1
|
Samaha AN, Seeman P, Stewart J, Rajabi H, Kapur S. "Breakthrough" dopamine supersensitivity during ongoing antipsychotic treatment leads to treatment failure over time. J Neurosci 2007; 27:2979-86. [PMID: 17360921 PMCID: PMC6672560 DOI: 10.1523/jneurosci.5416-06.2007] [Citation(s) in RCA: 200] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Antipsychotics often lose efficacy in patients despite chronic continuous treatment. Why this occurs is not known. It is known, however, that withdrawal from chronic antipsychotic treatment induces behavioral dopaminergic supersensitivity in animals. How this emerging supersensitivity might interact with ongoing treatment has never been assessed. Therefore, we asked whether dopamine supersensitivity could overcome the behavioral and neurochemical effects of antipsychotics while they are still in use. Using two models of antipsychotic-like effects in rats, we show that during ongoing treatment with clinically relevant doses, haloperidol and olanzapine progressively lose their efficacy in suppressing amphetamine-induced locomotion and conditioned avoidance responding. Treatment failure occurred despite high levels of dopamine D2 receptor occupancy by the antipsychotic and was at least temporarily reversible by an additional increase in antipsychotic dose. To explore potential mechanisms, we studied presynaptic and postsynaptic elements of the dopamine system and observed that antipsychotic failure was accompanied by opposing changes across the synapse: tolerance to the ability of haloperidol to increase basal dopamine and dopamine turnover on one side, and 20-40% increases in D2 receptor number and 100-160% increases in the proportion of D2 receptors in the high-affinity state for dopamine (D2(High)) on the other. Thus, the loss of antipsychotic efficacy is linked to an increase in D2 receptor number and sensitivity. These results are the first to demonstrate that "breakthrough" supersensitivity during ongoing antipsychotic treatment undermines treatment efficacy. These findings provide a model and a mechanism for antipsychotic treatment failure and suggest new directions for the development of more effective antipsychotics.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
200 |
2
|
Erb S, Hitchcott PK, Rajabi H, Mueller D, Shaham Y, Stewart J. Alpha-2 adrenergic receptor agonists block stress-induced reinstatement of cocaine seeking. Neuropsychopharmacology 2000; 23:138-50. [PMID: 10882840 DOI: 10.1016/s0893-133x(99)00158-x] [Citation(s) in RCA: 199] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The alpha-2 adrenergic receptor agonists, clonidine, lofexidine and guanabenz, blocked stress- but not cocaine-induced reinstatement of cocaine seeking at doses that suppressed footshock-induced release of noradrenaline in prefrontal cortex and amygdala. Rats were trained to self-administer cocaine (0.5 mg/kg/infusion, i.v; 10-12 days) and, after a drug-free period (7-13 days), were returned to the self-administration chambers for daily extinction and reinstatement test sessions. Both intermittent footshock (15 min, 0.6 mA) and cocaine priming (20 mg/kg, i.p.) reinstated extinguished drug seeking. Pretreatment with either clonidine (20, or 40 microg/kg, i.p.) or lofexidine (50, 100, 150, or 200 microg/kg, i.p.) attenuated footshock- but not cocaine-induced reinstatement of cocaine seeking. Guanabenz (640 microg/kg, i.p.), an alpha-2 agonist with low affinity for imidazoline type-1 receptors, also attenuated footshock- but not cocaine-induced reinstatement of cocaine seeking. The results point to an important role for NE systems in the effects of footshock on relapse to cocaine seeking.
Collapse
|
|
25 |
199 |
3
|
Rajabi H, Alam M, Takahashi H, Kharbanda A, Guha M, Ahmad R, Kufe D. MUC1-C oncoprotein activates the ZEB1/miR-200c regulatory loop and epithelial-mesenchymal transition. Oncogene 2013; 33:1680-9. [PMID: 23584475 DOI: 10.1038/onc.2013.114] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 12/18/2012] [Accepted: 02/18/2013] [Indexed: 02/07/2023]
Abstract
The epithelial-mesenchymal transition (EMT) is activated in cancer cells by ZEB1, a member of the zinc finger/homeodomain family of transcriptional repressors. The mucin 1 (MUC1) heterodimeric protein is aberrantly overexpressed in human carcinoma cells. The present studies in breast cancer cells demonstrate that the oncogenic MUC1-C subunit induces expression of ZEB1 by a NF-κB (nuclear factor kappa B) p65-dependent mechanism. MUC1-C occupies the ZEB1 promoter with NF-κB p65 and thereby promotes ZEB1 transcription. In turn, ZEB1 associates with MUC1-C and the ZEB1/MUC1-C complex contributes to the transcriptional suppression of miR-200c, an inducer of epithelial differentiation. The co-ordinate upregulation of ZEB1 and suppression of miR-200c has been linked to the induction of EMT. In concert with the effects of MUC1-C on ZEB1 and miR-200c, we show that MUC1-C induces EMT and cellular invasion by a ZEB1-mediated mechanism. These findings indicate that (i) MUC1-C activates ZEB1 and suppresses miR-200c with the induction of EMT and (ii) targeting MUC1-C could be an effective approach for the treatment of breast and possibly other types of cancers that develop EMT properties.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
