (4%), TP53 (5%) and ERBB2 (6%). We also observe somatic ELF3 (13%) and CBFB (8%) mutations in 24 adenocarcinomas. Squamous cell carcinomas have higher frequencies of somatic nucleotide substitutions occurring at cytosines preceded by thymines (Tp*C sites) than adenocarcinomas. Gene expression levels at HPV integration sites were statistically significantly higher in tumours with HPV integration compared with expression of the same genes in tumours without viral integration at the same site. These data demonstrate several recurrent genomic alterations in cervical carcinomas that suggest new strategies to combat this disease.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
658 |
5
|
Bojesen SE, Pooley KA, Johnatty SE, Beesley J, Michailidou K, Tyrer JP, Edwards SL, Pickett HA, Shen HC, Smart CE, Hillman KM, Mai PL, Lawrenson K, Stutz MD, Lu Y, Karevan R, Woods N, Johnston RL, French JD, Chen X, Weischer M, Nielsen SF, Maranian MJ, Ghoussaini M, Ahmed S, Baynes C, Bolla MK, Wang Q, Dennis J, McGuffog L, Barrowdale D, Lee A, Healey S, Lush M, Tessier DC, Vincent D, Bacot F, Study Group members, Vergote I, Lambrechts S, Despierre E, Risch HA, González-Neira A, Rossing MA, Pita G, Doherty JA, Álvarez N, Larson MC, Fridley BL, Schoof N, Chang-Claude J, Cicek MS, Peto J, Kalli KR, Broeks A, Armasu SM, Schmidt MK, Braaf LM, Winterhoff B, Nevanlinna H, Konecny GE, Lambrechts D, Rogmann L, Guénel P, Teoman A, Milne RL, Garcia JJ, Cox A, Shridhar V, Burwinkel B, Marme F, Hein R, Sawyer EJ, Haiman CA, Wang-Gohrke S, Andrulis IL, Moysich KB, Hopper JL, Odunsi K, Lindblom A, Giles GG, Brenner H, Simard J, Lurie G, Fasching PA, Carney ME, Radice P, Wilkens LR, Swerdlow A, Goodman MT, Brauch H, García-Closas M, Hillemanns P, Winqvist R, Dürst M, Devilee P, Runnebaum I, Jakubowska A, Lubinski J, Mannermaa A, et alBojesen SE, Pooley KA, Johnatty SE, Beesley J, Michailidou K, Tyrer JP, Edwards SL, Pickett HA, Shen HC, Smart CE, Hillman KM, Mai PL, Lawrenson K, Stutz MD, Lu Y, Karevan R, Woods N, Johnston RL, French JD, Chen X, Weischer M, Nielsen SF, Maranian MJ, Ghoussaini M, Ahmed S, Baynes C, Bolla MK, Wang Q, Dennis J, McGuffog L, Barrowdale D, Lee A, Healey S, Lush M, Tessier DC, Vincent D, Bacot F, Study Group members, Vergote I, Lambrechts S, Despierre E, Risch HA, González-Neira A, Rossing MA, Pita G, Doherty JA, Álvarez N, Larson MC, Fridley BL, Schoof N, Chang-Claude J, Cicek MS, Peto J, Kalli KR, Broeks A, Armasu SM, Schmidt MK, Braaf LM, Winterhoff B, Nevanlinna H, Konecny GE, Lambrechts D, Rogmann L, Guénel P, Teoman A, Milne RL, Garcia JJ, Cox A, Shridhar V, Burwinkel B, Marme F, Hein R, Sawyer EJ, Haiman CA, Wang-Gohrke S, Andrulis IL, Moysich KB, Hopper JL, Odunsi K, Lindblom A, Giles GG, Brenner H, Simard J, Lurie G, Fasching PA, Carney ME, Radice P, Wilkens LR, Swerdlow A, Goodman MT, Brauch H, García-Closas M, Hillemanns P, Winqvist R, Dürst M, Devilee P, Runnebaum I, Jakubowska A, Lubinski J, Mannermaa A, Butzow R, Bogdanova NV, Dörk T, Pelttari LM, Zheng W, Leminen A, Anton-Culver H, Bunker CH, Kristensen V, Ness RB, Muir K, Edwards R, Meindl A, Heitz F, Matsuo K, du Bois A, Wu AH, Harter P, Teo SH, Schwaab I, Shu XO, Blot W, Hosono S, Kang D, Nakanishi T, Hartman M, Yatabe Y, Hamann U, Karlan BY, Sangrajrang S, Kjaer SK, Gaborieau V, Jensen A, Eccles D, Høgdall E, Shen CY, Brown J, Woo YL, Shah M, Azmi MAN, Luben R, Omar SZ, Czene K, Vierkant RA, Nordestgaard BG, Flyger H, Vachon C, Olson JE, Wang X, Levine DA, Rudolph A, Weber RP, Flesch-Janys D, Iversen E, Nickels S, Schildkraut JM, Silva IDS, Cramer DW, Gibson L, Terry KL, Fletcher O, Vitonis AF, van der Schoot CE, Poole EM, Hogervorst FBL, Tworoger SS, Liu J, Bandera EV, Li J, Olson SH, Humphreys K, Orlow I, Blomqvist C, Rodriguez-Rodriguez L, Aittomäki K, Salvesen HB, Muranen TA, Wik E, Brouwers B, Krakstad C, Wauters E, Halle MK, Wildiers H, Kiemeney LA, Mulot C, Aben KK, Laurent-Puig P, van Altena AM, Truong T, Massuger LFAG, Benitez J, Pejovic T, Perez JIA, Hoatlin M, Zamora MP, Cook LS, Balasubramanian SP, Kelemen LE, Schneeweiss A, Le ND, Sohn C, Brooks-Wilson A, Tomlinson I, Kerin MJ, Miller N, Cybulski C, Henderson BE, Menkiszak J, Schumacher F, Wentzensen N, Marchand LL, Yang HP, Mulligan AM, Glendon G, Engelholm SA, Knight JA, Høgdall CK, Apicella C, Gore M, Tsimiklis H, Song H, Southey MC, Jager A, van den Ouweland AMW, Brown R, Martens JWM, Flanagan JM, Kriege M, Paul J, Margolin S, Siddiqui N, Severi G, Whittemore AS, Baglietto L, McGuire V, Stegmaier C, Sieh W, Müller H, Arndt V, Labrèche F, Gao YT, Goldberg MS, Yang G, Dumont M, McLaughlin JR, Hartmann A, Ekici AB, Beckmann MW, Phelan CM, Lux MP, Permuth-Wey J, Peissel B, Sellers TA, Ficarazzi F, Barile M, Ziogas A, Ashworth A, Gentry-Maharaj A, Jones M, Ramus SJ, Orr N, Menon U, Pearce CL, Brüning T, Pike MC, Ko YD, Lissowska J, Figueroa J, Kupryjanczyk J, Chanock SJ, Dansonka-Mieszkowska A, Jukkola-Vuorinen A, Rzepecka IK, Pylkäs K, Bidzinski M, Kauppila S, Hollestelle A, Seynaeve C, Tollenaar RAEM, Durda K, Jaworska K, Hartikainen JM, Kosma VM, Kataja V, Antonenkova NN, Long J, Shrubsole M, Deming-Halverson S, Lophatananon A, Siriwanarangsan P, Stewart-Brown S, Ditsch N, Lichtner P, Schmutzler RK, Ito H, Iwata H, Tajima K, Tseng CC, Stram DO, van den Berg D, Yip CH, Ikram MK, Teh YC, Cai H, Lu W, Signorello LB, Cai Q, Noh DY, Yoo KY, Miao H, Iau PTC, Teo YY, McKay J, Shapiro C, Ademuyiwa F, Fountzilas G, Hsiung CN, Yu JC, Hou MF, Healey CS, Luccarini C, Peock S, Stoppa-Lyonnet D, Peterlongo P, Rebbeck TR, Piedmonte M, Singer CF, Friedman E, Thomassen M, Offit K, Hansen TVO, Neuhausen SL, Szabo CI, Blanco I, Garber J, Narod SA, Weitzel JN, Montagna M, Olah E, Godwin AK, Yannoukakos D, Goldgar DE, Caldes T, Imyanitov EN, Tihomirova L, Arun BK, Campbell I, Mensenkamp AR, van Asperen CJ, van Roozendaal KEP, Meijers-Heijboer H, Collée JM, Oosterwijk JC, Hooning MJ, Rookus MA, van der Luijt RB, van Os TAM, Evans DG, Frost D, Fineberg E, Barwell J, Walker L, Kennedy MJ, Platte R, Davidson R, Ellis SD, Cole T, Paillerets BBD, Buecher B, Damiola F, Faivre L, Frenay M, Sinilnikova OM, Caron O, Giraud S, Mazoyer S, Bonadona V, Caux-Moncoutier V, Toloczko-Grabarek A, Gronwald J, Byrski T, Spurdle AB, Bonanni B, Zaffaroni D, Giannini G, Bernard L, Dolcetti R, Manoukian S, Arnold N, Engel C, Deissler H, Rhiem K, Niederacher D, Plendl H, Sutter C, Wappenschmidt B, Borg Å, Melin B, Rantala J, Soller M, Nathanson KL, Domchek SM, Rodriguez GC, Salani R, Kaulich DG, Tea MK, Paluch SS, Laitman Y, Skytte AB, Kruse TA, Jensen UB, Robson M, Gerdes AM, Ejlertsen B, Foretova L, Savage SA, Lester J, Soucy P, Kuchenbaecker KB, Olswold C, Cunningham JM, Slager S, Pankratz VS, Dicks E, Lakhani SR, Couch FJ, Hall P, Monteiro ANA, Gayther SA, Pharoah PDP, Reddel RR, Goode EL, Greene MH, Easton DF, Berchuck A, Antoniou AC, Chenevix-Trench G, Dunning AM. Multiple independent variants at the TERT locus are associated with telomere length and risks of breast and ovarian cancer. Nat Genet 2013; 45:371-84, 384e1-2. [PMID: 23535731 PMCID: PMC3670748 DOI: 10.1038/ng.2566] [Show More Authors] [Citation(s) in RCA: 449] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 01/31/2013] [Indexed: 12/13/2022]
Abstract
TERT-locus SNPs and leukocyte telomere measures are reportedly associated with risks of multiple cancers. Using the Illumina custom genotyping array iCOGs, we analyzed ∼480 SNPs at the TERT locus in breast (n = 103,991), ovarian (n = 39,774) and BRCA1 mutation carrier (n = 11,705) cancer cases and controls. Leukocyte telomere measurements were also available for 53,724 participants. Most associations cluster into three independent peaks. The minor allele at the peak 1 SNP rs2736108 associates with longer telomeres (P = 5.8 × 10(-7)), lower risks for estrogen receptor (ER)-negative (P = 1.0 × 10(-8)) and BRCA1 mutation carrier (P = 1.1 × 10(-5)) breast cancers and altered promoter assay signal. The minor allele at the peak 2 SNP rs7705526 associates with longer telomeres (P = 2.3 × 10(-14)), higher risk of low-malignant-potential ovarian cancer (P = 1.3 × 10(-15)) and greater promoter activity. The minor alleles at the peak 3 SNPs rs10069690 and rs2242652 increase ER-negative (P = 1.2 × 10(-12)) and BRCA1 mutation carrier (P = 1.6 × 10(-14)) breast and invasive ovarian (P = 1.3 × 10(-11)) cancer risks but not via altered telomere length. The cancer risk alleles of rs2242652 and rs10069690, respectively, increase silencing and generate a truncated TERT splice variant.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
449 |
6
|
Hammerman PS, Sos ML, Ramos AH, Xu C, Dutt A, Zhou W, Brace LE, Woods BA, Lin W, Zhang J, Deng X, Lim SM, Heynck S, Peifer M, Simard JR, Lawrence MS, Onofrio RC, Salvesen HB, Seidel D, Zander T, Heuckmann JM, Soltermann A, Moch H, Koker M, Leenders F, Gabler F, Querings S, Ansén S, Brambilla E, Brambilla C, Lorimier P, Brustugun OT, Helland Å, Petersen I, Clement JH, Groen H, Timens W, Sietsma H, Stoelben E, Wolf J, Beer DG, Tsao MS, Hanna M, Hatton C, Eck MJ, Janne PA, Johnson BE, Winckler W, Greulich H, Bass AJ, Cho J, Rauh D, Gray NS, Wong KK, Haura EB, Thomas RK, Meyerson M. Mutations in the DDR2 kinase gene identify a novel therapeutic target in squamous cell lung cancer. Cancer Discov 2011; 1:78-89. [PMID: 22328973 PMCID: PMC3274752 DOI: 10.1158/2159-8274.cd-11-0005] [Citation(s) in RCA: 369] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
