1
|
Sierotzki H, Scalliet G. A review of current knowledge of resistance aspects for the next-generation succinate dehydrogenase inhibitor fungicides. PHYTOPATHOLOGY 2013; 103:880-887. [PMID: 23593940 DOI: 10.1094/phyto-01-13-0009-rvw] [Citation(s) in RCA: 307] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The new broad-spectrum fungicides from the succinate dehydrogenase inhibitor (SDHI) class have been quickly adopted by the market, which may lead to a high selection pressure on various pathogens. Cases of resistance have been observed in 14 fungal pathogens to date and are caused by different mutations in genes encoding the molecular target of SDHIs, which is the mitochondrial succinate dehydrogenase (SDH) enzyme. All of the 17 marketed SDHI fungicides bind to the same ubiquinone binding site of the SDH enzyme. Their primary biochemical mode of action is the blockage of the TCA cycle at the level of succinate to fumarate oxidation, leading to an inhibition of respiration. Homology models and docking simulations explain binding behaviors and some peculiarities of the cross-resistance profiles displayed by different members of this class of fungicides. Furthermore, cross-resistance patterns among SDHIs is complex because many mutations confer full cross resistance while others do not. The nature of the mutations found in pathogen populations varies with species and the selection compound used but cross resistance between all SDHIs has to be assumed at the population level. In most of the cases where resistance has been reported, the frequency is still too low to impact field performance. However, the Fungicide Resistance Action Committee has developed resistance management recommendations for pathogens of different crops in order to reduce the risk for resistance development to this class of fungicides. These recommendations include preventative usage, mixture with partner fungicides active against the current pathogen population, alternation in the mode of action of products used in a spray program, and limitations in the total number of applications per season or per crop.
Collapse
|
Review |
12 |
307 |
2
|
Gisi U, Sierotzki H, Cook A, McCaffery A. Mechanisms influencing the evolution of resistance to Qo inhibitor fungicides. PEST MANAGEMENT SCIENCE 2002; 58:859-867. [PMID: 12233175 DOI: 10.1002/ps.565] [Citation(s) in RCA: 225] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Fungicides inhibiting the mitochondrial respiration of plant pathogens by binding to the cytochrome bc1 enzyme complex (complex III) at the Qo site (Qo inhibitors, QoIs) were first introduced to the market in 1996. After a short time period, isolates resistant to QoIs were detected in field populations of a range of important plant pathogens including Blumeria graminis Speer f sp tritici, Sphaerotheca fuliginea (Schlecht ex Fr) Poll, Plasmopara viticola (Berk & MA Curtis ex de Bary) Berl & de Toni, Pseudoperonospora cubensis (Berk & MA Curtis) Rost, Mycosphaerella fijiensis Morelet and Venturia inaequalis (Cooke) Wint. In most cases, resistance was conferred by a point mutation in the mitochondrial cytochrome b (cyt b) gene leading to an amino-acid change from glycine to alanine at position 143 (G143A), although additional mutations and mechanisms have been claimed in a number of organisms. Transformation of sensitive protoplasts of M fijiensis with a DNA fragment of a resistant M fijiensis isolate containing the mutation yielded fully resistant transformants, demonstrating that the G143A substitution may be the most powerful transversion in the cyt b gene conferring resistance. The G143A substitution is claimed not to affect the activity of the enzyme, suggesting that resistant individuals may not suffer from a significant fitness penalty, as was demonstrated in B graminis f sp tritici. It is not known whether this observation applies also for other pathogen species expressing the G143A substitution. Since fungal cells contain a large number of mitochondria, early mitotic events in the evolution of resistance to QoIs have to be considered, such as mutation frequency (claimed to be higher in mitochondrial than nuclear DNA), intracellular proliferation of mitochondria in the heteroplasmatic cell stage, and cell to cell donation of mutated mitochondria. Since the cyt b gene is located in the mitochondrial genome, inheritance of resistance in filamentous fungi is expected to be non-Mendelian and, therefore, in most species uniparental. In the isogamous fungus B graminis f sp tritici, crosses of sensitive and resistant parents yielded cleistothecia containing either sensitive or resistant ascospores and the segregation pattern for resistance in the F1 progeny population was 1:1. In the anisogamous fungus V inaequalis, donation of resistance was maternal and the segregation ratio 1:0. In random mating populations, the sex ratio (mating type distribution) is generally assumed to be 1:1. Therefore, the overall proportion of sensitive and resistant individuals in unselected populations is expected to be 1:1. Evolution of resistance to QoIs will depend mainly on early mitotic events; the selection process for resistant mutants in populations exposed to QoI treatments may follow mechanisms similar to those described for resistance controlled by single nuclear genes in other fungicide classes. It will remain important to understand how the mitochondrial nature of QoI resistance and factors such as mutation, recombination, selection and migration might influence the evolution of QoI resistance in different plant pathogens.