98 |
4
|
Bouillez A, Rajabi H, Jin C, Samur M, Tagde A, Alam M, Hiraki M, Maeda T, Hu X, Adeegbe D, Kharbanda S, Wong KK, Kufe D. MUC1-C integrates PD-L1 induction with repression of immune effectors in non-small-cell lung cancer. Oncogene 2017; 36:4037-4046. [PMID: 28288138 PMCID: PMC5509481 DOI: 10.1038/onc.2017.47] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/15/2016] [Accepted: 02/01/2017] [Indexed: 12/20/2022]
Abstract
Immunotherapeutic approaches, particularly PD-1/PD-L1 blockade, have improved the treatment of non-small cell lung cancer (NSCLC), supporting the premise that evasion of immune destruction is of importance for NSCLC progression. However, the signals responsible for upregulation of PD-L1 in NSCLC cells and whether they are integrated with the regulation of other immune-related genes are not known. Mucin 1 (MUC1) is aberrantly overexpressed in NSCLC, activates the NF-κB p65→ZEB1 pathway and confers a poor prognosis. The present studies demonstrate that MUC1-C activates PD-L1 expression in NSCLC cells. We show that MUC1-C increases NF-κB p65 occupancy on the CD274/PD-L1 promoter and thereby drives CD274 transcription. Moreover, we demonstrate that MUC1-C-induced activation of NF-κB→ZEB1 signaling represses the TLR9, IFNG, MCP-1 and GM-CSF genes, and that this signature is associated with decreases in overall survival. In concert with these results, targeting MUC1-C in NSCLC tumors suppresses PD-L1 and induces these effectors of innate and adaptive immunity. These findings support a previously unrecognized central role for MUC1-C in integrating PD-L1 activation with suppression of immune effectors and poor clinical outcome.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
94 |
5
|
Takahashi H, Jin C, Rajabi H, Pitroda S, Alam M, Ahmad R, Raina D, Hasegawa M, Suzuki Y, Tagde A, Bronson RT, Weichselbaum R, Kufe D. MUC1-C activates the TAK1 inflammatory pathway in colon cancer. Oncogene 2015; 34:5187-97. [PMID: 25659581 PMCID: PMC4530107 DOI: 10.1038/onc.2014.442] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 10/31/2014] [Accepted: 12/12/2014] [Indexed: 02/08/2023]
Abstract
The mucin 1 (MUC1) oncoprotein has been linked to the inflammatory response by promoting cytokine-mediated activation of the NF-κB pathway. The TGF-β-activated kinase 1 (TAK1) is an essential effector of proinflammatory NF-κB signaling that also regulates cancer cell survival. The present studies demonstrate that the MUC1-C transmembrane subunit induces TAK1 expression in colon cancer cells. MUC1 also induces TAK1 in a MUC1(+/-)/IL-10(-/-) mouse model of colitis and colon tumorigenesis. We show that MUC1-C promotes NF-κB-mediated activation of TAK1 transcription and, in a positive regulatory loop, MUC1-C contributes to TAK1-induced NF-κB signaling. In this way, MUC1-C binds directly to TAK1 and confers the association of TAK1 with TRAF6, which is necessary for TAK1-mediated activation of NF-κB. Targeting MUC1-C thus suppresses the TAK1NF-κB pathway, downregulates BCL-XL and in turn sensitizes colon cancer cells to MEK inhibition. Analysis of colon cancer databases further indicates that MUC1, TAK1 and TRAF6 are upregulated in tumors associated with decreased survival and that MUC1-C-induced gene expression patterns predict poor outcomes in patients. These results support a model in which MUC1-C-induced TAK1NF-κB signaling contributes to intestinal inflammation and colon cancer progression.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
10 |
86 |
6
|
Raina D, Uchida Y, Kharbanda A, Rajabi H, Panchamoorthy G, Jin C, Kharbanda S, Scaltriti M, Baselga J, Kufe D. Targeting the MUC1-C oncoprotein downregulates HER2 activation and abrogates trastuzumab resistance in breast cancer cells. Oncogene 2013; 33:3422-31. [PMID: 23912457 PMCID: PMC3916940 DOI: 10.1038/onc.2013.308] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 06/24/2013] [Accepted: 06/25/2013] [Indexed: 12/13/2022]
Abstract
Patients with HER2 positive breast cancer often exhibit intrinsic or acquired resistance to trastuzumab treatment. The transmembrane MUC1-C oncoprotein is aberrantly overexpressed in breast cancer cells and associates with HER2. The present studies demonstrate that silencing MUC1-C in HER2-overexpressing SKBR3 and BT474 breast cancer cells results in downregulation of constitutive HER2 activation. Moreover, treatment with the MUC1-C inhibitor, GO-203, was associated with disruption of MUC1-C/HER2 complexes and decreases in tyrosine phosphorylated HER2 (p-HER2) levels. In studies of trastuzumab-resistant SKBR3R and BT474R cells, we found that the association between MUC1-C and HER2 is markedly increased (~20-fold) as compared to that in sensitive cells. Additionally, silencing MUC1-C in the trastuzumab-resistant cells or treatment with GO-203 decreased p-HER2 and AKT activation. Moreover, targeting MUC1-C was associated with downregulation of phospho-p27 and cyclin E, which confer trastuzumab resistance. Consistent with these results, targeting MUC1-C inhibited the growth and clonogenic survival of both trastuzumab-resistant cells. Our results further demonstrate that silencing MUC1-C reverses resistance to trastuzumab and that the combination of GO-203 and trastuzumab is highly synergistic. These findings indicate that MUC1-C contributes to constitutive activation of the HER2 pathway and that targeting MUC1-C represents a potential approach to abrogate trastuzumab resistance.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
