1
|
Matsuzaki M, Ellis-Davies GC, Nemoto T, Miyashita Y, Iino M, Kasai H. Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons. Nat Neurosci 2001; 4:1086-92. [PMID: 11687814 PMCID: PMC4229049 DOI: 10.1038/nn736] [Citation(s) in RCA: 1196] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Dendritic spines serve as preferential sites of excitatory synaptic connections and are pleomorphic. To address the structure-function relationship of the dendritic spines, we used two-photon uncaging of glutamate to allow mapping of functional glutamate receptors at the level of the single synapse. Our analyses of the spines of CA1 pyramidal neurons reveal that AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid)-type glutamate receptors are abundant (up to 150/spine) in mushroom spines but sparsely distributed in thin spines and filopodia. The latter may be serving as the structural substrates of the silent synapses that have been proposed to play roles in development and plasticity of synaptic transmission. Our data indicate that distribution of functional AMPA receptors is tightly correlated with spine geometry and that receptor activity is independently regulated at the level of single spines.
Collapse
|
|
24 |
1196 |
2
|
Kasai H. Analysis of a form of oxidative DNA damage, 8-hydroxy-2'-deoxyguanosine, as a marker of cellular oxidative stress during carcinogenesis. Mutat Res 1997; 387:147-63. [PMID: 9439711 DOI: 10.1016/s1383-5742(97)00035-5] [Citation(s) in RCA: 821] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
8-hydroxy-2'-deoxyguanosine (8-OH-dG) was first reported in 1984 as a major form of oxidative DNA damage product by heated sugar, Fenton-type reagents and X-irradiation in vitro. 8-OH-dG has been detected in cellular DNA using an HPLC-ECD method in many laboratories. Analyses of 8-OH-dG in animal organ DNA after the administration of oxygen radical-forming chemicals will be useful for assessments of their carcinogenic risk. Its analysis in human leucocyte DNA and in urine is a new approach to the assessment of an individual's cancer risk due to oxidative stress. The increase of the 8-OH-dG level in the cellular DNA, detected by HPLC-ECD method, was supported by its immunochemical detection and its enhanced repair activity. The validity of the general use of 8-OH-dG as a marker of cellular oxidative stress is discussed.
Collapse
|
Review |
28 |
821 |
3
|
Kasai H, Crain PF, Kuchino Y, Nishimura S, Ootsuyama A, Tanooka H. Formation of 8-hydroxyguanine moiety in cellular DNA by agents producing oxygen radicals and evidence for its repair. Carcinogenesis 1986; 7:1849-51. [PMID: 3769133 DOI: 10.1093/carcin/7.11.1849] [Citation(s) in RCA: 760] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
8-Hydroxydeoxyguanosine (8-OH-dG) was detected in DNA isolated from HeLa cells after the cells in tissue culture had been irradiated with X-rays and from the liver of mice after the whole animals had been irradiated with gamma-rays. The amounts of 8-OH-dG in DNA after in vivo irradiation were three orders of magnitude lower than those after in vitro irradiation (0.008-0.032 8-OH-dG residue/10(5) dG/krad). The 8-OH-dG produced in liver DNA by irradiation of mice decreased with time, suggesting the presence of a repair enzyme(s) acting on 8-OH-dG in mouse liver. Treatment of Salmonella typhimurium cells with hydrogen peroxide also caused increase in the 8-OH-dG content. These results indicate that 8-OH-dG is formed in vivo in cellular DNA on treatment with various oxygen radical-producing agents and that it is repairable.