UNLABELLED While genomically targeted therapies have improved outcomes for patients with lung adenocarcinoma, little is known about the genomic alterations which drive squamous cell lung cancer. Sanger sequencing of the tyrosine kinome identified mutations in the DDR2 kinase gene in 3.8% of squamous cell lung cancers and cell lines. Squamous lung cancer cell lines harboring DDR2 mutations were selectively killed by knock-down of DDR2 by RNAi or by treatment with the multi-targeted kinase inhibitor dasatinib. Tumors established from a DDR2 mutant cell line were sensitive to dasatinib in xenograft models. Expression of mutated DDR2 led to cellular transformation which was blocked by dasatinib. A squamous cell lung cancer patient with a response to dasatinib and erlotinib treatment harbored a DDR2 kinase domain mutation. These data suggest that gain-of-function mutations in DDR2 are important oncogenic events and are amenable to therapy with dasatinib. As dasatinib is already approved for use, these findings could be rapidly translated into clinical trials. SIGNIFICANCE DDR2 mutations are present in 4% of lung SCCs, and DDR2 mutations are associated with sensitivity to dasatinib. These findings provide a rationale for designing clinical trials with the FDA-approved drug dasatinib in patients with lung SCCs.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
369 |
7
|
Phelan CM, Kuchenbaecker KB, Tyrer JP, Kar SP, Lawrenson K, Winham SJ, Dennis J, Pirie A, Riggan M, Chornokur G, Earp MA, Lyra PC, Lee JM, Coetzee S, Beesley J, McGuffog L, Soucy P, Dicks E, Lee A, Barrowdale D, Lecarpentier J, Leslie G, Aalfs CM, Aben KK, Adams M, Adlard J, Andrulis IL, Anton-Culver H, Antonenkova N, AOCS study group, Aravantinos G, Arnold N, Arun BK, Arver B, Azzollini J, Balmaña J, Banerjee SN, Barjhoux L, Barkardottir RB, Bean Y, Beckmann MW, Beeghly-Fadiel A, Benitez J, Bermisheva M, Bernardini MQ, Birrer MJ, Bjorge L, Black A, Blankstein K, Blok MJ, Bodelon C, Bogdanova N, Bojesen A, Bonanni B, Borg Å, Bradbury AR, Brenton JD, Brewer C, Brinton L, Broberg P, Brooks-Wilson A, Bruinsma F, Brunet J, Buecher B, Butzow R, Buys SS, Caldes T, Caligo MA, Campbell I, Cannioto R, Carney ME, Cescon T, Chan SB, Chang-Claude J, Chanock S, Chen XQ, Chiew YE, Chiquette J, Chung WK, Claes KB, Conner T, Cook LS, Cook J, Cramer DW, Cunningham JM, D’Aloisio AA, Daly MB, Damiola F, Damirovna SD, Dansonka-Mieszkowska A, Dao F, Davidson R, DeFazio A, Delnatte C, Doheny KF, Diez O, Ding YC, Doherty JA, Domchek SM, Dorfling CM, et alPhelan CM, Kuchenbaecker KB, Tyrer JP, Kar SP, Lawrenson K, Winham SJ, Dennis J, Pirie A, Riggan M, Chornokur G, Earp MA, Lyra PC, Lee JM, Coetzee S, Beesley J, McGuffog L, Soucy P, Dicks E, Lee A, Barrowdale D, Lecarpentier J, Leslie G, Aalfs CM, Aben KK, Adams M, Adlard J, Andrulis IL, Anton-Culver H, Antonenkova N, AOCS study group, Aravantinos G, Arnold N, Arun BK, Arver B, Azzollini J, Balmaña J, Banerjee SN, Barjhoux L, Barkardottir RB, Bean Y, Beckmann MW, Beeghly-Fadiel A, Benitez J, Bermisheva M, Bernardini MQ, Birrer MJ, Bjorge L, Black A, Blankstein K, Blok MJ, Bodelon C, Bogdanova N, Bojesen A, Bonanni B, Borg Å, Bradbury AR, Brenton JD, Brewer C, Brinton L, Broberg P, Brooks-Wilson A, Bruinsma F, Brunet J, Buecher B, Butzow R, Buys SS, Caldes T, Caligo MA, Campbell I, Cannioto R, Carney ME, Cescon T, Chan SB, Chang-Claude J, Chanock S, Chen XQ, Chiew YE, Chiquette J, Chung WK, Claes KB, Conner T, Cook LS, Cook J, Cramer DW, Cunningham JM, D’Aloisio AA, Daly MB, Damiola F, Damirovna SD, Dansonka-Mieszkowska A, Dao F, Davidson R, DeFazio A, Delnatte C, Doheny KF, Diez O, Ding YC, Doherty JA, Domchek SM, Dorfling CM, Dörk T, Dossus L, Duran M, Dürst M, Dworniczak B, Eccles D, Edwards T, Eeles R, Eilber U, Ejlertsen B, Ekici AB, Ellis S, Elvira M, Study EMBRACE, Eng KH, Engel C, Evans DG, Fasching PA, Ferguson S, Ferrer SF, Flanagan JM, Fogarty ZC, Fortner RT, Fostira F, Foulkes WD, Fountzilas G, Fridley BL, Friebel TM, Friedman E, Frost D, Ganz PA, Garber J, García MJ, Garcia-Barberan V, Gehrig A, GEMO Study Collaborators, Gentry-Maharaj A, Gerdes AM, Giles GG, Glasspool R, Glendon G, Godwin AK, Goldgar DE, Goranova T, Gore M, Greene MH, Gronwald J, Gruber S, Hahnen E, Haiman CA, Håkansson N, Hamann U, Hansen TV, Harrington PA, Harris HR, Hauke J, HEBON Study, Hein A, Henderson A, Hildebrandt MA, Hillemanns P, Hodgson S, Høgdall CK, Høgdall E, Hogervorst FB, Holland H, Hooning MJ, Hosking K, Huang RY, Hulick PJ, Hung J, Hunter DJ, Huntsman DG, Huzarski T, Imyanitov EN, Isaacs C, Iversen ES, Izatt L, Izquierdo A, Jakubowska A, James P, Janavicius R, Jernetz M, Jensen A, Jensen UB, John EM, Johnatty S, Jones ME, Kannisto P, Karlan BY, Karnezis A, Kast K, KconFab Investigators, Kennedy CJ, Khusnutdinova E, Kiemeney LA, Kiiski JI, Kim SW, Kjaer SK, Köbel M, Kopperud RK, Kruse TA, Kupryjanczyk J, Kwong A, Laitman Y, Lambrechts D, Larrañaga N, Larson MC, Lazaro C, Le ND, Le Marchand L, Lee JW, Lele SB, Leminen A, Leroux D, Lester J, Lesueur F, Levine DA, Liang D, Liebrich C, Lilyquist J, Lipworth L, Lissowska J, Lu KH, Lubiński J, Luccarini C, Lundvall L, Mai PL, Mendoza-Fandiño G, Manoukian S, Massuger LF, May T, Mazoyer S, McAlpine JN, McGuire V, McLaughlin JR, McNeish I, Meijers-Heijboer H, Meindl A, Menon U, Mensenkamp AR, Merritt MA, Milne RL, Mitchell G, Modugno F, Moes-Sosnowska J, Moffitt M, Montagna M, Moysich KB, Mulligan AM, Musinsky J, Nathanson KL, Nedergaard L, Ness RB, Neuhausen SL, Nevanlinna H, Niederacher D, Nussbaum RL, Odunsi K, Olah E, Olopade OI, Olsson H, Olswold C, O’Malley DM, Ong KR, Onland-Moret NC, OPAL study group, Orr N, Orsulic S, Osorio A, Palli D, Papi L, Park-Simon TW, Paul J, Pearce CL, Pedersen IS, Peeters PH, Peissel B, Peixoto A, Pejovic T, Pelttari LM, Permuth JB, Peterlongo P, Pezzani L, Pfeiler G, Phillips KA, Piedmonte M, Pike MC, Piskorz AM, Poblete SR, Pocza T, Poole EM, Poppe B, Porteous ME, Prieur F, Prokofyeva D, Pugh E, Pujana MA, Pujol P, Radice P, Rantala J, Rappaport-Fuerhauser C, Rennert G, Rhiem K, Rice P, Richardson A, Robson M, Rodriguez GC, Rodríguez-Antona C, Romm J, Rookus MA, Rossing MA, Rothstein JH, Rudolph A, Runnebaum IB, Salvesen HB, Sandler DP, Schoemaker MJ, Senter L, Setiawan VW, Severi G, Sharma P, Shelford T, Siddiqui N, Side LE, Sieh W, Singer CF, Sobol H, Song H, Southey MC, Spurdle AB, Stadler Z, Steinemann D, Stoppa-Lyonnet D, Sucheston-Campbell LE, Sukiennicki G, Sutphen R, Sutter C, Swerdlow AJ, Szabo CI, Szafron L, Tan YY, Taylor JA, Tea MK, Teixeira MR, Teo SH, Terry KL, Thompson PJ, Thomsen LCV, Thull DL, Tihomirova L, Tinker AV, Tischkowitz M, Tognazzo S, Toland AE, Tone A, Trabert B, Travis RC, Trichopoulou A, Tung N, Tworoger SS, van Altena AM, Van Den Berg D, van der Hout AH, van der Luijt RB, Van Heetvelde M, Van Nieuwenhuysen E, van Rensburg EJ, Vanderstichele A, Varon-Mateeva R, Ana V, Edwards DV, Vergote I, Vierkant RA, Vijai J, Vratimos A, Walker L, Walsh C, Wand D, Wang-Gohrke S, Wappenschmidt B, Webb PM, Weinberg CR, Weitzel JN, Wentzensen N, Whittemore AS, Wijnen JT, Wilkens LR, Wolk A, Woo M, Wu X, Wu AH, Yang H, Yannoukakos D, Ziogas A, Zorn KK, Narod SA, Easton DF, Amos CI, Schildkraut JM, Ramus SJ, Ottini L, Goodman MT, Park SK, Kelemen LE, Risch HA, Thomassen M, Offit K, Simard J, Schmutzler RK, Hazelett D, Monteiro AN, Couch FJ, Berchuck A, Chenevix-Trench G, Goode EL, Sellers TA, Gayther SA, Antoniou AC, Pharoah PD. Identification of 12 new susceptibility loci for different histotypes of epithelial ovarian cancer. Nat Genet 2017; 49:680-691. [PMID: 28346442 PMCID: PMC5612337 DOI: 10.1038/ng.3826] [Show More Authors] [Citation(s) in RCA: 353] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 03/03/2017] [Indexed: 12/14/2022]
Abstract
To identify common alleles associated with different histotypes of epithelial ovarian cancer (EOC), we pooled data from multiple genome-wide genotyping projects totaling 25,509 EOC cases and 40,941 controls. We identified nine new susceptibility loci for different EOC histotypes: six for serous EOC histotypes (3q28, 4q32.3, 8q21.11, 10q24.33, 18q11.2 and 22q12.1), two for mucinous EOC (3q22.3 and 9q31.1) and one for endometrioid EOC (5q12.3). We then performed meta-analysis on the results for high-grade serous ovarian cancer with the results from analysis of 31,448 BRCA1 and BRCA2 mutation carriers, including 3,887 mutation carriers with EOC. This identified three additional susceptibility loci at 2q13, 8q24.1 and 12q24.31. Integrated analyses of genes and regulatory biofeatures at each locus predicted candidate susceptibility genes, including OBFC1, a new candidate susceptibility gene for low-grade and borderline serous EOC.