Collapse
|
Review |
23 |
225 |
3
|
Grasso V, Palermo S, Sierotzki H, Garibaldi A, Gisi U. Cytochrome b gene structure and consequences for resistance to Qo inhibitor fungicides in plant pathogens. PEST MANAGEMENT SCIENCE 2006; 62:465-72. [PMID: 16688790 DOI: 10.1002/ps.1236] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The cytochrome b (cyt b) gene structure was characterized for different agronomically important plant pathogens, such as Puccinia recondita f sp tritici (Erikss) CO Johnston, P graminis f sp tritici Erikss and Hennings, P striiformis f sp tritici Erikss, P coronata f sp avenae P Syd & Syd, P hordei GH Otth, P recondita f sp secalis Roberge, P sorghi Schwein, P horiana Henn, Uromyces appendiculatus (Pers) Unger, Phakopsora pachyrhizi Syd & P Syd, Hemileia vastatrix Berk & Broome, Alternaria solani Sorauer, A alternata (Fr) Keissl and Plasmopara viticola (Berk & Curt) Berlese & de Toni. The sequenced fragment included the two hot spot regions in which mutations conferring resistance to QoI fungicides may occur. The cyt b gene structure of these pathogens was compared with that of other species from public databases, including the strobilurin-producing fungus Mycena galopoda (Pers) P Kumm, Saccharomyces cerevisiae Meyer ex Hansen, Venturia inaequalis (Cooke) Winter and Mycosphaerella fijiensis Morelet. In all rust species, as well as in A solani, resistance to QoI fungicides caused by the mutation G143A has never been reported. A type I intron was observed directly after the codon for glycine at position 143 in these species. This intron was absent in pathogens such as A alternata, Blumeria graminis (DC) Speer, Pyricularia grisea Sacc, Mycosphaerella graminicola (Fuckel) J Schröt, M fijiensis, V inaequalis and P viticola, in which resistance to QoI fungicides has occurred and the glycine is replaced by alanine at position 143 in the resistant genotype. The present authors predict that a nucleotide substitution in codon 143 would prevent splicing of the intron, leading to a deficient cytochrome b, which is lethal. As a consequence, the evolution of resistance to QoI fungicides based on G143A is not likely to evolve in pathogens carrying an intron directly after this codon.
Collapse
|
|
19 |
122 |
4
|
Sierotzki H, Frey R, Wullschleger J, Palermo S, Karlin S, Godwin J, Gisi U. Cytochrome b gene sequence and structure of Pyrenophora teres and P. tritici-repentis and implications for QoI resistance. PEST MANAGEMENT SCIENCE 2007; 63:225-33. [PMID: 17212344 DOI: 10.1002/ps.1330] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Resistance to QoI fungicides in Pyrenophora teres (Dreschsler) and P. tritici-repentis (Died.) Dreschsler was detected in 2003 in France and in Sweden and Denmark respectively. Molecular analysis revealed the presence of the F129L mutation in resistant isolates of both pathogens. In 2004, the frequency of the F129L mutation in populations of both pathogens further increased. The G143A mutation was also detected in a few isolates of P. tritici-repentis from Denmark and Germany. In 2005, the F129L mutation in P. teres increased in frequency and geographical distribution in France and the UK but remained below 2% in Germany, Switzerland, Belgium and Ireland. In P. tritici-repentis, both mutations were found in a significant proportion of the isolates from Sweden, Denmark and Germany. The G143A mutation conferred a significantly higher level of resistance (higher EC50 values) to Qo inhibitors (QoIs) than did the F129L mutation. In greenhouse trials, resistant isolates with G143A were not well controlled on plants sprayed with recommended field rates, whereas satisfactory control of isolates with F129L was achieved. For the F129L mutation, three different single nucleotide polymorphisms (SNPs), TTA, TTG and CTC, can code for L (leucine) in P. teres, whereas only the CTC codon was detected in P. tritici-repentis isolates. In two out of 250 isolates of P. tritici-repentis from 2005, a mutation at position 137 (G137R) was detected at very low frequency. This mutation conferred similar resistance levels to F129L. The structure of the cytochrome b gene of P. tritici-repentis is significantly different from that of P. teres: an intron directly after amino acid position 143 was detected in P. teres which is not present in P. tritici-repentis. This gene structure suggests that resistance based on the G143A mutation may not occur in P. teres because it is lethal. No G143A isolates were found in any P. teres populations. Although different mutations may evolve in P. tritici-repentis, the G143A mutation will have the strongest impact on field performance of QoI fungicides.