86 |
7
|
Sorge RE, Rajabi H, Stewart J. Rats maintained chronically on buprenorphine show reduced heroin and cocaine seeking in tests of extinction and drug-induced reinstatement. Neuropsychopharmacology 2005; 30:1681-92. [PMID: 15798781 DOI: 10.1038/sj.npp.1300712] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Buprenorphine is being introduced as a maintenance therapy in opioid addiction, but it is not clear how buprenorphine will affect co-use of cocaine in opioid users. We examined the effects of chronic buprenorphine (BUP0: 0.0 mg/kg/day; BUP1.5: 1.5 mg/kg/day; BUP3: 3.0 mg/kg/day) on the locomotor activity effects of acute heroin (0.25 mg/kg, subcutaneously (s.c.)) and cocaine (20 mg/kg, intraperitoneally (i.p.)). Buprenorphine had no effect on the stimulatory effect of heroin, but potentiated the locomotor response to cocaine. To investigate further the interactions between buprenorphine (BUP1.5 and BUP3), heroin (0.125, 0.25 and 0.375 mg/kg, s.c.), and cocaine (10, 20 and 30 mg/kg, i.p.), we used in vivo microdialysis and high-performance liquid chromatography to analyze extracellular levels of dopamine (DA) in the nucleus accumbens (NAc). Buprenorphine attenuated the heroin-induced rise in NAc DA, but greatly potentiated the cocaine-induced rise. Finally, we examined the potential of the highest dose of buprenorphine (BUP3) to reduce heroin and cocaine seeking in the presence of drug-associated cues under extinction conditions and in tests for reinstatement induced by heroin (0.25 mg/kg, s.c.), cocaine (20 mg/kg, i.p.), and 15-min footshock stress (0.8 mA, 0.5 s/shock, 40 s mean OFF time) in rats trained to self-administer both drugs. Buprenorphine reduced heroin and cocaine seeking during extinction and following acute heroin and cocaine priming injections, but had no effect on stress-induced reinstatement. These results indicate that the suppression of responding following priming injections of drugs did not result from reduced motor activity, but possibly from a reduction in the salience of drug-associated cues induced by chronic buprenorphine treatment.
Collapse
MESH Headings
- Analysis of Variance
- Animals
- Behavior, Addictive/drug therapy
- Behavior, Addictive/etiology
- Behavior, Addictive/physiopathology
- Behavior, Animal
- Buprenorphine/administration & dosage
- Buprenorphine/adverse effects
- Chromatography, High Pressure Liquid/methods
- Cocaine/administration & dosage
- Cocaine/adverse effects
- Conditioning, Operant/drug effects
- Dopamine/analysis
- Dose-Response Relationship, Drug
- Drug Administration Routes
- Drug Administration Schedule
- Electroshock/methods
- Extinction, Psychological/drug effects
- Heroin/administration & dosage
- Heroin/adverse effects
- Male
- Microdialysis/methods
- Motor Activity/drug effects
- Narcotics/administration & dosage
- Narcotics/adverse effects
- Nucleus Accumbens/drug effects
- Nucleus Accumbens/metabolism
- Rats
- Rats, Long-Evans
- Reinforcement, Psychology
- Self Administration
- Time Factors
Collapse
|
Comparative Study |
20 |
69 |
8
|
Rajabi H, Tagde A, Alam M, Bouillez A, Pitroda S, Suzuki Y, Kufe D. DNA methylation by DNMT1 and DNMT3b methyltransferases is driven by the MUC1-C oncoprotein in human carcinoma cells. Oncogene 2016; 35:6439-6445. [PMID: 27212035 PMCID: PMC5121097 DOI: 10.1038/onc.2016.180] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 03/25/2016] [Accepted: 04/12/2016] [Indexed: 12/23/2022]
Abstract
Aberrant expression of the DNA methyltransferases (DNMTs) and disruption of DNA methylation patterns are associated with carcinogenesis and cancer cell survival. The oncogenic MUC1-C protein is aberrantly overexpressed in diverse carcinomas; however, there is no known link between MUC1-C and DNA methylation. Our results demonstrate that MUC1-C induces the expression of DNMT1 and DNMT3b, but not DNMT3a, in breast and other carcinoma cell types. We show that MUC1-C occupies the DNMT1 and DNMT3b promoters in complexes with NF-κB p65 and drives DNMT1 and DNMT3b transcription. In this way, MUC1-C controls global DNA methylation as determined by analysis of LINE-1 repeat elements. The results further demonstrate that targeting MUC1-C downregulates DNA methylation of the CDH1 tumor suppressor gene in association with induction of E-cadherin expression. These findings provide compelling evidence that MUC1-C is of functional importance to induction of DNMT1 and DNMT3b and, in turn, changes in DNA methylation patterns in cancer cells.