Collapse
|
research-article |
8 |
353 |
8
|
Pharoah PDP, Tsai YY, Ramus SJ, Phelan CM, Goode EL, Lawrenson K, Buckley M, Fridley BL, Tyrer JP, Shen H, Weber R, Karevan R, Larson MC, Song H, Tessier DC, Bacot F, Vincent D, Cunningham JM, Dennis J, Dicks E, Aben KK, Anton-Culver H, Antonenkova N, Armasu SM, Baglietto L, Bandera EV, Beckmann MW, Birrer MJ, Bloom G, Bogdanova N, Brenton JD, Brinton LA, Brooks-Wilson A, Brown R, Butzow R, Campbell I, Carney ME, Carvalho RS, Chang-Claude J, Chen YA, Chen Z, Chow WH, Cicek MS, Coetzee G, Cook LS, Cramer DW, Cybulski C, Dansonka-Mieszkowska A, Despierre E, Doherty JA, Dörk T, du Bois A, Dürst M, Eccles D, Edwards R, Ekici AB, Fasching PA, Fenstermacher D, Flanagan J, Gao YT, Garcia-Closas M, Gentry-Maharaj A, Giles G, Gjyshi A, Gore M, Gronwald J, Guo Q, Halle MK, Harter P, Hein A, Heitz F, Hillemanns P, Hoatlin M, Høgdall E, Høgdall CK, Hosono S, Jakubowska A, Jensen A, Kalli KR, Karlan BY, Kelemen LE, Kiemeney LA, Kjaer SK, Konecny GE, Krakstad C, Kupryjanczyk J, Lambrechts D, Lambrechts S, Le ND, Lee N, Lee J, Leminen A, Lim BK, Lissowska J, Lubiński J, Lundvall L, Lurie G, Massuger LFAG, Matsuo K, McGuire V, et alPharoah PDP, Tsai YY, Ramus SJ, Phelan CM, Goode EL, Lawrenson K, Buckley M, Fridley BL, Tyrer JP, Shen H, Weber R, Karevan R, Larson MC, Song H, Tessier DC, Bacot F, Vincent D, Cunningham JM, Dennis J, Dicks E, Aben KK, Anton-Culver H, Antonenkova N, Armasu SM, Baglietto L, Bandera EV, Beckmann MW, Birrer MJ, Bloom G, Bogdanova N, Brenton JD, Brinton LA, Brooks-Wilson A, Brown R, Butzow R, Campbell I, Carney ME, Carvalho RS, Chang-Claude J, Chen YA, Chen Z, Chow WH, Cicek MS, Coetzee G, Cook LS, Cramer DW, Cybulski C, Dansonka-Mieszkowska A, Despierre E, Doherty JA, Dörk T, du Bois A, Dürst M, Eccles D, Edwards R, Ekici AB, Fasching PA, Fenstermacher D, Flanagan J, Gao YT, Garcia-Closas M, Gentry-Maharaj A, Giles G, Gjyshi A, Gore M, Gronwald J, Guo Q, Halle MK, Harter P, Hein A, Heitz F, Hillemanns P, Hoatlin M, Høgdall E, Høgdall CK, Hosono S, Jakubowska A, Jensen A, Kalli KR, Karlan BY, Kelemen LE, Kiemeney LA, Kjaer SK, Konecny GE, Krakstad C, Kupryjanczyk J, Lambrechts D, Lambrechts S, Le ND, Lee N, Lee J, Leminen A, Lim BK, Lissowska J, Lubiński J, Lundvall L, Lurie G, Massuger LFAG, Matsuo K, McGuire V, McLaughlin JR, Menon U, Modugno F, Moysich KB, Nakanishi T, Narod SA, Ness RB, Nevanlinna H, Nickels S, Noushmehr H, Odunsi K, Olson S, Orlow I, Paul J, Pejovic T, Pelttari LM, Permuth-Wey J, Pike MC, Poole EM, Qu X, Risch HA, Rodriguez-Rodriguez L, Rossing MA, Rudolph A, Runnebaum I, Rzepecka IK, Salvesen HB, Schwaab I, Severi G, Shen H, Shridhar V, Shu XO, Sieh W, Southey MC, Spellman P, Tajima K, Teo SH, Terry KL, Thompson PJ, Timorek A, Tworoger SS, van Altena AM, van den Berg D, Vergote I, Vierkant RA, Vitonis AF, Wang-Gohrke S, Wentzensen N, Whittemore AS, Wik E, Winterhoff B, Woo YL, Wu AH, Yang HP, Zheng W, Ziogas A, Zulkifli F, Goodman MT, Hall P, Easton DF, Pearce CL, Berchuck A, Chenevix-Trench G, Iversen E, Monteiro ANA, Gayther SA, Schildkraut JM, Sellers TA. GWAS meta-analysis and replication identifies three new susceptibility loci for ovarian cancer. Nat Genet 2013; 45:362-70, 370e1-2. [PMID: 23535730 PMCID: PMC3693183 DOI: 10.1038/ng.2564] [Show More Authors] [Citation(s) in RCA: 293] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 01/30/2013] [Indexed: 12/16/2022]
Abstract
Genome-wide association studies (GWAS) have identified four susceptibility loci for epithelial ovarian cancer (EOC), with another two suggestive loci reaching near genome-wide significance. We pooled data from a GWAS conducted in North America with another GWAS from the UK. We selected the top 24,551 SNPs for inclusion on the iCOGS custom genotyping array. We performed follow-up genotyping in 18,174 individuals with EOC (cases) and 26,134 controls from 43 studies from the Ovarian Cancer Association Consortium. We validated the two loci at 3q25 and 17q21 that were previously found to have associations close to genome-wide significance and identified three loci newly associated with risk: two loci associated with all EOC subtypes at 8q21 (rs11782652, P = 5.5 × 10(-9)) and 10p12 (rs1243180, P = 1.8 × 10(-8)) and another locus specific to the serous subtype at 17q12 (rs757210, P = 8.1 × 10(-10)). An integrated molecular analysis of genes and regulatory regions at these loci provided evidence for functional mechanisms underlying susceptibility and implicated CHMP4C in the pathogenesis of ovarian cancer.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
293 |
9
|
Dutt A, Salvesen HB, Chen TH, Ramos AH, Onofrio RC, Hatton C, Nicoletti R, Winckler W, Grewal R, Hanna M, Wyhs N, Ziaugra L, Richter DJ, Trovik J, Engelsen IB, Stefansson IM, Fennell T, Cibulskis K, Zody MC, Akslen LA, Gabriel S, Wong KK, Sellers WR, Meyerson M, Greulich H. Drug-sensitive FGFR2 mutations in endometrial carcinoma. Proc Natl Acad Sci U S A 2008; 105:8713-8717. [PMID: 18552176 PMCID: PMC2438391 DOI: 10.1073/pnas.0803379105] [Citation(s) in RCA: 292] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Indexed: 02/08/2023] Open
Abstract
Oncogenic activation of tyrosine kinases is a common mechanism of carcinogenesis and, given the druggable nature of these enzymes, an attractive target for anticancer therapy. Here, we show that somatic mutations of the fibroblast growth factor receptor 2 (FGFR2) tyrosine kinase gene, FGFR2, are present in 12% of endometrial carcinomas, with additional instances found in lung squamous cell carcinoma and cervical carcinoma. These FGFR2 mutations, many of which are identical to mutations associated with congenital craniofacial developmental disorders, are constitutively activated and oncogenic when ectopically expressed in NIH 3T3 cells. Inhibition of FGFR2 kinase activity in endometrial carcinoma cell lines bearing such FGFR2 mutations inhibits transformation and survival, implicating FGFR2 as a novel therapeutic target in endometrial carcinoma.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
292 |
10
|
Etemadmoghadam D, deFazio A, Beroukhim R, Mermel C, George J, Getz G, Tothill R, Okamoto A, Raeder MB, AOCS Study Group, Harnett P, Lade S, Akslen LA, Tinker A, Locandro B, Alsop K, Chiew YE, Traficante N, Fereday S, Johnson D, Fox S, Sellers W, Urashima M, Salvesen HB, Meyerson M, Bowtell D. Integrated genome-wide DNA copy number and expression analysis identifies distinct mechanisms of primary chemoresistance in ovarian carcinomas. Clin Cancer Res 2009; 15:1417-27. [PMID: 19193619 PMCID: PMC2670486 DOI: 10.1158/1078-0432.ccr-08-1564] [Citation(s) in RCA: 250] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Collaborators] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE A significant number of women with serous ovarian cancer are intrinsically refractory to platinum-based treatment. We analyzed somatic DNA copy number variation and gene expression data to identify key mechanisms associated with primary resistance in advanced-stage serous cancers. EXPERIMENTAL DESIGN Genome-wide copy number variation was measured in 118 ovarian tumors using high-resolution oligonucleotide microarrays. A well-defined subset of 85 advanced-stage serous tumors was then used to relate copy number variation to primary resistance to treatment. The discovery-based approach was complemented by quantitative-PCR copy number analysis of 12 candidate genes as independent validation of previously reported associations with clinical outcome. Likely copy number variation targets and tumor molecular subtypes were further characterized by gene expression profiling. RESULTS Amplification of 19q12, containing cyclin E (CCNE1), and 20q11.22-q13.12, mapping immediately adjacent to the steroid receptor coactivator NCOA3, was significantly associated with poor response to primary treatment. Other genes previously associated with copy number variation and clinical outcome in ovarian cancer were not associated with primary treatment resistance. Chemoresistant tumors with high CCNE1 copy number and protein expression were associated with increased cellular proliferation but so too was a subset of treatment-responsive patients, suggesting a cell-cycle independent role for CCNE1 in modulating chemoresponse. Patients with a poor clinical outcome without CCNE1 amplification overexpressed genes involved in extracellular matrix deposition. CONCLUSIONS We have identified two distinct mechanisms of primary treatment failure in serous ovarian cancer, involving CCNE1 amplification and enhanced extracellular matrix deposition. CCNE1 copy number is validated as a dominant marker of patient outcome in ovarian cancer.