Collapse
|
|
18 |
98 |
5
|
Torriani SF, Melichar JP, Mills C, Pain N, Sierotzki H, Courbot M. Zymoseptoria tritici: A major threat to wheat production, integrated approaches to control. Fungal Genet Biol 2015; 79:8-12. [DOI: 10.1016/j.fgb.2015.04.010] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 04/12/2015] [Accepted: 04/13/2015] [Indexed: 10/23/2022]
|
|
10 |
94 |
6
|
Torriani SF, Brunner PC, McDonald BA, Sierotzki H. QoI resistance emerged independently at least 4 times in European populations of Mycosphaerella graminicola. PEST MANAGEMENT SCIENCE 2009; 65:155-62. [PMID: 18833571 DOI: 10.1002/ps.1662] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
BACKGROUND QoI fungicides or quinone outside inhibitors (also called strobilurins) have been widely used to control agriculturally important fungal pathogens since their introduction in 1996. Strobilurins block the respiration pathway by inhibiting the cytochrome bc1 complex in mitochondria. Several plant pathogenic fungi have developed field resistance. The first QoI resistance in Mycosphaerella graminicola (Fuckel) Schroter was detected retrospectively in UK in 2001 at a low frequency in QoI-treated plots. During the following seasons, resistance reached high frequencies across northern Europe. The aim of this study was to identify the main evolutionary forces driving the rapid emergence and spread of QoI resistance in M. graminicola populations. RESULTS The G143A mutation causing QoI resistance was first detected during 2002 in all tested populations and in eight distinct mtDNA sequence haplotypes. By 2004, 24 different mtDNA haplotypes contained the G143A mutation. Phylogenetic analysis showed that strobilurin resistance was acquired independently through at least four recurrent mutations at the same site of cytochrome b. Estimates of directional migration rates showed that the majority of gene flow in Europe had occurred in a west-to-east direction. CONCLUSION This study demonstrated that recurring mutations independently introduced the QoI resistance allele into different genetic and geographic backgrounds. The resistant haplotypes then increased in frequency owing to the strong fungicide selection and spread eastward through wind dispersal of ascospores.
Collapse
|
|
16 |
86 |
7
|
Hawkins NJ, Cools HJ, Sierotzki H, Shaw MW, Knogge W, Kelly SL, Kelly DE, Fraaije BA. Paralog re-emergence: a novel, historically contingent mechanism in the evolution of antimicrobial resistance. Mol Biol Evol 2014; 31:1793-802. [PMID: 24732957 PMCID: PMC4069618 DOI: 10.1093/molbev/msu134] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Evolution of resistance to drugs and pesticides poses a serious threat to human health and agricultural production. CYP51 encodes the target site of azole fungicides, widely used clinically and in agriculture. Azole resistance can evolve due to point mutations or overexpression of CYP51, and previous studies have shown that fungicide-resistant alleles have arisen by de novo mutation. Paralogs CYP51A and CYP51B are found in filamentous ascomycetes, but CYP51A has been lost from multiple lineages. Here, we show that in the barley pathogen Rhynchosporium commune, re-emergence of CYP51A constitutes a novel mechanism for the evolution of resistance to azoles. Pyrosequencing analysis of historical barley leaf samples from a unique long-term experiment from 1892 to 2008 indicates that the majority of the R. commune population lacked CYP51A until 1985, after which the frequency of CYP51A rapidly increased. Functional analysis demonstrates that CYP51A retains the same substrate as CYP51B, but with different transcriptional regulation. Phylogenetic analyses show that the origin of CYP51A far predates azole use, and newly sequenced Rhynchosporium genomes show CYP51A persisting in the R. commune lineage rather than being regained by horizontal gene transfer; therefore, CYP51A re-emergence provides an example of adaptation to novel compounds by selection from standing genetic variation.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
62 |
8
|
Steinhauer D, Salat M, Frey R, Mosbach A, Luksch T, Balmer D, Hansen R, Widdison S, Logan G, Dietrich RA, Kema GHJ, Bieri S, Sierotzki H, Torriani SFF, Scalliet G. A dispensable paralog of succinate dehydrogenase subunit C mediates standing resistance towards a subclass of SDHI fungicides in Zymoseptoria tritici. PLoS Pathog 2019; 15:e1007780. [PMID: 31860693 PMCID: PMC6941823 DOI: 10.1371/journal.ppat.1007780] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 01/03/2020] [Accepted: 11/20/2019] [Indexed: 11/24/2022] Open
Abstract
Succinate dehydrogenase inhibitor (SDHI) fungicides are widely used for the control of a broad range of fungal diseases. This has been the most rapidly expanding fungicide group in terms of new molecules discovered and introduced for agricultural use over the past fifteen years. A particular pattern of differential sensitivity (resistance) to the stretched heterocycle amide SDHIs (SHA-SDHIs), a subclass of chemically-related SDHIs, was observed in naïve Zymoseptoria tritici populations not previously exposed to these chemicals. Subclass-specific resistance was confirmed at the enzyme level but did not correlate with the genotypes of the succinate dehydrogenase (SDH) encoding genes. Mapping and characterization of the molecular mechanisms responsible for standing SHA-SDHI resistance in natural field isolates identified a gene paralog of SDHC, termed ZtSDHC3, which encodes for an alternative C subunit of succinate dehydrogenase, named alt-SDHC. Using reverse genetics, we showed that alt-SDHC associates with the