Collapse
|
Research Support, N.I.H., Extramural |
9 |
68 |
9
|
Hernandez G, Hamdani S, Rajabi H, Conover K, Stewart J, Arvanitogiannis A, Shizgal P. Prolonged rewarding stimulation of the rat medial forebrain bundle: neurochemical and behavioral consequences. Behav Neurosci 2006; 120:888-904. [PMID: 16893295 DOI: 10.1037/0735-7044.120.4.888] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Extracellular dopamine levels were measured in the rat nucleus accumbens by means of in vivo microdialysis. Delivery of rewarding medial forebrain bundle stimulation at a low rate (5 trains/min) produced a sustained elevation of dopamine levels, regardless of whether train onset was predictable. When the rate of train delivery was increased to 40 trains/min, dopamine levels rose rapidly during the first 40 min but then declined toward the baseline range. The rewarding impact of the stimulation was reduced following prior delivery of stimulation at the high, but not the low, rate. These results support the idea that dopamine tone plays an enabling role in brain stimulation reward and is elevated similarly by predictable and unpredictable stimulation.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
66 |
10
|
Flores C, Manitt C, Rodaros D, Thompson KM, Rajabi H, Luk KC, Tritsch NX, Sadikot AF, Stewart J, Kennedy TE. Netrin receptor deficient mice exhibit functional reorganization of dopaminergic systems and do not sensitize to amphetamine. Mol Psychiatry 2005; 10:606-12. [PMID: 15534618 DOI: 10.1038/sj.mp.4001607] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Netrins are guidance cues that play a fundamental role in organizing the developing brain. The netrin receptor, DCC (deleted in colorectal cancer), is highly expressed by dopaminergic (DA) neurons. DCC may therefore participate in the organization of DA circuitry during development and also influence DA function in the adult. Here we show that adult dcc heterozygous mice exhibit a blunted behavioral response to the indirect DA agonist amphetamine and do not develop sensitization to its effects when treated repeatedly. These behavioral alterations are associated with profound changes in DA function. In the medial prefrontal cortex, dcc heterozygotes exhibit increased tyrosine hydroxylase (TH) protein levels and dramatic increases in basal concentrations of DA and DA metabolites. In contrast, in the nucleus accumbens, dcc heterozygotes show no changes in either TH or DA levels, but exhibit decreased concentrations of DA metabolites, suggesting reduced DA activity. In addition, dcc heterozygous mice exhibit a small, but significant reduction in total number of TH-positive neurons in midbrain DA cell body regions. These results demonstrate for the first time that alterations in dcc expression lead to selective changes in DA function and, in turn, to differences in DA-related behaviors in adulthood. These findings raise the possibility that changes in dcc function early in life are implicated in the development of DA dysregulation observed in certain psychiatric disorders, such as schizophrenia, or following chronic use of drugs of abuse.
Collapse
|
Comparative Study |
20 |
65 |
11
|
Druhan JP, Rajabi H, Stewart J. MK-801 increases locomotor activity without elevating extracellular dopamine levels in the nucleus accumbens. Synapse 1996; 24:135-46. [PMID: 8890455 DOI: 10.1002/(sici)1098-2396(199610)24:2<135::aid-syn5>3.0.co;2-g] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In vivo microdialysis was used in freely moving rats to determine whether the locomotor stimulant effects of dizocilpine maleate (MK-801) were related to increased dopamine (DA) release within the nucleus accumbens (N. Acc.). Each experiment began with a baseline period of at least 2 h (starting 15-20 h after insertion of concentric, removable dialysis probes), during with activity records and dialysate samples were collected every 20 min. Rats in the first experiment then were injected with MK-801 (0.125, 0.25, or 0.50 mg/kg, i.p.) or saline, and activity and extracellular levels of DA, dihydroxyphenylacetic acid (DOPAC), and homovanillic acid (HVA) were measured for a further 160 min post-injection. In a second experiment, rats were given 1.5 mg/kg d-amphetamine sulphate 40 min after receiving the same doses of MK-801, and testing was continued for 120 min. Rats in a third experiment were given low, autoreceptor-preferring doses of apomorphine hydrochloride (25 or 50 micrograms/kg, s.c.) or its vehicle 40 min after injection of 0.25 mg/kg MK-801 and then monitored for 120 min. MK-801 produced strong and consistent increases in locomotor activity that were augmented by amphetamine and greatly reduced by the low doses of apomorphine. MK-801 did not increase extracellular DA levels within the N. Acc. when given alone, and it failed to influence the changes in extracellular DA produced by d-amphetamine and apomorphine. MK-801 did produce consistent, dose-related increases in DOPAC and HVA that were probably not related to transmitter release. These results indicate that the increases in locomotor activity seen following MK-801 do not arise from a drug-induced increase in DA levels within the N. Acc.
Collapse
|
|
29 |
57 |
12
|
Grant A, Hoops D, Labelle-Dumais C, Prévost M, Rajabi H, Kolb B, Stewart J, Arvanitogiannis A, Flores C. Netrin-1 receptor-deficient mice show enhanced mesocortical dopamine transmission and blunted behavioural responses to amphetamine. Eur J Neurosci 2007; 26:3215-28. [PMID: 18005074 DOI: 10.1111/j.1460-9568.2007.05888.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The mesocorticolimbic dopamine (DA) system is implicated in neurodevelopmental psychiatric disorders including schizophrenia but it is unknown how disruptions in brain development modify this system and increase predisposition to cognitive and behavioural abnormalities in adulthood. Netrins are guidance cues involved in the proper organization of neuronal connectivity during development. We have hypothesized that variations in the function of DCC (deleted in colorectal cancer), a netrin-1 receptor highly expressed by DA neurones, may result in altered development and organization of mesocorticolimbic DA circuitry, and influence DA function in the adult. To test this hypothesis, we assessed the effects of reduced DCC on several indicators of DA function. Using in-vivo microdialysis, we showed that adult mice that develop with reduced DCC display increased basal DA levels in the medial prefrontal cortex and exaggerated DA release in response to the indirect DA agonist amphetamine. In contrast, these mice exhibit normal levels of DA in the nucleus accumbens but significantly blunted amphetamine-induced DA release. Concomitantly, using conditioned place preference, locomotor activity and prepulse inhibition paradigms, we found that reduced DCC diminishes the rewarding and behavioural-activating effects of amphetamine and protects against amphetamine-induced deficits in sensorimotor gating. Furthermore, we found that adult DCC-deficient mice exhibit altered dendritic spine density in layer V medial prefrontal cortex pyramidal neurones but not in nucleus accumbens medium spiny neurones. These findings demonstrate that reduced DCC during development results in a behavioural phenotype opposite to that observed in developmental models of schizophrenia and identify DCC as a critical factor in the development of DA function.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