Collapse
Collaborators
D Bowtell, G Chenevix-Trench, A Green, P Webb, A deFazio, D Gertig,
Collapse
|
research-article |
16 |
250 |
11
|
Salvesen HB, MacDonald N, Ryan A, Jacobs IJ, Lynch ED, Akslen LA, Das S. PTEN methylation is associated with advanced stage and microsatellite instability in endometrial carcinoma. Int J Cancer 2001; 91:22-6. [PMID: 11149415 DOI: 10.1002/1097-0215(20010101)91:1<22::aid-ijc1002>3.0.co;2-s] [Citation(s) in RCA: 206] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Loss of heterozygosity and mutations in the PTEN (MMAC1) tumor suppressor gene are frequent in endometrial carcinoma. Promoter hypermethylation has recently been identified as an alternative mechanism of tumor suppressor gene inactivation in cancer, but its importance in the PTEN gene in endometrial carcinoma is unknown. The purpose of our study was to assess the frequency of promoter methylation of the PTEN gene and to determine its correlation with clinicopathologic variables in a prospective and population-based series of endometrial carcinomas with complete follow-up. Presence of PTEN promoter methylation was seen in 26 of 138 patients (19%). Methylation was significantly associated with metastatic disease (p = 0.01) and a microsatellite unstable phenotype (p = 0.006). In conclusion, we find that PTEN promoter methylation is relatively frequent in endometrial carcinoma. Its association with metastatic disease and microsatellite instability implicates its importance in the development of this tumor type.
Collapse
|
|
24 |
206 |
12
|
Kuchenbaecker KB, Ramus SJ, Tyrer J, Lee A, Shen HC, Beesley J, Lawrenson K, McGuffog L, Healey S, Lee JM, Spindler TJ, Lin YG, Pejovic T, Bean Y, Li Q, Coetzee S, Hazelett D, Miron A, Southey M, Terry MB, Goldgar DE, Buys SS, Janavicius R, Dorfling CM, van Rensburg EJ, Neuhausen SL, Ding YC, Hansen TVO, Jønson L, Gerdes AM, Ejlertsen B, Barrowdale D, Dennis J, Benitez J, Osorio A, Garcia MJ, Komenaka I, Weitzel JN, Ganschow P, Peterlongo P, Bernard L, Viel A, Bonanni B, Peissel B, Manoukian S, Radice P, Papi L, Ottini L, Fostira F, Konstantopoulou I, Garber J, Frost D, Perkins J, Platte R, Ellis S, Godwin AK, Schmutzler RK, Meindl A, Engel C, Sutter C, Sinilnikova OM, Damiola F, Mazoyer S, Stoppa-Lyonnet D, Claes K, De Leeneer K, Kirk J, Rodriguez GC, Piedmonte M, O'Malley DM, de la Hoya M, Caldes T, Aittomäki K, Nevanlinna H, Collée JM, Rookus MA, Oosterwijk JC, Tihomirova L, Tung N, Hamann U, Isaccs C, Tischkowitz M, Imyanitov EN, Caligo MA, Campbell IG, Hogervorst FBL, Olah E, Diez O, Blanco I, Brunet J, Lazaro C, Pujana MA, Jakubowska A, Gronwald J, Lubinski J, Sukiennicki G, Barkardottir RB, Plante M, Simard J, Soucy P, et alKuchenbaecker KB, Ramus SJ, Tyrer J, Lee A, Shen HC, Beesley J, Lawrenson K, McGuffog L, Healey S, Lee JM, Spindler TJ, Lin YG, Pejovic T, Bean Y, Li Q, Coetzee S, Hazelett D, Miron A, Southey M, Terry MB, Goldgar DE, Buys SS, Janavicius R, Dorfling CM, van Rensburg EJ, Neuhausen SL, Ding YC, Hansen TVO, Jønson L, Gerdes AM, Ejlertsen B, Barrowdale D, Dennis J, Benitez J, Osorio A, Garcia MJ, Komenaka I, Weitzel JN, Ganschow P, Peterlongo P, Bernard L, Viel A, Bonanni B, Peissel B, Manoukian S, Radice P, Papi L, Ottini L, Fostira F, Konstantopoulou I, Garber J, Frost D, Perkins J, Platte R, Ellis S, Godwin AK, Schmutzler RK, Meindl A, Engel C, Sutter C, Sinilnikova OM, Damiola F, Mazoyer S, Stoppa-Lyonnet D, Claes K, De Leeneer K, Kirk J, Rodriguez GC, Piedmonte M, O'Malley DM, de la Hoya M, Caldes T, Aittomäki K, Nevanlinna H, Collée JM, Rookus MA, Oosterwijk JC, Tihomirova L, Tung N, Hamann U, Isaccs C, Tischkowitz M, Imyanitov EN, Caligo MA, Campbell IG, Hogervorst FBL, Olah E, Diez O, Blanco I, Brunet J, Lazaro C, Pujana MA, Jakubowska A, Gronwald J, Lubinski J, Sukiennicki G, Barkardottir RB, Plante M, Simard J, Soucy P, Montagna M, Tognazzo S, Teixeira MR, Pankratz VS, Wang X, Lindor N, Szabo CI, Kauff N, Vijai J, Aghajanian CA, Pfeiler G, Berger A, Singer CF, Tea MK, Phelan CM, Greene MH, Mai PL, Rennert G, Mulligan AM, Tchatchou S, Andrulis IL, Glendon G, Toland AE, Jensen UB, Kruse TA, Thomassen M, Bojesen A, Zidan J, Friedman E, Laitman Y, Soller M, Liljegren A, Arver B, Einbeigi Z, Stenmark-Askmalm M, Olopade OI, Nussbaum RL, Rebbeck TR, Nathanson KL, Domchek SM, Lu KH, Karlan BY, Walsh C, Lester J, Hein A, Ekici AB, Beckmann MW, Fasching PA, Lambrechts D, Van Nieuwenhuysen E, Vergote I, Lambrechts S, Dicks E, Doherty JA, Wicklund KG, Rossing MA, Rudolph A, Chang-Claude J, Wang-Gohrke S, Eilber U, Moysich KB, Odunsi K, Sucheston L, Lele S, Wilkens LR, Goodman MT, Thompson PJ, Shvetsov YB, Runnebaum IB, Dürst M, Hillemanns P, Dörk T, Antonenkova N, Bogdanova N, Leminen A, Pelttari LM, Butzow R, Modugno F, Kelley JL, Edwards RP, Ness RB, du Bois A, Heitz F, Schwaab I, Harter P, Matsuo K, Hosono S, Orsulic S, Jensen A, Kjaer SK, Hogdall E, Hasmad HN, Azmi MAN, Teo SH, Woo YL, Fridley BL, Goode EL, Cunningham JM, Vierkant RA, Bruinsma F, Giles GG, Liang D, Hildebrandt MAT, Wu X, Levine DA, Bisogna M, Berchuck A, Iversen ES, Schildkraut JM, Concannon P, Weber RP, Cramer DW, Terry KL, Poole EM, Tworoger SS, Bandera EV, Orlow I, Olson SH, Krakstad C, Salvesen HB, Tangen IL, Bjorge L, van Altena AM, Aben KKH, Kiemeney LA, Massuger LFAG, Kellar M, Brooks-Wilson A, Kelemen LE, Cook LS, Le ND, Cybulski C, Yang H, Lissowska J, Brinton LA, Wentzensen N, Hogdall C, Lundvall L, Nedergaard L, Baker H, Song H, Eccles D, McNeish I, Paul J, Carty K, Siddiqui N, Glasspool R, Whittemore AS, Rothstein JH, McGuire V, Sieh W, Ji BT, Zheng W, Shu XO, Gao YT, Rosen B, Risch HA, McLaughlin JR, Narod SA, Monteiro AN, Chen A, Lin HY, Permuth-Wey J, Sellers TA, Tsai YY, Chen Z, Ziogas A, Anton-Culver H, Gentry-Maharaj A, Menon U, Harrington P, Lee AW, Wu AH, Pearce CL, Coetzee G, Pike MC, Dansonka-Mieszkowska A, Timorek A, Rzepecka IK, Kupryjanczyk J, Freedman M, Noushmehr H, Easton DF, Offit K, Couch FJ, Gayther S, Pharoah PP, Antoniou AC, Chenevix-Trench G. Identification of six new susceptibility loci for invasive epithelial ovarian cancer. Nat Genet 2015; 47:164-71. [PMID: 25581431 PMCID: PMC4445140 DOI: 10.1038/ng.3185] [Show More Authors] [Citation(s) in RCA: 197] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 12/05/2014] [Indexed: 02/08/2023]
Abstract
Genome-wide association studies (GWAS) have identified 12 epithelial ovarian cancer (EOC) susceptibility alleles. The pattern of association at these loci is consistent in BRCA1 and BRCA2 mutation carriers who are at high risk of EOC. After imputation to 1000 Genomes Project data, we assessed associations of 11 million genetic variants with EOC risk from 15,437 cases unselected for family history and 30,845 controls and from 15,252 BRCA1 mutation carriers and 8,211 BRCA2 mutation carriers (3,096 with ovarian cancer), and we combined the results in a meta-analysis. This new study design yielded increased statistical power, leading to the discovery of six new EOC susceptibility loci. Variants at 1p36 (nearest gene, WNT4), 4q26 (SYNPO2), 9q34.2 (ABO) and 17q11.2 (ATAD5) were associated with EOC risk, and at 1p34.3 (RSPO1) and 6p22.1 (GPX6) variants were specifically associated with the serous EOC subtype, all with P < 5 × 10(-8). Incorporating these variants into risk assessment tools will improve clinical risk predictions for BRCA1 and BRCA2 mutation carriers.