three other SDH subunits, leading to a fully functional enzyme and that a unique Qp-site residue within the alt-SDHC protein confers SHA-SDHI resistance. Enzymatic assays, computational modelling and docking simulations for the two SQR enzymes (altC-SQR, WT_SQR) enabled us to describe enzyme-inhibitor interactions at an atomistic level and to propose rational explanations for differential potency and resistance across SHA-SDHIs. European Z. tritici populations displayed a presence (20–30%) / absence polymorphism of ZtSDHC3, as well as differences in ZtSDHC3 expression levels and splicing efficiency. These polymorphisms have a strong impact on SHA-SDHI resistance phenotypes. Characterization of the ZtSDHC3 promoter in European Z. tritici populations suggests that transposon insertions are associated with the strongest resistance phenotypes. These results establish that a dispensable paralogous gene determines SHA-SDHIs fungicide resistance in natural populations of Z. tritici. This study paves the way to an increased awareness of the role of fungicidal target paralogs in resistance to fungicides and demonstrates the paramount importance of population genomics in fungicide discovery. Zymoseptoria tritici is the causal agent of Septoria tritici leaf blotch (STB) of wheat, the most devastating disease for cereal production in Europe. Multiple succinate dehydrogenase inhibitor (SDHI) fungicides have been developed and introduced for the control of STB. We report the discovery and detailed characterization of a paralog of the C subunit of the SDH enzyme conferring standing resistance towards the SHA-SDHIs, a particular chemical subclass of the SDHIs. The SDHC paralog is characterized by its presence/absence, expression and alternative splicing polymorphisms, which in turn influence resistance levels. The identified mechanisms exemplify the importance of population genomics for the discovery and rational design of the most adapted solutions.
Collapse
|
Journal Article |
6 |
44 |
9
|
Cohen Y, Van den Langenberg KM, Wehner TC, Ojiambo PS, Hausbeck M, Quesada-Ocampo LM, Lebeda A, Sierotzki H, Gisi U. Resurgence of Pseudoperonospora cubensis: The Causal Agent of Cucurbit Downy Mildew. PHYTOPATHOLOGY 2015; 105:998-1012. [PMID: 25844827 DOI: 10.1094/phyto-11-14-0334-fi] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The downy mildew pathogen, Pseudoperonospora cubensis, which infects plant species in the family Cucurbitaceae, has undergone major changes during the last decade. Disease severity and epidemics are far more destructive than previously reported, and new genotypes, races, pathotypes, and mating types of the pathogen have been discovered in populations from around the globe as a result of the resurgence of the disease. Consequently, disease control through host plant resistance and fungicide applications has become more complex. This resurgence of P. cubensis offers challenges to scientists in many research areas including pathogen biology, epidemiology and dispersal, population structure and population genetics, host preference, host-pathogen interactions and gene expression, genetic host plant resistance, inheritance of host and fungicide resistance, and chemical disease control. This review serves to summarize the current status of this major pathogen and to guide future management and research efforts within this pathosystem.
Collapse
|
Review |
10 |
44 |
10
|
Steinfeld U, Sierotzki H, Parisi S, Poirey S, Gisi U. Sensitivity of mitochondrial respiration to different inhibitors in Venturia inaequalis. PEST MANAGEMENT SCIENCE 2001; 57:787-796. [PMID: 11561403 DOI: 10.1002/ps.356] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The sensitivity of Venturia inaequalis field isolates to inhibitors of the cytochrome bc1 complex at the Qo site (QoIs) was characterised at the molecular, biochemical and physiological level, and compared to other respiration inhibitors. Comparison of a sensitive and a QoI-resistant isolate revealed very high resistance factors both in mycelium growth and spore germination assays. Cross-resistance was observed among QoIs such as trifloxystrobin, azoxystrobin, famoxadone, strobilurin B and myxothiazol. In the mycelium growth assay, antimycin A, an inhibitor of the cytochrome bc1 complex at the Qi site, was less active against the QoI-resistant than against the sensitive isolate. The mixture of QoIs with salicylhydroxamic acid (SHAM), an inhibitor of the alternative oxidase, exerted synergistic effects in the spore germination but not in the mycelium growth assay. Thus, the cytochrome and the alternative respiration pathways are assumed to play different roles, depending on the developmental stage of the fungus. Induction of alternative oxidase (AOX) by trifloxystrobin was observed in mycelium cells at the molecular level for the sensitive but not the resistant isolate. Following QoI treatment, respiration parameters such as oxygen consumption, ATP level, membrane potential and succinate dehydrogenase activity were only slightly reduced in Qo-resistant mycelium cells, and remained at much higher levels than in sensitive cells. In contrast, no difference was observed between sensitive and resistant isolates when NADH consumption was measured. Comparison of the cytochrome b (cyt b) gene of the sensitive and resistant isolates did not reveal any point mutations as is known to occur in resistant isolates of other plant pathogens. It is assumed that QoI resistance in V inaequalis may be based on a compensation of the energy deficiency following QoI application upstream of the NADH dehydrogenase of the respiratory chain.