57 |
13
|
Stewart J, Rajabi H. Estradiol derived from testosterone in prenatal life affects the development of catecholamine systems in the frontal cortex in the male rat. Brain Res 1994; 646:157-60. [PMID: 8055334 DOI: 10.1016/0006-8993(94)90070-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We reported previously that exposure to testosterone (T), neonatally, slows the time-course of development of catecholaminergic activity in the anterior cortex of rat pups. In the present study we assessed the role of T in prenatal life on this development and explored the role of the estrogen metabolite of T, estradiol, in these actions. Male pups born to dams injected daily with 5 mg/kg, s.c., of the aromatase inhibitor 1,4,6-androstatriene-3,17-dione (ATD), or vehicle only, between gestation days 10 and 21 were either gonadectomized (GX) or anesthetized, only, within 6 h of birth. Dopamine, DOPAC, and noradrenaline levels were assessed, using HPLC-EC, in punched samples taken from cingulate (CING), agranular insular (AID), parietal (PAR) and occipital (OC) cortex on postnatal (PN) days 4 and 10. At PN4 there were no effects of treatment on amine levels, although there were higher levels in frontal areas. At PN10, ATD and ATD GX animals had higher levels of dopamine, DOPAC, and noradrenaline in CING and AID than normal males. It would appear that T acts prenatally through its metabolite, estradiol, to modulate the development of catecholamine activity in the frontal cortex in the neonatal period.
Collapse
|
|
31 |
57 |
14
|
Abstract
We investigated whether chronic exposure to heroin alters responses to cocaine in ways that might explain the use of cocaine by opioid addicts. To this end, the effects of cocaine (5 and 20 mg/kg) were assessed on locomotor activity of rats chronically exposed to heroin (0.0, 3.5, 7.0, and 14.0 mg/kg/day, over 14 days, via osmotic mini-pumps), or withdrawn from heroin (1 day, acute withdrawal, and 14 days, protracted withdrawal). Chronic heroin exposure, in itself, dose dependently increased locomotion and acute cocaine administration further elevated locomotor activity in a dose-dependent and additive manner. During acute withdrawal, there was a dose-dependent decrease in locomotion that was reversed by cocaine in a dose-dependent manner. During protracted withdrawal, spontaneous locomotion normalized, but rats previously exposed to heroin displayed cross-sensitization to cocaine as indicated by small, but significant, enhanced locomotor response to 5 mg/kg of cocaine, and enhanced intravenous self-administration of low doses of cocaine (0.13 mg/kg/infusion). In a separate study, we measured extracellular dopamine (DA) in the nucleus accumbens (Acb) using in vivo microdialysis before and after acute withdrawal from heroin. During chronic exposure to heroin, basal extracellular DA was elevated dose dependently, whereas in acute withdrawal, levels were not different from those in vehicle-treated rats. In response to cocaine, however, DA activity in the Acb was significantly lower in rats withdrawn from the highest dose of heroin.
Collapse
|
Comparative Study |
22 |
55 |
15
|
Hiraki M, Maeda T, Bouillez A, Alam M, Tagde A, Hinohara K, Suzuki Y, Markert T, Miyo M, Komura K, Ahmad R, Rajabi H, Kufe D. MUC1-C activates BMI1 in human cancer cells. Oncogene 2016; 36:2791-2801. [PMID: 27893710 PMCID: PMC5436937 DOI: 10.1038/onc.2016.439] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 10/05/2016] [Accepted: 10/11/2016] [Indexed: 12/13/2022]
Abstract
BMI1 is a component of the PRC1 complex that is overexpressed in breast and other cancers, and promotes self-renewal of cancer stem-like cells. The oncogenic mucin 1 (MUC1) C-terminal (MUC1-C) subunit is similarly overexpressed in human carcinoma cells and has been linked to their self-renewal. There is no known relationship between MUC1-C and BMI1 in cancer. The present studies demonstrate that MUC1-C drives BMI1 transcription by a MYC-dependent mechanism in breast and other cancer cells. In addition, we show that MUC1-C blocks miR-200c-mediated downregulation of BMI1 expression. The functional significance of this MUC1-C→BMI1 pathway is supported by the demonstration that targeting MUC1-C suppresses BMI1-induced ubiquitylation of H2A and thereby derepresses homeobox HOXC5 and HOXC13 gene expression. Notably, our results further show that MUC1-C binds directly to BMI1 and promotes occupancy of BMI1 on the CDKN2A promoter. In concert with BMI1-induced repression of the p16INK4a tumor suppressor, we found that targeting MUC1-C is associated with induction of p16INK4a expression. In support of these results, analysis of three gene expresssion datasets demonstrated highly significant correlations between MUC1-C and BMI1 in breast cancers. These findings uncover a previously unrecognized role for MUC1-C in driving BMI1 expression and in directly interacting with this stem cell factor, linking MUC1-C with function of the PRC1 in epigenetic gene silencing.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
47 |
16
|
Rajabi H, Shafiei A, Darvizeh A, Gorb SN. Resilin microjoints: a smart design strategy to avoid failure in dragonfly wings. Sci Rep 2016; 6:39039. [PMID: 27966641 PMCID: PMC5155300 DOI: 10.1038/srep39039] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 11/17/2016] [Indexed: 12/02/2022] Open
Abstract
Dragonflies are fast and manoeuvrable fliers and this ability is reflected in their unique wing morphology. Due to the specific lightweight structure, with the crossing veins joined by rubber-like resilin patches, wings possess strong deformability but can resist high forces and large deformations during aerial collisions. The computational results demonstrate the strong influence of resilin-containing vein joints on the stress distribution within the wing. The presence of flexible resilin in the contact region of the veins prevents excessive bending of the cross veins and significantly reduces the stress concentration in the joint.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
41 |
17
|
Rajabi H, Jafarpour M, Darvizeh A, Dirks JH, Gorb SN. Stiffness distribution in insect cuticle: a continuous or a discontinuous profile? J R Soc Interface 2018; 14:rsif.2017.0310. [PMID: 28724628 DOI: 10.1098/rsif.2017.0310] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 06/23/2017] [Indexed: 11/12/2022] Open