Collapse
|
Meta-Analysis |
10 |
197 |
13
|
Salvesen HB, Haldorsen IS, Trovik J. Markers for individualised therapy in endometrial carcinoma. Lancet Oncol 2012; 13:e353-61. [DOI: 10.1016/s1470-2045(12)70213-9] [Citation(s) in RCA: 183] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
|
13 |
183 |
14
|
Southey MC, Goldgar DE, Winqvist R, Pylkäs K, Couch F, Tischkowitz M, Foulkes WD, Dennis J, Michailidou K, van Rensburg EJ, Heikkinen T, Nevanlinna H, Hopper JL, Dörk T, Claes KB, Reis-Filho J, Teo ZL, Radice P, Catucci I, Peterlongo P, Tsimiklis H, Odefrey FA, Dowty JG, Schmidt MK, Broeks A, Hogervorst FB, Verhoef S, Carpenter J, Clarke C, Scott RJ, Fasching PA, Haeberle L, Ekici AB, Beckmann MW, Peto J, Dos-Santos-Silva I, Fletcher O, Johnson N, Bolla MK, Sawyer EJ, Tomlinson I, Kerin MJ, Miller N, Marme F, Burwinkel B, Yang R, Guénel P, Truong T, Menegaux F, Sanchez M, Bojesen S, Nielsen SF, Flyger H, Benitez J, Zamora MP, Perez JIA, Menéndez P, Anton-Culver H, Neuhausen S, Ziogas A, Clarke CA, Brenner H, Arndt V, Stegmaier C, Brauch H, Brüning T, Ko YD, Muranen TA, Aittomäki K, Blomqvist C, Bogdanova NV, Antonenkova NN, Lindblom A, Margolin S, Mannermaa A, Kataja V, Kosma VM, Hartikainen JM, Spurdle AB, Investigators KC, Wauters E, Smeets D, Beuselinck B, Floris G, Chang-Claude J, Rudolph A, Seibold P, Flesch-Janys D, Olson JE, Vachon C, Pankratz VS, McLean C, Haiman CA, Henderson BE, Schumacher F, Le Marchand L, Kristensen V, Alnæs GG, Zheng W, Hunter DJ, et alSouthey MC, Goldgar DE, Winqvist R, Pylkäs K, Couch F, Tischkowitz M, Foulkes WD, Dennis J, Michailidou K, van Rensburg EJ, Heikkinen T, Nevanlinna H, Hopper JL, Dörk T, Claes KB, Reis-Filho J, Teo ZL, Radice P, Catucci I, Peterlongo P, Tsimiklis H, Odefrey FA, Dowty JG, Schmidt MK, Broeks A, Hogervorst FB, Verhoef S, Carpenter J, Clarke C, Scott RJ, Fasching PA, Haeberle L, Ekici AB, Beckmann MW, Peto J, Dos-Santos-Silva I, Fletcher O, Johnson N, Bolla MK, Sawyer EJ, Tomlinson I, Kerin MJ, Miller N, Marme F, Burwinkel B, Yang R, Guénel P, Truong T, Menegaux F, Sanchez M, Bojesen S, Nielsen SF, Flyger H, Benitez J, Zamora MP, Perez JIA, Menéndez P, Anton-Culver H, Neuhausen S, Ziogas A, Clarke CA, Brenner H, Arndt V, Stegmaier C, Brauch H, Brüning T, Ko YD, Muranen TA, Aittomäki K, Blomqvist C, Bogdanova NV, Antonenkova NN, Lindblom A, Margolin S, Mannermaa A, Kataja V, Kosma VM, Hartikainen JM, Spurdle AB, Investigators KC, Wauters E, Smeets D, Beuselinck B, Floris G, Chang-Claude J, Rudolph A, Seibold P, Flesch-Janys D, Olson JE, Vachon C, Pankratz VS, McLean C, Haiman CA, Henderson BE, Schumacher F, Le Marchand L, Kristensen V, Alnæs GG, Zheng W, Hunter DJ, Lindstrom S, Hankinson SE, Kraft P, Andrulis I, Knight JA, Glendon G, Mulligan AM, Jukkola-Vuorinen A, Grip M, Kauppila S, Devilee P, Tollenaar RAEM, Seynaeve C, Hollestelle A, Garcia-Closas M, Figueroa J, Chanock SJ, Lissowska J, Czene K, Darabi H, Eriksson M, Eccles DM, Rafiq S, Tapper WJ, Gerty SM, Hooning MJ, Martens JWM, Collée JM, Tilanus-Linthorst M, Hall P, Li J, Brand JS, Humphreys K, Cox A, Reed MWR, Luccarini C, Baynes C, Dunning AM, Hamann U, Torres D, Ulmer HU, Rüdiger T, Jakubowska A, Lubinski J, Jaworska K, Durda K, Slager S, Toland AE, Ambrosone CB, Yannoukakos D, Swerdlow A, Ashworth A, Orr N, Jones M, González-Neira A, Pita G, Alonso MR, Álvarez N, Herrero D, Tessier DC, Vincent D, Bacot F, Simard J, Dumont M, Soucy P, Eeles R, Muir K, Wiklund F, Gronberg H, Schleutker J, Nordestgaard BG, Weischer M, Travis RC, Neal D, Donovan JL, Hamdy FC, Khaw KT, Stanford JL, Blot WJ, Thibodeau S, Schaid DJ, Kelley JL, Maier C, Kibel AS, Cybulski C, Cannon-Albright L, Butterbach K, Park J, Kaneva R, Batra J, Teixeira MR, Kote-Jarai Z, Olama AAA, Benlloch S, Renner SP, Hartmann A, Hein A, Ruebner M, Lambrechts D, Van Nieuwenhuysen E, Vergote I, Lambretchs S, Doherty JA, Rossing MA, Nickels S, Eilber U, Wang-Gohrke S, Odunsi K, Sucheston-Campbell LE, Friel G, Lurie G, Killeen JL, Wilkens LR, Goodman MT, Runnebaum I, Hillemanns PA, Pelttari LM, Butzow R, Modugno F, Edwards RP, Ness RB, Moysich KB, du Bois A, Heitz F, Harter P, Kommoss S, Karlan BY, Walsh C, Lester J, Jensen A, Kjaer SK, Høgdall E, Peissel B, Bonanni B, Bernard L, Goode EL, Fridley BL, Vierkant RA, Cunningham JM, Larson MC, Fogarty ZC, Kalli KR, Liang D, Lu KH, Hildebrandt MAT, Wu X, Levine DA, Dao F, Bisogna M, Berchuck A, Iversen ES, Marks JR, Akushevich L, Cramer DW, Schildkraut J, Terry KL, Poole EM, Stampfer M, Tworoger SS, Bandera EV, Orlow I, Olson SH, Bjorge L, Salvesen HB, van Altena AM, Aben KKH, Kiemeney LA, Massuger LFAG, Pejovic T, Bean Y, Brooks-Wilson A, Kelemen LE, Cook LS, Le ND, Górski B, Gronwald J, Menkiszak J, Høgdall CK, Lundvall L, Nedergaard L, Engelholm SA, Dicks E, Tyrer J, Campbell I, McNeish I, Paul J, Siddiqui N, Glasspool R, Whittemore AS, Rothstein JH, McGuire V, Sieh W, Cai H, Shu XO, Teten RT, Sutphen R, McLaughlin JR, Narod SA, Phelan CM, Monteiro AN, Fenstermacher D, Lin HY, Permuth JB, Sellers TA, Chen YA, Tsai YY, Chen Z, Gentry-Maharaj A, Gayther SA, Ramus SJ, Menon U, Wu AH, Pearce CL, Van Den Berg D, Pike MC, Dansonka-Mieszkowska A, Plisiecka-Halasa J, Moes-Sosnowska J, Kupryjanczyk J, Pharoah PD, Song H, Winship I, Chenevix-Trench G, Giles GG, Tavtigian SV, Easton DF, Milne RL. PALB2, CHEK2 and ATM rare variants and cancer risk: data from COGS. J Med Genet 2016; 53:800-811. [PMID: 27595995 PMCID: PMC5200636 DOI: 10.1136/jmedgenet-2016-103839] [Show More Authors] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 06/01/2016] [Accepted: 06/21/2016] [Indexed: 12/21/2022]
Abstract
BACKGROUND The rarity of mutations in PALB2, CHEK2 and ATM make it difficult to estimate precisely associated cancer risks. Population-based family studies have provided evidence that at least some of these mutations are associated with breast cancer risk as high as those associated with rare BRCA2 mutations. We aimed to estimate the relative risks associated with specific rare variants in PALB2, CHEK2 and ATM via a multicentre case-control study. METHODS We genotyped 10 rare mutations using the custom iCOGS array: PALB2 c.1592delT, c.2816T>G and c.3113G>A, CHEK2 c.349A>G, c.538C>T, c.715G>A, c.1036C>T, c.1312G>T, and c.1343T>G and ATM c.7271T>G. We assessed associations with breast cancer risk (42 671 cases and 42 164 controls), as well as prostate (22 301 cases and 22 320 controls) and ovarian (14 542 cases and 23 491 controls) cancer risk, for each variant. RESULTS For European women, strong evidence of association with breast cancer risk was observed for PALB2 c.1592delT OR 3.44 (95% CI 1.39 to 8.52, p=7.1×10-5), PALB2 c.3113G>A OR 4.21 (95% CI 1.84 to 9.60, p=6.9×10-8) and ATM c.7271T>G OR 11.0 (95% CI 1.42 to 85.7, p=0.0012). We also found evidence of association with breast cancer risk for three variants in CHEK2, c.349A>G OR 2.26 (95% CI 1.29 to 3.95), c.1036C>T OR 5.06 (95% CI 1.09 to 23.5) and c.538C>T OR 1.33 (95% CI 1.05 to 1.67) (p≤0.017). Evidence for prostate cancer risk was observed for CHEK2 c.1343T>G OR 3.03 (95% CI 1.53 to 6.03, p=0.0006) for African men and CHEK2 c.1312G>T OR 2.21 (95% CI 1.06 to 4.63, p=0.030) for European men. No evidence of association with ovarian cancer was found for any of these variants. CONCLUSIONS This report adds to accumulating evidence that at least some variants in these genes are associated with an increased risk of breast cancer that is clinically important.
Collapse
|
Multicenter Study |
9 |
166 |
15
|
Gibson WJ, Hoivik EA, Halle MK, Taylor-Weiner A, Cherniack AD, Berg A, Holst F, Zack TI, Werner HMJ, Staby KM, Rosenberg M, Stefansson IM, Kusonmano K, Chevalier A, Mauland KK, Trovik J, Krakstad C, Giannakis M, Hodis E, Woie K, Bjorge L, Vintermyr OK, Wala JA, Lawrence MS, Getz G, Carter SL, Beroukhim R, Salvesen HB. The genomic landscape and evolution of endometrial carcinoma progression and abdominopelvic metastasis. Nat Genet 2016; 48:848-55. [PMID: 27348297 PMCID: PMC4963271 DOI: 10.1038/ng.3602] [Citation(s) in RCA: 164] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 05/31/2016] [Indexed: 12/15/2022]
Abstract
Recent studies have detailed the genomic landscape of primary endometrial cancers, but the evolution of these cancers into metastases has not been characterized. We performed whole-exome sequencing of 98 tumor biopsies including complex atypical hyperplasias, primary tumors and paired abdominopelvic metastases to survey the evolutionary landscape of endometrial cancer. We expanded and reanalyzed The Cancer Genome Atlas (TCGA) data, identifying new recurrent alterations in primary tumors, including mutations in the estrogen receptor cofactor gene NRIP1 in 12% of patients. We found that likely driver events were present in both primary and metastatic tissue samples, with notable exceptions such as ARID1A mutations. Phylogenetic analyses indicated that the sampled metastases typically arose from a common ancestral subclone that was not detected in the primary tumor biopsy. These data demonstrate extensive genetic heterogeneity in endometrial cancers and relative homogeneity across metastatic sites.