Collapse
|
|
24 |
43 |
11
|
Blum M, Waldner M, Olaya G, Cohen Y, Gisi U, Sierotzki H. Resistance mechanism to carboxylic acid amide fungicides in the cucurbit downy mildew pathogen Pseudoperonospora cubensis. PEST MANAGEMENT SCIENCE 2011; 67:1211-1214. [PMID: 21780281 DOI: 10.1002/ps.2238] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 05/23/2011] [Accepted: 05/23/2011] [Indexed: 05/31/2023]
Abstract
BACKGROUND Pseudoperonospora cubensis, the causal oomycete agent of cucurbit downy mildew, is responsible for enormous crop losses in many species of Cucurbitaceae, particularly in cucumber and melon. Disease control is mainly achieved by combinations of host resistance and fungicide applications. However, since 2004, resistance to downy mildew in cucumber has been overcome by the pathogen, thus driving farmers to rely only on fungicide spray applications, including carboxylic acid amide (CAA) fungicides. Recently, CAA-resistant isolates of P. cubensis were recovered, but the underlying mechanism of resistance was not revealed. The purpose of the present study was to identify the molecular mechanism controlling resistance to CAAs in P. cubensis. RESULTS The four CesA (cellulose synthase) genes responsible for cellulose biosynthesis in P. cubensis were characterised. Resistant strains showed a mutation in the CesA3 gene, at position 1105, leading to an amino acid exchange from glycine to valine or tryptophan. Cross-resistance tests with different CAAs indicated that these mutations lead to resistance against all tested CAAs. CONCLUSION Point mutations in the CesA3 gene of P. cubensis lead to CAA resistance. Accurate monitoring of these mutations among P. cubensis populations may improve/facilitate adequate recommendation/deployment of fungicides in the field.
Collapse
|
|
14 |
38 |
12
|
Robinson HL, Ridout CJ, Sierotzki H, Gisi U, Brown JKM. Isogamous, hermaphroditic inheritance of mitochondrion-encoded resistance to Qo inhibitor fungicides in Blumeria graminis f. sp. tritici. Fungal Genet Biol 2002; 36:98-106. [PMID: 12081463 DOI: 10.1016/s1087-1845(02)00006-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A mutation of glycine to alanine at position 143 in the mitochondrial cytochrome b amino acid sequence of Blumeria graminis f. sp. tritici cosegregated with the QoI-resistant phenotype in a ratio of 1:1 in a cross between a sensitive and a resistant isolate. This mutation was used as a mitochondrial marker to determine whether mitochondrial inheritance in B. graminis was anisogamous, as in heterothallic Neurospora sp., or isogamous and hermaphroditic, as in Aspergillus nidulans. Segregation of mitochondrial genotypes in B. graminis f. sp. tritici was consistent with inheritance of mitochondria being hermaphroditic and isogamous, in that all ascospores from an individual cleistothecium had the same mitochondrial genotype and that either parent could act as the maternal parent of a cleistothecium. Within each cleistothecium, nuclear segregation occurred independently of mitochondrial inheritance, as shown by segregation of resistance to the fungicide triadimenol and by segregation of avirulences to the wheat cultivars Galahad (Pm2), Armada (Pm4b), and Holger (Pm6).
Collapse
|
|
23 |
28 |
13
|
Blum M, Gamper HA, Waldner M, Sierotzki H, Gisi U. The cellulose synthase 3 (CesA3) gene of oomycetes: structure, phylogeny and influence on sensitivity to carboxylic acid amide (CAA) fungicides. Fungal Biol 2012; 116:529-42. [PMID: 22483051 DOI: 10.1016/j.funbio.2012.02.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 01/16/2012] [Accepted: 02/06/2012] [Indexed: 11/17/2022]
Abstract
Proper disease control is very important to minimize yield losses caused by oomycetes in many crops. Today, oomycete control is partially achieved by breeding for resistance, but mainly by application of single-site mode of action fungicides including the carboxylic acid amides (CAAs). Despite having mostly specific targets, fungicidal activity can differ even in species belonging to the same phylum but the underlying mechanisms are often poorly understood. In an attempt to elucidate the phylogenetic basis and underlying molecular mechanism of sensitivity and tolerance to CAAs, the cellulose synthase 3 (CesA3) gene was isolated and characterized, encoding the target site of this fungicide class. The CesA3 gene was present in all 25 species included in this study representing the orders Albuginales, Leptomitales, Peronosporales, Pythiales, Rhipidiales and Saprolegniales, and based on phylogenetic analyses, enabled good resolution of all the different taxonomic orders. Sensitivity assays using the CAA fungicide mandipropamid (MPD) demonstrated that only species belonging to the Peronosporales were inhibited by the fungicide. Molecular data provided evidence, that the observed difference in sensitivity to CAAs between Peronosporales and CAA tolerant species is most likely caused by an inherent amino acid configuration at position 1109 in CesA3 possibly affecting fungicide binding. The present study not only succeeded in linking CAA sensitivity of various oomycetes to the inherent CesA3 target site configuration, but could also relate it to the broader phylogenetic context.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
25 |
14
|
Toffolatti SL, Serrati L, Sierotzki H, Gisi U, Vercesi A. Assessment of QoI resistance in Plasmopara viticola oospores. PEST MANAGEMENT SCIENCE 2007; 63:194-201. [PMID: 17143847 DOI: 10.1002/ps.1327] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