Abstract
Insect cuticle is a biological composite with a high degree of complexity in terms of both architecture and material composition. Given the complex morphology of many insect body parts, finite-element (FE) models play an important role in the analysis and interpretation of biomechanical measurements, taken by either macroscopic or nanoscopic techniques. Many previous studies show that the interpretation of nanoindentation measurements of this layered composite material is very challenging. To develop accurate FE models, it is of particular interest to understand more about the variations in the stiffness through the thickness of the cuticle. Considering the difficulties of making direct measurements, in this study, we use the FE method to analyse previously published data and address this issue numerically. For this purpose, sets of continuous or discontinuous stiffness profiles through the thickness of the cuticle were mathematically described. The obtained profiles were assigned to models developed based on the cuticle of three insect species with different geometries and layer configurations. The models were then used to simulate the mechanical behaviour of insect cuticles subjected to nanoindentation experiments. Our results show that FE models with discontinuous exponential stiffness gradients along their thickness were able to predict the stress and deformation states in insect cuticle very well. Our results further suggest that, for more accurate measurements and interpretation of nanoindentation test data, the ratio of the indentation depth to cuticle thickness should be limited to 7% rather than the traditional '10% rule'. The results of this study thus might be useful to provide a deeper insight into the biomechanical consequences of the distinct material distribution in insect cuticle and also to form a basis for more realistic modelling of this complex natural composite.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
35 |
18
|
Rajabi H, Shafiei A, Darvizeh A, Dirks JH, Appel E, Gorb SN. Effect of microstructure on the mechanical and damping behaviour of dragonfly wing veins. ROYAL SOCIETY OPEN SCIENCE 2016; 3:160006. [PMID: 26998340 PMCID: PMC4785991 DOI: 10.1098/rsos.160006] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 01/21/2016] [Indexed: 05/15/2023]
Abstract
Insect wing veins are biological composites of chitin and protein arranged in a complex lamellar configuration. Although these hierarchical structures are found in many 'venous wings' of insects, very little is known about their physical and mechanical characteristics. For the first time, we carried out a systematic comparative study to gain a better understanding of the influence of microstructure on the mechanical characteristics and damping behaviour of the veins. Morphological data have been used to develop a series of three-dimensional numerical models with different material properties and geometries. Finite-element analysis has been employed to simulate the mechanical response of the models under different loading conditions. The modelling strategy used in this study enabled us to determine the effects selectively induced by resilin, friction between layers, shape of the cross section, material composition and layered structure on the stiffness and damping characteristics of wing veins. Numerical simulations suggest that although the presence of the resilin-dominated endocuticle layer results in a much higher flexibility of wing veins, the dumbbell-shaped cross section increases their bending rigidity. Our study further shows that the rubber-like cuticle, friction between layers and material gradient-based design contribute to the higher damping capacity of veins. The results of this study can serve as a reference for the design of novel bioinspired composite structures.
Collapse
|
research-article |
9 |
34 |
19
|
Rajabi H, Ghoroubi N, Stamm K, Appel E, Gorb S. Dragonfly wing nodus: A one-way hinge contributing to the asymmetric wing deformation. Acta Biomater 2017; 60:330-338. [PMID: 28739543 DOI: 10.1016/j.actbio.2017.07.034] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/18/2017] [Accepted: 07/20/2017] [Indexed: 10/19/2022]
Abstract
Dragonfly wings are highly specialized locomotor systems, which are formed by a combination of several structural components. The wing components, also known as structural elements, are responsible for the various aspects of the wing functionality. Considering the complex interactions between the wing components, modelling of the wings as a whole is only possible with inevitable huge oversimplifications. In order to overcome this difficulty, we have recently proposed a new approach to model individual components of complex wings comparatively. Here, we use this approach to study nodus, a structural element of dragonfly wings which has been less studied to date. Using a combination of several imaging techniques including scanning electron microscopy (SEM), wide-field fluorescence microscopy (WFM), confocal laser scanning microscopy (CLSM) and micro-computed tomography (micro-CT) scanning, we aim to characterize the spatial morphology and material composition of fore- and hindwing nodi of the dragonfly Brachythemis contaminata. The microscopy results show the presence of resilin in the nodi, which is expected to help the deformability of the wings. The computational results based on three-dimensional (3D) structural data suggest that the specific geometry of the nodus restrains its displacements when subjected to pressure on the ventral side. This effect, resulting from an interlocking mechanism, is expected to contribute to the dorso-ventral asymmetry of wing deformation and to provide a higher resistance to aerodynamic forces during the downstroke. Our results provide an important step towards better understanding of the structure-property-function relationship in dragonfly wings. STATEMENT OF SIGNIFICANCE In this study, we investigate the wing nodus, a specialized wing component in dragonflies. Using a combination of modern imaging techniques, we demonstrate the presence of resilin in the nodus, which is expected to facilitate the wing deformability in flight. The specific geometry of the nodus, however, seems to restrain its displacements when subjected to pressure on the ventral side. This effect, resulting from an interlocking mechanism, is suggested to contribute to dorso-ventral asymmetry of wing deformations and to provide a higher resistance to aerodynamic forces during the downstroke. Our results provide an important step towards better understanding of the structure-property-function relationship in dragonfly wings and might help to design more efficient wings for biomimetic micro-air vehicles.