Collapse
|
Research Support, N.I.H., Extramural |
9 |
164 |
16
|
Kar SP, Beesley J, Amin Al Olama A, Michailidou K, Tyrer J, Kote-Jarai ZS, Lawrenson K, Lindstrom S, Ramus SJ, Thompson DJ, Kibel AS, Dansonka-Mieszkowska A, Michael A, Dieffenbach AK, Gentry-Maharaj A, Whittemore AS, Wolk A, Monteiro A, Peixoto A, Kierzek A, Cox A, Rudolph A, Gonzalez-Neira A, Wu AH, Lindblom A, Swerdlow A, Ziogas A, Ekici AB, Burwinkel B, Karlan BY, Nordestgaard BG, Blomqvist C, Phelan C, McLean C, Pearce CL, Vachon C, Cybulski C, Slavov C, Stegmaier C, Maier C, Ambrosone CB, Høgdall CK, Teerlink CC, Kang D, Tessier DC, Schaid DJ, Stram DO, Cramer DW, Neal DE, Eccles D, Flesch-Janys D, Edwards DRV, Wokozorczyk D, Levine DA, Yannoukakos D, Sawyer EJ, Bandera EV, Poole EM, Goode EL, Khusnutdinova E, Høgdall E, Song F, Bruinsma F, Heitz F, Modugno F, Hamdy FC, Wiklund F, Giles GG, Olsson H, Wildiers H, Ulmer HU, Pandha H, Risch HA, Darabi H, Salvesen HB, Nevanlinna H, Gronberg H, Brenner H, Brauch H, Anton-Culver H, Song H, Lim HY, McNeish I, Campbell I, Vergote I, Gronwald J, Lubiński J, Stanford JL, Benítez J, Doherty JA, Permuth JB, Chang-Claude J, Donovan JL, Dennis J, Schildkraut JM, Schleutker J, Hopper JL, Kupryjanczyk J, Park JY, Figueroa J, et alKar SP, Beesley J, Amin Al Olama A, Michailidou K, Tyrer J, Kote-Jarai ZS, Lawrenson K, Lindstrom S, Ramus SJ, Thompson DJ, Kibel AS, Dansonka-Mieszkowska A, Michael A, Dieffenbach AK, Gentry-Maharaj A, Whittemore AS, Wolk A, Monteiro A, Peixoto A, Kierzek A, Cox A, Rudolph A, Gonzalez-Neira A, Wu AH, Lindblom A, Swerdlow A, Ziogas A, Ekici AB, Burwinkel B, Karlan BY, Nordestgaard BG, Blomqvist C, Phelan C, McLean C, Pearce CL, Vachon C, Cybulski C, Slavov C, Stegmaier C, Maier C, Ambrosone CB, Høgdall CK, Teerlink CC, Kang D, Tessier DC, Schaid DJ, Stram DO, Cramer DW, Neal DE, Eccles D, Flesch-Janys D, Edwards DRV, Wokozorczyk D, Levine DA, Yannoukakos D, Sawyer EJ, Bandera EV, Poole EM, Goode EL, Khusnutdinova E, Høgdall E, Song F, Bruinsma F, Heitz F, Modugno F, Hamdy FC, Wiklund F, Giles GG, Olsson H, Wildiers H, Ulmer HU, Pandha H, Risch HA, Darabi H, Salvesen HB, Nevanlinna H, Gronberg H, Brenner H, Brauch H, Anton-Culver H, Song H, Lim HY, McNeish I, Campbell I, Vergote I, Gronwald J, Lubiński J, Stanford JL, Benítez J, Doherty JA, Permuth JB, Chang-Claude J, Donovan JL, Dennis J, Schildkraut JM, Schleutker J, Hopper JL, Kupryjanczyk J, Park JY, Figueroa J, Clements JA, Knight JA, Peto J, Cunningham JM, Pow-Sang J, Batra J, Czene K, Lu KH, Herkommer K, Khaw KT, Matsuo K, Muir K, Offitt K, Chen K, Moysich KB, Aittomäki K, Odunsi K, Kiemeney LA, Massuger LFAG, Fitzgerald LM, Cook LS, Cannon-Albright L, Hooning MJ, Pike MC, Bolla MK, Luedeke M, Teixeira MR, Goodman MT, Schmidt MK, Riggan M, Aly M, Rossing MA, Beckmann MW, Moisse M, Sanderson M, Southey MC, Jones M, Lush M, Hildebrandt MAT, Hou MF, Schoemaker MJ, Garcia-Closas M, Bogdanova N, Rahman N, Le ND, Orr N, Wentzensen N, Pashayan N, Peterlongo P, Guénel P, Brennan P, Paulo P, Webb PM, Broberg P, Fasching PA, Devilee P, Wang Q, Cai Q, Li Q, Kaneva R, Butzow R, Kopperud RK, Schmutzler RK, Stephenson RA, MacInnis RJ, Hoover RN, Winqvist R, Ness R, Milne RL, Travis RC, Benlloch S, Olson SH, McDonnell SK, Tworoger SS, Maia S, Berndt S, Lee SC, Teo SH, Thibodeau SN, Bojesen SE, Gapstur SM, Kjær SK, Pejovic T, Tammela TLJ, Dörk T, Brüning T, Wahlfors T, Key TJ, Edwards TL, Menon U, Hamann U, Mitev V, Kosma VM, Setiawan VW, Kristensen V, Arndt V, Vogel W, Zheng W, Sieh W, Blot WJ, Kluzniak W, Shu XO, Gao YT, Schumacher F, Freedman ML, Berchuck A, Dunning AM, Simard J, Haiman CA, Spurdle A, Sellers TA, Hunter DJ, Henderson BE, Kraft P, Chanock SJ, Couch FJ, Hall P, Gayther SA, Easton DF, Chenevix-Trench G, Eeles R, Pharoah PDP, Lambrechts D. Genome-Wide Meta-Analyses of Breast, Ovarian, and Prostate Cancer Association Studies Identify Multiple New Susceptibility Loci Shared by at Least Two Cancer Types. Cancer Discov 2016; 6:1052-67. [PMID: 27432226 PMCID: PMC5010513 DOI: 10.1158/2159-8290.cd-15-1227] [Show More Authors] [Citation(s) in RCA: 156] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 06/07/2016] [Indexed: 02/02/2023]
Abstract
UNLABELLED Breast, ovarian, and prostate cancers are hormone-related and may have a shared genetic basis, but this has not been investigated systematically by genome-wide association (GWA) studies. Meta-analyses combining the largest GWA meta-analysis data sets for these cancers totaling 112,349 cases and 116,421 controls of European ancestry, all together and in pairs, identified at P < 10(-8) seven new cross-cancer loci: three associated with susceptibility to all three cancers (rs17041869/2q13/BCL2L11; rs7937840/11q12/INCENP; rs1469713/19p13/GATAD2A), two breast and ovarian cancer risk loci (rs200182588/9q31/SMC2; rs8037137/15q26/RCCD1), and two breast and prostate cancer risk loci (rs5013329/1p34/NSUN4; rs9375701/6q23/L3MBTL3). Index variants in five additional regions previously associated with only one cancer also showed clear association with a second cancer type. Cell-type-specific expression quantitative trait locus and enhancer-gene interaction annotations suggested target genes with potential cross-cancer roles at the new loci. Pathway analysis revealed significant enrichment of death receptor signaling genes near loci with P < 10(-5) in the three-cancer meta-analysis. SIGNIFICANCE We demonstrate that combining large-scale GWA meta-analysis findings across cancer types can identify completely new risk loci common to breast, ovarian, and prostate cancers. We show that the identification of such cross-cancer risk loci has the potential to shed new light on the shared biology underlying these hormone-related cancers. Cancer Discov; 6(9); 1052-67. ©2016 AACR.This article is highlighted in the In This Issue feature, p. 932.