QoI fungicides, inhibitors of mitochondrial respiration at the Qo site of cytochrome b in the mitochondrial bc(1) enzyme complex, are commonly applied in vineyards against Plasmopara viticola (Berk. & MA Curtis) Berl. & De Toni. Numerous treatments per year with QoI fungicides can lead to the selection of resistant strains in the pathogen population owing to the very specific and efficient mode of action. In order to evaluate the resistance risk and its development, two different methods, biological and molecular, were applied to measure the sensitivity of oospores differentiated in vineyards, both treated and untreated with azoxystrobin, from 2000 to 2004. Assays using oospores have the advantage of analysing the sensitivity of bulked samples randomly collected in vineyards, describing accurately the status of resistance at the end of the grapevine growing season. Both methods correlated well in describing the resistance situation in vineyards. QoI resistance was not observed in one vineyard never treated with QoI fungicides. In the vineyard where azoxystrobin had been used in mixture with folpet, the selection of QoI-resistant strains was lower, compared with using solely QoI. In vineyards where QoI treatments have been stopped, a decrease in resistance was generally observed.
Collapse
|
|
18 |
19 |
15
|
Toffolatti SL, Russo G, Campia P, Bianco PA, Borsa P, Coatti M, Torriani SF, Sierotzki H. A time-course investigation of resistance to the carboxylic acid amide mandipropamid in field populations of Plasmopara viticola treated with anti-resistance strategies. PEST MANAGEMENT SCIENCE 2018; 74:2822-2834. [PMID: 29749019 DOI: 10.1002/ps.5072] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 03/28/2018] [Accepted: 05/08/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Despite anti-resistance strategies being recommended to reduce selection pressure on insensitive strains, no information is available on fungal population dynamics following their application in real field conditions. In this study, the effects on Plasmopara viticola populations of two identical spray programs, differing only in including or not the carboxylic acid amide (CAA) mandipropamid in mixture and in alternation with an anti-resistance partner, were compared in terms of downy mildew control efficacy and mandipropamid sensitivity in two commercial vineyards for four seasons. RESULTS Both programs effectively and similarly protected grapevine from downy mildew, despite different starting sensitivity levels of the P. viticola populations. In the vineyard where resistant strains were initially present, the frequency of mutations associated with resistance (G1105S/V) fluctuated within seasons in both programs and a shift towards sensitivity occurred after 3 years of the mandipropamid-free program. Where sensitivity was initially present, no changes occurred in the mandipropamid-free program and resistant strains were selected in the mandipropamid program in high disease pressure conditions. CONCLUSION The anti-resistance strategy including mandipropamid in mixture showed a good field performance, but did not completely prevent an increase in the frequency of insensitive strains. This supports the need for appropriate planning to determine which mixtures should be used in the field. © 2018 Society of Chemical Industry.
Collapse
|
|
7 |
19 |
16
|
Randall E, Young V, Sierotzki H, Scalliet G, Birch PRJ, Cooke DEL, Csukai M, Whisson SC. Sequence diversity in the large subunit of RNA polymerase I contributes to Mefenoxam insensitivity in Phytophthora infestans. MOLECULAR PLANT PATHOLOGY 2014; 15:664-76. [PMID: 24521429 PMCID: PMC6638662 DOI: 10.1111/mpp.12124] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Phenylamide fungicides have been widely used for the control of oomycete-incited plant diseases for over 30 years. Insensitivity to this chemical class of fungicide was recorded early in its usage history, but the precise protein(s) conditioning insensitivity has proven difficult to determine. To determine the genetic basis of insensitivity and to inform strategies for the cloning of the gene(s) responsible, genetic crosses were established between Mefenoxam sensitive and intermediate insensitive isolates of Phytophthora infestans, the potato late blight pathogen. F1 progeny showed the expected semi-dominant phenotypes for Mefenoxam insensitivity and suggested the involvement of multiple loci, complicating the positional cloning of the gene(s) conditioning insensitivity to Mefenoxam. Instead, a candidate gene strategy was used, based on previous observations that the primary effect of phenylamide compounds is to inhibit ribosomal RNA synthesis. The subunits of RNA polymerase I (RNApolI) were sequenced from sensitive and insensitive isolates and F1 progeny. Single nucleotide polymorphisms (SNPs) specific to insensitive field isolates were identified in the gene encoding the large subunit of RNApolI. In a survey of field isolates, SNP T1145A (Y382F) showed an 86% association with Mefenoxam insensitivity. Isolates not showing this association belonged predominantly to one P. infestans genotype. The transfer of the 'insensitive' allele of RPA190 to a sensitive isolate yielded transgenic lines that were insensitive to Mefenoxam. These results demonstrate that sequence variation in RPA190 contributes to insensitivity to Mefenoxam in P. infestans.