Collapse
|
|
8 |
33 |
20
|
Rajabi H, Ghoroubi N, Darvizeh A, Dirks JH, Appel E, Gorb SN. A comparative study of the effects of vein-joints on the mechanical behaviour of insect wings: I. Single joints. BIOINSPIRATION & BIOMIMETICS 2015; 10:056003. [PMID: 26292260 DOI: 10.1088/1748-3190/10/5/056003] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The flight performance of insects is strongly affected by the deformation of the wing during a stroke cycle. Many insects therefore use both active and passive mechanisms to control the deformation of their wings in flight. Several studies have focused on the wing kinematics, and plenty is known about the mechanism of their passive deformability. However, given the small size of the vein-joints, accurate direct mechanical experiments are almost impossible to perform. We therefore developed numerical models to perform a comparative and comprehensive investigation of the mechanical behaviour of the vein-joints under external loading conditions. The results illustrate the effect of the geometry and the presence of the rubberlike protein resilin on the flexibility of the joints. Our simulations further show the contribution of the spikes to the anisotropic flexural stiffness in the dorsal and ventral directions. In addition, our results show that the cross veins, only in one joint type, help to transfer the stress to the thicker longitudinal veins. The deformation pattern and the stress distribution in each vein-joint are discussed in detail. This study provides a strong background for further realistic modelling of the dragonfly wing deformation.
Collapse
|
|
10 |
32 |
21
|
Jin C, Rajabi H, Rodrigo CM, Porco JA, Kufe D. Targeting the eIF4A RNA helicase blocks translation of the MUC1-C oncoprotein. Oncogene 2013; 32:2179-88. [PMID: 22689062 PMCID: PMC3443512 DOI: 10.1038/onc.2012.236] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 05/07/2012] [Accepted: 05/10/2012] [Indexed: 12/15/2022]
Abstract
The oncogenic MUC1 C-terminal subunit (MUC1-C) subunit is aberrantly overexpressed in most human breast cancers by mechanisms that are not well understood. The present studies demonstrate that stimulation of non-malignant MCF-10A cells with epidermal growth factor (EGF) or heregulin (HRG) results in marked upregulation of MUC1-C translation. Growth factor-induced MUC1-C translation was found to be mediated by PI3KAKT, and not by MEKERK1/2, signaling. We also show that activation of the mammalian target of rapamycin complex 1 (mTORC1)ribosomal protein S6 kinase 1 (S6K1) pathway decreases tumor suppressor programmed cell death protein 4 (PDCD4), an inhibitor of the eIF4A RNA helicase, and contributes to the induction of MUC1-C translation. In concert with these results, treatment of growth factor-stimulated MCF-10A cells with the eIF4A RNA helicase inhibitors, silvestrol and CR-1-31-B, blocked increases in MUC1-C abundance. The functional significance of the increase in MUC1-C translation is supported by the demonstration that MUC1-C, in turn, forms complexes with EGF receptor (EGFR) and promotes EGFR-mediated activation of the PI3KAKT pathway and the induction of growth. Compared with MCF-10A cells, constitutive overexpression of MUC1-C in breast cancer cells was unaffected by EGF stimulation, but was blocked by inhibiting PI3KAKT signaling. The overexpression of MUC1-C in breast cancer cells was also inhibited by blocking eIF4A RNA helicase activity with silvestrol and CR-1-31-B. These findings indicate that EGF-induced MUC1-C expression is mediated by the PI3KAKT pathway and the eIF4A RNA helicase, and that this response promotes EGFR signaling in an autoinductive loop. The findings also indicate that targeting the eIF4A RNA helicase is a novel approach for blocking MUC1-C overexpression in breast cancer cells.