Collapse
|
Research Support, N.I.H., Extramural |
9 |
156 |
17
|
Teschendorff AE, Yang Z, Wong A, Pipinikas CP, Jiao Y, Jones A, Anjum S, Hardy R, Salvesen HB, Thirlwell C, Janes SM, Kuh D, Widschwendter M. Correlation of Smoking-Associated DNA Methylation Changes in Buccal Cells With DNA Methylation Changes in Epithelial Cancer. JAMA Oncol 2016; 1:476-85. [PMID: 26181258 DOI: 10.1001/jamaoncol.2015.1053] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
IMPORTANCE The utility of buccal cells as an epithelial source tissue for epigenome-wide association studies (EWASs) remains to be demonstrated. Given the direct exposure of buccal cells to potent carcinogens such as smoke, epigenetic changes in these cells may provide insights into the development of smoke-related cancers. OBJECTIVE To perform an EWAS in buccal and blood cells to assess the relative effect of smoking on the DNA methylation (DNAme) patterns in these cell types and to test whether these DNAme changes are also seen in epithelial cancer. DESIGN, SETTING, AND PARTICIPANTS In 2013, we measured DNAme at more than 480,000 CpG sites in buccal samples provided in 1999 by 790 women (all aged 53 years in 1999) from the United Kingdom Medical Research Council National Survey of Health and Development. This included matched blood samples from 152 women. We constructed a DNAme-based smoking index and tested its sensitivity and specificity to discriminate normal from cancer tissue in more than 5000 samples. MAIN OUTCOMES AND MEASURES CpG sites whose DNAme level correlates with smoking pack-years, and construction of an associated sample-specific smoking index, which measures the mean deviation of DNAme at smoking-associated CpG sites from a normal reference. RESULTS In a discovery set of 400 women, we identified 1501 smoking-associated CpG sites at a genome-wide significance level of P < 10-7, which were validated in an independent set of 390 women. This represented a 40-fold increase of differentially methylated sites in buccal cells compared with matched blood samples. Hypermethylated sites were enriched for bivalently marked genes and binding sites of transcription factors implicated in DNA repair and chromatin architecture (P < 10-10). A smoking index constructed from the DNAme changes in buccal cells was able to discriminate normal tissue from cancer tissue with a mean receiver operating characteristic area under the curve of 0.99 (range, 0.99-1.00) for lung cancers and of 0.91 (range, 0.71-1.00) for 13 other organs. The corresponding area under the curve of a smoking signature derived from blood cells was lower than that derived from buccal cells in 14 of 15 cancer types (Wilcoxon signed rank test, P = .001). CONCLUSIONS AND RELEVANCE These data point toward buccal cells as being a more appropriate source of tissue than blood to conduct EWASs for smoking-related epithelial cancers.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
154 |
18
|
Shen H, Fridley BL, Song H, Lawrenson K, Cunningham JM, Ramus SJ, Cicek MS, Tyrer J, Stram D, Larson MC, Köbel M, PRACTICAL Consortium, Ziogas A, Zheng W, Yang HP, Wu AH, Wozniak EL, Ling Woo Y, Winterhoff B, Wik E, Whittemore AS, Wentzensen N, Palmieri Weber R, Vitonis AF, Vincent D, Vierkant RA, Vergote I, Van Den Berg D, Van Altena AM, Tworoger SS, Thompson PJ, Tessier DC, Terry KL, Teo SH, Templeman C, Stram DO, Southey MC, Sieh W, Siddiqui N, Shvetsov YB, Shu XO, Shridhar V, Wang-Gohrke S, Severi G, Schwaab I, Salvesen HB, Rzepecka IK, Runnebaum IB, Anne Rossing M, Rodriguez-Rodriguez L, Risch HA, Renner SP, Poole EM, Pike MC, Phelan CM, Pelttari LM, Pejovic T, Paul J, Orlow I, Zawiah Omar S, Olson SH, Odunsi K, Nickels S, Nevanlinna H, Ness RB, Narod SA, Nakanishi T, Moysich KB, Monteiro AN, Moes-Sosnowska J, Modugno F, Menon U, McLaughlin JR, McGuire V, Matsuo K, Mat Adenan NA, Massuger LF, Lurie G, Lundvall L, Lubiński J, Lissowska J, Levine DA, Leminen A, Lee AW, Le ND, Lambrechts S, Lambrechts D, Kupryjanczyk J, Krakstad C, Konecny GE, Krüger Kjaer S, Kiemeney LA, Kelemen LE, Keeney GL, Karlan BY, Karevan R, Kalli KR, Kajiyama H, Ji BT, Jensen A, et alShen H, Fridley BL, Song H, Lawrenson K, Cunningham JM, Ramus SJ, Cicek MS, Tyrer J, Stram D, Larson MC, Köbel M, PRACTICAL Consortium, Ziogas A, Zheng W, Yang HP, Wu AH, Wozniak EL, Ling Woo Y, Winterhoff B, Wik E, Whittemore AS, Wentzensen N, Palmieri Weber R, Vitonis AF, Vincent D, Vierkant RA, Vergote I, Van Den Berg D, Van Altena AM, Tworoger SS, Thompson PJ, Tessier DC, Terry KL, Teo SH, Templeman C, Stram DO, Southey MC, Sieh W, Siddiqui N, Shvetsov YB, Shu XO, Shridhar V, Wang-Gohrke S, Severi G, Schwaab I, Salvesen HB, Rzepecka IK, Runnebaum IB, Anne Rossing M, Rodriguez-Rodriguez L, Risch HA, Renner SP, Poole EM, Pike MC, Phelan CM, Pelttari LM, Pejovic T, Paul J, Orlow I, Zawiah Omar S, Olson SH, Odunsi K, Nickels S, Nevanlinna H, Ness RB, Narod SA, Nakanishi T, Moysich KB, Monteiro AN, Moes-Sosnowska J, Modugno F, Menon U, McLaughlin JR, McGuire V, Matsuo K, Mat Adenan NA, Massuger LF, Lurie G, Lundvall L, Lubiński J, Lissowska J, Levine DA, Leminen A, Lee AW, Le ND, Lambrechts S, Lambrechts D, Kupryjanczyk J, Krakstad C, Konecny GE, Krüger Kjaer S, Kiemeney LA, Kelemen LE, Keeney GL, Karlan BY, Karevan R, Kalli KR, Kajiyama H, Ji BT, Jensen A, Jakubowska A, Iversen E, Hosono S, Høgdall CK, Høgdall E, Hoatlin M, Hillemanns P, Heitz F, Hein R, Harter P, Halle MK, Hall P, Gronwald J, Gore M, Goodman MT, Giles GG, Gentry-Maharaj A, Garcia-Closas M, Flanagan JM, Fasching PA, Ekici AB, Edwards R, Eccles D, Easton DF, Dürst M, du Bois A, Dörk T, Doherty JA, Despierre E, Dansonka-Mieszkowska A, Cybulski C, Cramer DW, Cook LS, Chen X, Charbonneau B, Chang-Claude J, Campbell I, Butzow R, Bunker CH, Brueggmann D, Brown R, Brooks-Wilson A, Brinton LA, Bogdanova N, Block MS, Benjamin E, Beesley J, Beckmann MW, Bandera EV, Baglietto L, Bacot F, Armasu SM, Antonenkova N, Anton-Culver H, Aben KK, Liang D, Wu X, Lu K, Hildebrandt MA, Australian Ovarian Cancer Study Group, Australian Cancer Study, Schildkraut JM, Sellers TA, Huntsman D, Berchuck A, Chenevix-Trench G, Gayther SA, Pharoah PD, Laird PW, Goode EL, Leigh Pearce C. Epigenetic analysis leads to identification of HNF1B as a subtype-specific susceptibility gene for ovarian cancer. Nat Commun 2013; 4:1628. [PMID: 23535649 PMCID: PMC3848248 DOI: 10.1038/ncomms2629] [Show More Authors] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 02/21/2013] [Indexed: 12/19/2022] Open
Abstract
HNF1B is overexpressed in clear cell epithelial ovarian cancer, and we observed epigenetic silencing in serous epithelial ovarian cancer, leading us to hypothesize that variation in this gene differentially associates with epithelial ovarian cancer risk according to histological subtype. Here we comprehensively map variation in HNF1B with respect to epithelial ovarian cancer risk and analyse DNA methylation and expression profiles across histological subtypes. Different single-nucleotide polymorphisms associate with invasive serous (rs7405776 odds ratio (OR)=1.13, P=3.1 × 10(-10)) and clear cell (rs11651755 OR=0.77, P=1.6 × 10(-8)) epithelial ovarian cancer. Risk alleles for the serous subtype associate with higher HNF1B-promoter methylation in these tumours. Unmethylated, expressed HNF1B, primarily present in clear cell tumours, coincides with a CpG island methylator phenotype affecting numerous other promoters throughout the genome. Different variants in HNF1B associate with risk of serous and clear cell epithelial ovarian cancer; DNA methylation and expression patterns are also notably distinct between these subtypes. These findings underscore distinct mechanisms driving different epithelial ovarian cancer histological subtypes.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
144 |
19
|
Wang ZC, Birkbak NJ, Culhane AC, Drapkin R, Fatima A, Tian R, Schwede M, Alsop K, Daniels KE, Piao H, Liu J, Etemadmoghadam D, Miron A, Salvesen HB, Mitchell G, DeFazio A, Quackenbush J, Berkowitz RS, Iglehart JD, Bowtell DD, for the Australian Ovarian Cancer Study Group, Matulonis UA. Profiles of genomic instability in high-grade serous ovarian cancer predict treatment outcome. Clin Cancer Res 2012; 18:5806-15. [PMID: 22912389 PMCID: PMC4205235 DOI: 10.1158/1078-0432.ccr-12-0857] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
PURPOSE High-grade serous cancer (HGSC) is the most common cancer of the ovary and is characterized by chromosomal instability. Defects in homologous recombination repair (HRR) are associated with genomic instability in HGSC, and are exploited by therapy targeting DNA repair. Defective HRR causes uniparental deletions and loss of heterozygosity (LOH). Our purpose is to profile LOH in HGSC and correlate our findings to clinical outcome, and compare HGSC and high-grade breast cancers. EXPERIMENTAL DESIGN We examined LOH and copy number changes using single nucleotide polymorphism array data from three HGSC cohorts and compared results to a cohort of high-grade breast cancers. The LOH profiles in HGSC were matched to chemotherapy resistance and progression-free survival (PFS). RESULTS LOH-based clustering divided HGSC into two clusters. The major group displayed extensive LOH and was further divided into two subgroups. The second group contained remarkably less LOH. BRCA1 promoter methylation was associated with the major group. LOH clusters were reproducible when validated in two independent HGSC datasets. LOH burden in the major cluster of HGSC was similar to triple-negative, and distinct from other high-grade breast cancers. Our analysis revealed an LOH cluster with lower treatment resistance and a significant correlation between LOH burden and PFS. CONCLUSIONS Separating HGSC by LOH-based clustering produces remarkably stable subgroups in three different cohorts. Patients in the various LOH clusters differed with respect to chemotherapy resistance, and the extent of LOH correlated with PFS. LOH burden may indicate vulnerability to treatment targeting DNA repair, such as PARP1 inhibitors.
Collapse
MESH Headings
- DNA Copy Number Variations/genetics
- Disease-Free Survival
- Female
- Gene Expression Regulation, Neoplastic
- Genomic Instability
- Humans
- Loss of Heterozygosity/genetics
- Neoplasm Grading
- Neoplasms, Cystic, Mucinous, and Serous/genetics
- Neoplasms, Cystic, Mucinous, and Serous/pathology
- Neoplasms, Cystic, Mucinous, and Serous/therapy
- Ovarian Neoplasms/genetics
- Ovarian Neoplasms/pathology
- Ovarian Neoplasms/therapy
- Polymorphism, Single Nucleotide
- Precision Medicine
- Prognosis
- Treatment Outcome
Collapse
|
Research Support, N.I.H., Extramural |
13 |
131 |
20
|
Salvesen HB, Iversen OE, Akslen LA. Prognostic significance of angiogenesis and Ki-67, p53, and p21 expression: a population-based endometrial carcinoma study. J Clin Oncol 1999; 17:1382-90. [PMID: 10334522 DOI: 10.1200/jco.1999.17.5.1382] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
PURPOSE For endometrial carcinoma patients, there is a need for improved identification of high-risk groups that may benefit from postoperative adjuvant therapy. We therefore studied the prognostic impact of markers for cell proliferation, cell-cycle regulation, and angiogenesis among endometrial carcinoma patients in a population-based setting. PATIENTS AND METHODS All patients diagnosed with endometrial carcinoma between 1981 and 1985 in Hordaland County, Norway, were studied. The median follow-up for the survivors was 11.5 years (range, 8 to 15 years), with no patient lost because of insufficient follow-up information. Paraffin-embedded tumor tissue, available in 96% of the cases (n = 142), was studied immunohistochemically for microvessel density (MVD) and expression of Ki-67, p53, and p21 proteins. We used the hot spot method for calculation of MVD, and expression of Ki-67 and p21 protein, because this approach may increase the probability of detecting small aggressive clones of possible prognostic relevance. The importance of these tumor markers was investigated in univariate survival analyses and Cox regression analysis. RESULTS The majority of traditional clinicopathologic variables was significantly associated with the tumor biomarkers. Age, International Federation of Gynecology and Obstetrics (FIGO) stage, histologic type, histologic grade, MVD, as well as Ki-67, p53, and p21 protein expression, all significantly influenced survival in univariate analyses (P < or = .05). In the Cox regression analysis, age, FIGO stage, MVD, Ki-67 expression, and p53 expression were the only variables with independent prognostic impact (P < or = .05), whereas histologic type, histologic grade, and p21 expression had no independent influence. A group of high-risk patients with more than one unfavorable marker was identified. CONCLUSION In addition to age and FIGO stage, MVD, Ki-67, and p53 protein expression showed an independent prognostic impact. Thus, information derived from routine histologic specimens identified a subgroup of high-risk endometrial carcinoma patients in this population-based study.