Collapse
|
research-article |
11 |
14 |
17
|
Zeng F, Arnao E, Zhang G, Olaya G, Wullschleger J, Sierotzki H, Ming R, Bluhm BH, Bond JP, Fakhoury AM, Bradley CA. Characterization of Quinone Outside Inhibitor Fungicide Resistance in Cercospora sojina and Development of Diagnostic Tools for its Identification. PLANT DISEASE 2015; 99:544-550. [PMID: 30699555 DOI: 10.1094/pdis-05-14-0460-re] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Frogeye leaf spot of soybean, caused by the fungus Cercospora sojina, reduces soybean yields in most of the top-producing countries around the world. Control strategies for frogeye leaf spot can rely heavily on quinone outside inhibitor (QoI) fungicides. In 2010, QoI fungicide-resistant C. sojina isolates were identified in Tennessee for the first time. As the target of QoI fungicides, the cytochrome b gene present in fungal mitochondria has played a key role in the development of resistance to this fungicide class. The cytochrome b genes from three QoI-sensitive and three QoI-resistant C. sojina isolates were cloned and sequenced. The complete coding sequence of the cytochrome b gene was identified and found to encode 396 amino acids. The QoI-resistant C. sojina isolates contained the G143A mutation in the cytochrome b gene, a guanidine to cytosine transversion at the second position in codon 143 that causes an amino acid substitution of alanine for glycine. C. sojina-specific polymerase chain reaction primer sets and TaqMan probes were developed to efficiently discriminate QoI-resistant and -sensitive isolates. The molecular basis of QoI fungicide resistance in field isolates of C. sojina was identified as the G143A mutation, and specific molecular approaches were developed to discriminate and to track QoI-resistant and -sensitive isolates of C. sojina.
Collapse
|
|
10 |
13 |
18
|
Bäumler S, Sierotzki H, Gisi U, Mohler V, Felsenstein FG, Schwarz G. Evaluation of Erysiphe graminis f sp tritici field isolates for resistance to strobilurin fungicides with different SNP detection systems. PEST MANAGEMENT SCIENCE 2003; 59:310-314. [PMID: 12639048 DOI: 10.1002/ps.639] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A single nucleotide polymorphism (snp) in the cytochrome b gene confers resistance to strobilurin fungicides in Erysiphe graminis DC fsp tritici Marchal. On the basis of this point mutation three different types of molecular markers have been developed. Cleaved amplified polymorphic sequences and allele-specific PCR were used to score resistant and sensitive isolates from specifically selected regional populations across Europe. The results of molecular tests were in total agreement with the resistance phenotypes revealed by in vivo tests. Serial dilutions of mixed samples (resistant/sensitive) delimited the detection for strobilurin-resistant alleles to a range of 10-50% for both marker classes. Due to these detection limits no mixture of mitochondria within individual isolates was found. Denaturing high performance chromatography was used to increase the detection sensitivity for the mutant allele. Although the detection limit was lowered to 5-10%, there was no evidence for the existence of mixed mitochondrial genotypes.
Collapse
|
|
22 |
8 |
19
|
Diaz‐Trujillo C, Chong P, Stergiopoulos I, Cordovez V, Guzman M, De Wit PJGM, Meijer HJG, Scalliet G, Sierotzki H, Lilia Peralta E, Arango Isaza RE, Kema GHJ. A new mechanism for reduced sensitivity to demethylation-inhibitor fungicides in the fungal banana black Sigatoka pathogen Pseudocercospora fijiensis. MOLECULAR PLANT PATHOLOGY 2018; 19:1491-1503. [PMID: 29105293 PMCID: PMC6637983 DOI: 10.1111/mpp.12637] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 10/27/2017] [Accepted: 10/31/2017] [Indexed: 05/12/2023]
Abstract
The Dothideomycete Pseudocercospora fijiensis, previously Mycosphaerella fijiensis, is the causal agent of black Sigatoka, one of the most destructive diseases of bananas and plantains. Disease management depends on fungicide applications, with a major contribution from sterol demethylation-inhibitors (DMIs). The continued use of DMIs places considerable selection pressure on natural P. fijiensis populations, enabling the selection of novel genotypes with reduced sensitivity. The hitherto explanatory mechanism for this reduced sensitivity was the presence of non-synonymous point mutations in the target gene Pfcyp51, encoding the sterol 14α-demethylase enzyme. Here, we demonstrate a second mechanism involved in DMI sensitivity of P. fijiensis. We identified a 19-bp element in the wild-type (wt) Pfcyp51 promoter that concatenates in strains with reduced DMI sensitivity. A polymerase chain reaction (PCR) assay identified up to six Pfcyp51 promoter repeats in four field populations of P. fijiensis in Costa Rica. We used transformation experiments to swap the wt promoter of a sensitive field isolate with a promoter from a strain with reduced DMI sensitivity that comprised multiple insertions. Comparative in vivo phenotyping showed a functional and proportional up-regulation of Pfcyp51, which consequently decreased DMI sensitivity. Our data demonstrate that point mutations in the Pfcyp51 coding domain, as well as promoter inserts, contribute to the reduced DMI sensitivity of P. fijiensis. These results provide new insights into the importance of the appropriate use of DMIs and the need for the discovery of new molecules for black Sigatoka management.