Collapse
|
research-article |
12 |
30 |
22
|
Eshghi SH, Jafarpour M, Darvizeh A, Gorb SN, Rajabi H. A simple, high-resolution, non-destructive method for determining the spatial gradient of the elastic modulus of insect cuticle. J R Soc Interface 2019; 15:rsif.2018.0312. [PMID: 30158184 DOI: 10.1098/rsif.2018.0312] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 08/07/2018] [Indexed: 01/29/2023] Open
Abstract
Nature has evolved structures with high load-carrying capacity and long-term durability. The principles underlying the functionality of such structures, if studied systematically, can inspire the design of more efficient engineering systems. An important step in this process is to characterize the material properties of the structure under investigation. However, direct mechanical measurements on small complex-shaped biological samples involve numerous technical challenges. To overcome these challenges, we developed a method for estimation of the elastic modulus of insect cuticle, the second most abundant biological composite in nature, through simple light microscopy. In brief, we established a quantitative link between the autofluorescence of different constituent materials of insect cuticle, and the resulting mechanical properties. This approach was verified using data on cuticular structures of three different insect species. The method presented in this study allows three-dimensional visualisation of the elastic modulus, which is impossible with any other available technique. This is especially important for precise finite-element modelling of cuticle, which is known to have spatially graded properties. Considering the simplicity, ease of implementation and high-resolution of the results, our method is a crucial step towards a better understanding of material-function relationships in insect cuticle, and can potentially be adapted for other graded biological materials.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
29 |
23
|
Rajabi H, Ghoroubi N, Darvizeh A, Appel E, Gorb SN. Effects of multiple vein microjoints on the mechanical behaviour of dragonfly wings: numerical modelling. ROYAL SOCIETY OPEN SCIENCE 2016; 3:150610. [PMID: 27069649 PMCID: PMC4821260 DOI: 10.1098/rsos.150610] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 02/16/2016] [Indexed: 05/20/2023]
Abstract
Dragonfly wings are known as biological composites with high morphological complexity. They mainly consist of a network of rigid veins and flexible membranes, and enable insects to perform various flight manoeuvres. Although several studies have been done on the aerodynamic performance of Odonata wings and the mechanisms involved in their deformations, little is known about the influence of vein joints on the passive deformability of the wings in flight. In this article, we present the first three-dimensional finite-element models of five different vein joint combinations observed in Odonata wings. The results from the analysis of the models subjected to uniform pressures on their dorsal and ventral surfaces indicate the influence of spike-associated vein joints on the dorsoventral asymmetry of wing deformation. Our study also supports the idea that a single vein joint may result in different angular deformations when it is surrounded by different joint types. The developed numerical models also enabled us to simulate the camber formation and stress distribution in the models. The computational data further provide deeper insights into the functional role of resilin patches and spikes in vein joint structures. This study might help to more realistically model the complex structure of insect wings in order to design more efficient bioinspired micro-air vehicles in future.
Collapse
|
research-article |
9 |
23 |
24
|
Stewart J, Kühnemann S, Rajabi H. Neonatal exposure to gonadal hormones affects the development of monoamine systems in rat cortex. J Neuroendocrinol 1991; 3:85-93. [PMID: 19215452 DOI: 10.1111/j.1365-2826.1991.tb00244.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Abstract The effects of neonatal gonadectomy of male, and testosterone propionate treatment of female rat pups on levels of monoamines and metabolites in the cerebral cortex were assessed using high-performance liquid chromatography with electrochemical detection. In Experiment 1, pups were killed at 0, 4, 10 and 21 days of age and the anterior and posterior portions of cortex in each hemisphere were removed. At 21 days of age the levels of dopamine in anterior cortex were higher in males and testosterone propionate-treated females than in females and gonadectomized males. However, dopaminergic activity developed earlier in females than in males and the gonadal hormone manipulations shifted the pattern of development to that of the other sex. In Experiment 2, the effects of these same gonadal hormone manipulations on the uptake, metabolism and storage capacity of catecholamine neurons in the cingulate, agranular insular, parietal and occipital cortex were estimated at 4 and 10 days of age by considering the difference between measured catecholamines in animals pretreated with vehicle or 2.5 mg/kg reserpine and then given 100 mg/kg L-DOPA. Again, the data indicated earlier development of catecholamine neurons in females, especially in the agranular insular cortex. Dopamine was found to account for group differences; for when dopamine levels alone were considered it was found that, at 4 days of age, females had the highest levels in every area with the exception of the occipital cortex where gonadectomized males had equally high levels. These data suggest a mechanism that might account for sex differences in the development of specific cortical regions.
Collapse
|
|
34 |
23 |
25
|
Placenza FM, Rajabi H, Stewart J. Effects of chronic buprenorphine treatment on levels of nucleus accumbens glutamate and on the expression of cocaine-induced behavioral sensitization in rats. Psychopharmacology (Berl) 2008; 200:347-55. [PMID: 18604522 DOI: 10.1007/s00213-008-1210-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Accepted: 05/22/2008] [Indexed: 10/21/2022]
Abstract
RATIONALE Chronic treatment with the mu-opioid receptor agonist, buprenorphine, reduces cocaine-induced behaviors in rats with a history of cocaine self-administration. The mechanisms underlying these actions of buprenorphine remain unclear. OBJECTIVES The objective of this study is to investigate the effects of chronic buprenorphine treatment on cocaine-induced activity and levels of glutamate and dopamine (DA) in the nucleus accumbens (NAc) in rats that were preexposed to cocaine or drug-naïve. MATERIALS AND METHODS In experiment 1, basal levels of NAc glutamate were assessed using in vivo microdialysis in cocaine-naïve rats that were treated chronically with buprenorphine (3.0 mg/kg per day) via osmotic minipumps or that underwent sham surgery. In experiment 2, rats were preexposed to seven daily injections of cocaine or saline. After a 12-16-day drug-free period, extracellular levels of NAc glutamate and DA and locomotor activity were assessed simultaneously, before and after an acute injection of cocaine (15 mg/kg, intraperitoneal), in rats under sham and chronic buprenorphine (3.0 mg/kg per day) treatment. RESULTS Chronic buprenorphine treatment increased basal levels of glutamate in drug-naïve and cocaine-preexposed rats, blocked the expression of locomotor sensitization to cocaine, and potentiated the NAc DA response to acute cocaine in cocaine-preexposed rats. CONCLUSIONS These findings suggest that buprenorphine may block the expression of cocaine sensitization and other cocaine-related behaviors by increasing basal levels of glutamate in the NAc, which would serve to decrease the effectiveness of cocaine or cocaine-associated cues.
Collapse
|
|
17 |
21 |