Collapse
|
|
39 |
760 |
4
|
Kasai H, Nishimura S. Hydroxylation of deoxyguanosine at the C-8 position by ascorbic acid and other reducing agents. Nucleic Acids Res 1984; 12:2137-45. [PMID: 6701097 PMCID: PMC318646 DOI: 10.1093/nar/12.4.2137] [Citation(s) in RCA: 693] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The C-8 position of deoxyguanosine (dGuo) was hydroxylated by ascorbic acid in the presence of oxygen (O2) in 0.1 M phosphate buffer (pH 6.8) at 37 degrees C. Addition of hydrogen peroxide (H2O2) remarkably enhanced this hydroxylation. The Udenfriend system [ascorbic acid, FeII, ethylenediaminetetraacetic acid (EDTA) and O2] was also effective for hydroxylation of dGuo in high yield. Guanine residues in DNA were also hydroxylated by ascorbic acid. Other reducing agents, such as hydroxylamine, hydrazine, dihydroxymaleic acid, sodium bisulfite and acetol, were also effective for the hydroxylation reaction, as were metal-EDTA complexes (FeII-, SnII-, TiIII-, CuI-EDTA). An OH radical seemed to be involved in this hydroxylation reaction in most of the above hydroxylating systems, but another reaction mechanism may also be involved, particularly when dGuo is hydroxylated by ascorbic acid alone or ascorbic acid plus H2O2. The possible biological significance of the hydroxylation of guanine residues in DNA in relation to mutagenesis and carcinogenesis is discussed.
Collapse
|
research-article |
41 |
693 |
5
|
Kuchino Y, Mori F, Kasai H, Inoue H, Iwai S, Miura K, Ohtsuka E, Nishimura S. Misreading of DNA templates containing 8-hydroxydeoxyguanosine at the modified base and at adjacent residues. Nature 1987; 327:77-9. [PMID: 3574469 DOI: 10.1038/327077a0] [Citation(s) in RCA: 555] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
It has been shown previously that deoxyguanosine residues in DNA are hydroxylated at the C-8 position both in vitro and in vivo to produce 8-hydroxydeoxyguanosine (8-OH-dG) by various agents that produce oxygen radicals such as reducing reagents-O2, metal ions-O2, polyphenol-H2O2-Fe3+, asbestos-H2O2 or ionizing radiation. These agents are mostly either mutagenic or carcinogenic; therefore, the formation of 8-OH-dG can also be considered a likely cause of mutation or carcinogenesis by oxygen radicals. It is of interest to know whether the 8-OH-dG residue in DNA is misread during DNA replication. To answer this question, we have examined the effect of the 8-OH-dG residue in DNA on the fidelity of DNA replication using a DNA synthesis system in vitro with Escherichia coli DNA polymerase I (Klenow fragment). The synthetic oligodeoxynucleotides, with or without an 8-OH-dG residue in a specified position, were chemically synthesized and used as templates for DNA synthesis under the conditions of the dideoxy chain termination sequencing method. Surprisingly, in addition to misreading of the 8-OH-dG residue itself, pyrimidines next to the 8-OH-dG residue (G has not yet been tested) were also misread.
Collapse
|
|
38 |
555 |
6
|
Tchou J, Kasai H, Shibutani S, Chung MH, Laval J, Grollman AP, Nishimura S. 8-oxoguanine (8-hydroxyguanine) DNA glycosylase and its substrate specificity. Proc Natl Acad Sci U S A 1991; 88:4690-4. [PMID: 2052552 PMCID: PMC51731 DOI: 10.1073/pnas.88.11.4690] [Citation(s) in RCA: 522] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Substrate specificities of FPG protein (also known as formamidopyrimidine DNA glycosylase) and 8-hydroxyguanine endonuclease were compared by using defined duplex oligodeoxynucleotides containing single residues of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), 8-oxo-7,8-dihydro-2'-deoxyadenosine (8-oxodA), and 2,6-diamino-4-hydroxy-5-(N-methyl)formamidopyrimidine (Me-Fapy). Duplexes containing 8-oxodG positioned opposite dC, dG, or dT were cleaved, whereas single-stranded DNA and duplexes containing 8-oxodG.dA or 8-oxodA positioned opposite any of the four DNA bases were relatively resistant. Both enzymes cut duplexes containing 8-oxoG.dC 3' and 5' to the modified base but failed to cleave duplex DNA containing synthetic abasic sites, mismatches containing dG, or unmodified DNA. 8-Oxoguanine, identified by HPLC-electrochemical detection techniques, was released during the enzymatic reaction. Apparent Km values for FPG protein acting on duplex substrates containing a single Me-Fapy or 8-oxodG residue positioned opposite dC were 41 and 8 nM, respectively, and those for 8-hydroxyguanine endonuclease were 30 and 13 nM, respectively. Comparison of the properties of the two enzyme activities suggest that they are identical. In view of the widespread distribution of 8-oxodG in cellular DNA, the demonstrated miscoding and mutagenic properties of this lesion, and the existence of a bacterial gene coding for FPG protein, we propose that 8-oxodG DNA is the primary physiological substrate for a constituent glycosylase found in bacteria and mammalian cells.