Collapse
|
research-article |
7 |
5 |
20
|
Patel JS, Meinhardt SW, Sierotzki H, Stammler G, Gudmestad NC, Adhikari TB. A Two-Step Molecular Detection Method for Pyrenophora tritici-repentis Isolates Insensitive to QoI Fungicides. PLANT DISEASE 2011; 95:1558-1564. [PMID: 30731996 DOI: 10.1094/pdis-05-11-0413] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Tan spot, caused by Pyrenophora tritici-repentis, is an important disease of wheat worldwide. To manage tan spot, quinone outside inhibitor (QoI) fungicides such as azoxystrobin and pyraclostrobin have been applied in many countries. QoI fungicides target the cytochrome b (cyt b) site in complex III of mitochondria and, thus, pose a serious risk for resistance development. The resistance mechanism to QoI fungicides is mainly due to point mutations in the cyt b gene. The objective of this study was to develop a molecular detection method for the four currently known mutations responsible for shifts in sensitivity toward QoI fungicides in P. tritici-repentis. Twelve specific primers were designed based on sequences from the National Center for Biotechnology Information accessions AAXI01000704 and DQ919068 and used to generate a fragment of the cyt b gene which possesses four known single-nucleotide polymorphisms (SNPs). These mutant clones served as positive controls because QoI-insensitive and -reduced-sensitive isolates of P. tritici-repentis have not yet been reported in the United States. The partial cyt b gene clones were sequenced to identify the SNPs at sites G143A and F129L. Genomic DNA of the mutated partial cyt b gene clones and the European QoI-insensitive and -reduced-sensitive isolates of P. tritici-repentis possessing G143A (GCT) and F129L (TTA, TTG, and CTC) mutations were amplified by polymerase chain reaction (PCR) using two specific primer pairs and were further digested with three specific restriction enzymes (BsaJI, Fnu4HI, and MnlI). The results of the digested PCR product from genomic DNA of known QoI-insensitive and -reduced-sensitive isolates of P. tritici-repentis had DNA bands consistent with the mutation GCT at G143A and the mutations TTA, TTG, and CTC at F129L. The amplified region at the F129 site also had 99% sequence similarity with P. teres, the net blotch pathogen of barley. To validate mutations, we further tested two isolates of P. teres known to have reduced sensitivity to QoI fungicides possessing the mutations TTA and CTC at F129L. After PCR amplification and restriction digestion, DNA bands identical to those observed for the partial cyt b mutant clones were detected. These results suggest that this newly developed two-step molecular detection method is rapid, robust, and specific to monitor QoI-insensitive and -reduce-dsensitive isolates of P. tritici-repentis.
Collapse
|
|
14 |
3 |
21
|
Doughty KJ, Sierotzki H, Semar M, Goertz A. Selection and Amplification of Fungicide Resistance in Aspergillus fumigatus in Relation to DMI Fungicide Use in Agronomic Settings: Hotspots versus Coldspots. Microorganisms 2021; 9:2439. [PMID: 34946041 PMCID: PMC8704312 DOI: 10.3390/microorganisms9122439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 12/18/2022] Open
Abstract
Aspergillus fumigatus is a ubiquitous saprophytic fungus. Inhalation of A. fumigatus spores can lead to Invasive Aspergillosis (IA) in people with weakened immune systems. The use of triazole antifungals with the demethylation inhibitor (DMI) mode of action to treat IA is being hampered by the spread of DMI-resistant "ARAf" (azole-resistant Aspergillus fumigatus) genotypes. DMIs are also used in the environment, for example, as fungicides to protect yield and quality in agronomic settings, which may lead to exposure of A. fumigatus to DMI residues. An agronomic setting can be a "hotspot" for ARAf if it provides a suitable substrate and favourable conditions for the growth of A. fumigatus in the presence of DMI fungicides at concentrations capable of selecting ARAf genotypes at the expense of the susceptible wild-type, followed by the release of predominantly resistant spores. Agronomic settings that do not provide these conditions are considered "coldspots". Identifying and mitigating hotspots will be key to securing the agronomic use of DMIs without compromising their use in medicine. We provide a review of studies of the prevalence of ARAf in various agronomic settings and discuss the mitigation options for confirmed hotspots, particularly those relating to the management of crop waste.
Collapse
|
Review |
4 |
1 |