Collapse
|
|
26 |
128 |
21
|
Spurdle AB, Thompson DJ, Ahmed S, Ferguson K, Healey CS, O'Mara T, Walker LC, Montgomery SB, Dermitzakis ET, Australian National Endometrial Cancer Study Group, Fahey P, Montgomery GW, Webb PM, Fasching PA, Beckmann MW, Ekici AB, Hein A, Lambrechts D, Coenegrachts L, Vergote I, Amant F, Salvesen HB, Trovik J, Njolstad TS, Helland H, Scott RJ, Ashton K, Proietto T, Otton G, National Study of Endometrial Cancer Genetics Group, Tomlinson I, Gorman M, Howarth K, Hodgson S, Garcia-Closas M, Wentzensen N, Yang H, Chanock S, Hall P, Czene K, Liu J, Li J, Shu XO, Zheng W, Long J, Xiang YB, Shah M, Morrison J, Michailidou K, Pharoah PD, Dunning AM, Easton DF. Genome-wide association study identifies a common variant associated with risk of endometrial cancer. Nat Genet 2011; 43:451-4. [PMID: 21499250 PMCID: PMC3770523 DOI: 10.1038/ng.812] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 03/24/2011] [Indexed: 12/15/2022]
Abstract
Endometrial cancer is the most common malignancy of the female genital tract in developed countries. To identify genetic variants associated with endometrial cancer risk, we performed a genome-wide association study involving 1,265 individuals with endometrial cancer (cases) from Australia and the UK and 5,190 controls from the Wellcome Trust Case Control Consortium. We compared genotype frequencies in cases and controls for 519,655 SNPs. Forty seven SNPs that showed evidence of association with endometrial cancer in stage 1 were genotyped in 3,957 additional cases and 6,886 controls. We identified an endometrial cancer susceptibility locus close to HNF1B at 17q12 (rs4430796, P = 7.1 × 10(-10)) that is also associated with risk of prostate cancer and is inversely associated with risk of type 2 diabetes.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
124 |
22
|
Teschendorff AE, Lee SH, Jones A, Fiegl H, Kalwa M, Wagner W, Chindera K, Evans I, Dubeau L, Orjalo A, Horlings HM, Niederreiter L, Kaser A, Yang W, Goode EL, Fridley BL, Jenner RG, Berns EMJJ, Wik E, Salvesen HB, Wisman GBA, van der Zee AGJ, Davidson B, Trope CG, Lambrechts S, Vergote I, Calvert H, Jacobs IJ, Widschwendter M. HOTAIR and its surrogate DNA methylation signature indicate carboplatin resistance in ovarian cancer. Genome Med 2015; 7:108. [PMID: 26497652 PMCID: PMC4619324 DOI: 10.1186/s13073-015-0233-4] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 10/12/2015] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Understanding carboplatin resistance in ovarian cancer is critical for the improvement of patients' lives. Multipotent mesenchymal stem cells or an aggravated epithelial to mesenchymal transition phenotype of a cancer are integrally involved in pathways conferring chemo-resistance. Long non-coding RNA HOTAIR (HOX transcript antisense intergenic RNA) is involved in mesenchymal stem cell fate and cancer biology. METHODS We analyzed HOTAIR expression and associated surrogate DNA methylation (DNAme) in 134 primary ovarian cancer cases (63 received carboplatin, 55 received cisplatin and 16 no chemotherapy). We validated our findings by HOTAIR expression and DNAme analysis in a multicentre setting of five additional sets, encompassing 946 ovarian cancers. Chemo-sensitivity has been assessed in cell culture experiments. RESULTS HOTAIR expression was significantly associated with poor survival in carboplatin-treated patients with adjusted hazard ratios for death of 3.64 (95 % confidence interval [CI] 1.78-7.42; P < 0.001) in the discovery and 1.63 (95 % CI 1.04-2.56; P = 0.032) in the validation set. This effect was not seen in patients who did not receive carboplatin (0.97 [95 % CI 0.52-1.80; P = 0.932]). HOTAIR expression or its surrogate DNAme signature predicted poor outcome in all additional sets of carboplatin-treated ovarian cancer patients while HOTAIR expressors responded preferentially to cisplatin (multivariate interaction P = 0.008). CONCLUSIONS Non-coding RNA HOTAIR or its more stable DNAme surrogate may indicate the presence of a subset of cells which confer resistance to carboplatin and can serve as (1) a marker to personalise treatment and (2) a novel target to overcome carboplatin resistance.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
124 |
23
|
Salvesen HB, Akslen LA. Significance of tumour-associated macrophages, vascular endothelial growth factor and thrombospondin-1 expression for tumour angiogenesis and prognosis in endometrial carcinomas. Int J Cancer 1999; 84:538-43. [PMID: 10502735 DOI: 10.1002/(sici)1097-0215(19991022)84:5<538::aid-ijc17>3.0.co;2-b] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Angiogenesis is a key process in tumour growth and metastasis, and microvessel density has been found to influence the prognosis of endometrial carcinoma patients. Less is known about regulators of angiogenesis. Studies of other tumour types have indicated that the density of tumour-associated macrophages (TAMs) and the expression of vascular endothelial growth factor (VEGF) might stimulate vessel formation, whereas thrombospondin-1 (TSP-1) may inhibit this process. We investigated the influence of TAM (CD68+), VEGF and TSP-1 expression on tumour vascular density and prognosis among endometrial carcinoma patients and compared our findings with clinico-pathological variables and tumour markers. In a prospective study, 60 endometrial carcinoma patients with long (median 11 years) and complete follow-up were included. Intratumour density of TAMs was significantly associated with FIGO stage, histological type, histological grade, DNA index, estradiol receptor concentration, intratumour Ki-67 and p53 protein expression (all p < 0.05). Moderate or strong expression of VEGF was significantly associated with serous papillary/clear cell tumour types, high microvessel density and aneuploidy (p < 0.05). There was a tendency to strong TSP-1 expression among tumours with weak VEGF expression (p=0.09). TAM density influenced survival significantly in univariate survival analysis (Kaplan-Meier method, p<0.05) in contrast to VEGF and TSP-1 expression. In Cox regression analysis, however, no independent prognostic impact remained. In conclusion, moderate or strong VEGF expression was significantly associated with high microvessel density and TAM count was increased in a subgroup of aggressive tumours. High TAM density was significantly associated with reduced survival in univariate analysis.
Collapse
|
|
26 |
123 |
24
|
Stefansson IM, Salvesen HB, Akslen LA. Prognostic Impact of Alterations in P-Cadherin Expression and Related Cell Adhesion Markers in Endometrial Cancer. J Clin Oncol 2004; 22:1242-52. [PMID: 15051772 DOI: 10.1200/jco.2004.09.034] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
PurposeReduced tumor cell adhesion is associated with invasive growth and unfavorable prognosis. In endometrial carcinoma, the prognostic impact of adhesion markers (E-cadherin, beta-catenin [β-catenin], P-cadherin, and p120ctn) is partly unknown. We wanted to examine the expression pattern and prognostic value of these molecules in a population-based series of endometrial carcinoma patients.Patients and MethodsAll patients diagnosed with endometrial carcinoma between 1981 and 1990 in Hordaland County, Norway, were included. Paraffin-embedded tumor tissue was available for 96% of the patients (n = 286), and was studied immunohistochemically for expression of E-cadherin, β-catenin, P-cadherin, and p120ctn. The tissue microarray technique was used for P-cadherin and p120ctn. Median follow-up time for survivors was 9 years (range, 4 to 16 years) and follow-up was complete.ResultsPathologic expression of P-cadherin, E-cadherin, and β-catenin was associated with a majority of the clinicopathologic variables. In univariate survival analyses, all adhesion markers influenced survival significantly (P < .05). Tumors with pathologic expression of both E-cadherin (low expression) and P-cadherin (high expression; 19%), and β-catenin (low expression) and P-cadherin (high expression; 16%), had significantly reduced survival compared with the remaining samples (P < .001 for both). In multivariate models, all markers except E-cadherin showed independent prognostic significance in addition to the traditional tumor features.ConclusionDifferential expression of P-cadherin and β-catenin seems to be important in endometrial carcinoma and is associated with aggressive subgroups. Our findings also indicate that a shift from E-cadherin to P-cadherin expression (cadherin switch) is an important prognostic feature in these tumors.
Collapse
|
|
21 |
119 |
25
|
Jones A, Teschendorff AE, Li Q, Hayward JD, Kannan A, Mould T, West J, Zikan M, Cibula D, Fiegl H, Lee SH, Wik E, Hadwin R, Arora R, Lemech C, Turunen H, Pakarinen P, Jacobs IJ, Salvesen HB, Bagchi MK, Bagchi IC, Widschwendter M. Role of DNA methylation and epigenetic silencing of HAND2 in endometrial cancer development. PLoS Med 2013; 10:e1001551. [PMID: 24265601 PMCID: PMC3825654 DOI: 10.1371/journal.pmed.1001551] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 10/03/2013] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Endometrial cancer incidence is continuing to rise in the wake of the current ageing and obesity epidemics. Much of the risk for endometrial cancer development is influenced by the environment and lifestyle. Accumulating evidence suggests that the epigenome serves as the interface between the genome and the environment and that hypermethylation of stem cell polycomb group target genes is an epigenetic hallmark of cancer. The objective of this study was to determine the functional role of epigenetic factors in endometrial cancer development. METHODS AND FINDINGS Epigenome-wide methylation analysis of >27,000 CpG sites in endometrial cancer tissue samples (n = 64) and control samples (n = 23) revealed that HAND2 (a gene encoding a transcription factor expressed in the endometrial stroma) is one of the most commonly hypermethylated and silenced genes in endometrial cancer. A novel integrative epigenome-transcriptome-interactome analysis further revealed that HAND2 is the hub of the most highly ranked differential methylation hotspot in endometrial cancer. These findings were validated using candidate gene methylation analysis in multiple clinical sample sets of tissue samples from a total of 272 additional women. Increased HAND2 methylation was a feature of premalignant endometrial lesions and was seen to parallel a decrease in RNA and protein levels. Furthermore, women with high endometrial HAND2 methylation in their premalignant lesions were less likely to respond to progesterone treatment. HAND2 methylation analysis of endometrial secretions collected using high vaginal swabs taken from women with postmenopausal bleeding specifically identified those patients with early stage endometrial cancer with both high sensitivity and high specificity (receiver operating characteristics area under the curve = 0.91 for stage 1A and 0.97 for higher than stage 1A). Finally, mice harbouring a Hand2 knock-out specifically in their endometrium were shown to develop precancerous endometrial lesions with increasing age, and these lesions also demonstrated a lack of PTEN expression. CONCLUSIONS HAND2 methylation is a common and crucial molecular alteration in endometrial cancer that could potentially be employed as a biomarker for early detection of endometrial cancer and as a predictor of treatment response. The true clinical utility of HAND2 DNA methylation, however, requires further validation in prospective studies. Please see later in the article for the Editors' Summary.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
116 |