Collapse
|
research-article |
34 |
522 |
7
|
Weinstein IB, Jeffrey AM, Jennette KW, Blobstein SH, Harvey RG, Harris C, Autrup H, Kasai H, Nakanishi K. Benzo(a)pyrene diol epoxides as intermediates in nucleic acid binding in vitro and in vivo. Science 1976; 193:592-5. [PMID: 959820 DOI: 10.1126/science.959820] [Citation(s) in RCA: 474] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Evidence has been obtained that a specific isomer of a diol epoxide derivative of benzo(a)pyrene, (+/-)-7 beta,8alpha-dihydroxy-9alpha, 10alpha-epoxy-7,8,9,10-tetrahydrobenzo(a)pyrene, is an intermediate in the binding of benzo(a)pyrene to RNA in cultured bovine bronchial mucosa. An adduct is formed between position 10 of this derivative and the 2-amino group of guanine.
Collapse
|
|
49 |
474 |
8
|
Moda-Sava RN, Murdock MH, Parekh PK, Fetcho RN, Huang BS, Huynh TN, Witztum J, Shaver DC, Rosenthal DL, Alway EJ, Lopez K, Meng Y, Nellissen L, Grosenick L, Milner TA, Deisseroth K, Bito H, Kasai H, Liston C. Sustained rescue of prefrontal circuit dysfunction by antidepressant-induced spine formation. SCIENCE (NEW YORK, N.Y.) 2019; 364:364/6436/eaat8078. [PMID: 30975859 DOI: 10.1126/science.aat8078] [Citation(s) in RCA: 391] [Impact Index Per Article: 65.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 02/18/2019] [Indexed: 12/11/2022]
Abstract
The neurobiological mechanisms underlying the induction and remission of depressive episodes over time are not well understood. Through repeated longitudinal imaging of medial prefrontal microcircuits in the living brain, we found that prefrontal spinogenesis plays a critical role in sustaining specific antidepressant behavioral effects and maintaining long-term behavioral remission. Depression-related behavior was associated with targeted, branch-specific elimination of postsynaptic dendritic spines on prefrontal projection neurons. Antidepressant-dose ketamine reversed these effects by selectively rescuing eliminated spines and restoring coordinated activity in multicellular ensembles that predict motivated escape behavior. Prefrontal spinogenesis was required for the long-term maintenance of antidepressant effects on motivated escape behavior but not for their initial induction.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
391 |
9
|
Eto K, Tsubamoto Y, Terauchi Y, Sugiyama T, Kishimoto T, Takahashi N, Yamauchi N, Kubota N, Murayama S, Aizawa T, Akanuma Y, Aizawa S, Kasai H, Yazaki Y, Kadowaki T. Role of NADH shuttle system in glucose-induced activation of mitochondrial metabolism and insulin secretion. Science 1999; 283:981-5. [PMID: 9974390 DOI: 10.1126/science.283.5404.981] [Citation(s) in RCA: 362] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Glucose metabolism in glycolysis and in mitochondria is pivotal to glucose-induced insulin secretion from pancreatic beta cells. One or more factors derived from glycolysis other than pyruvate appear to be required for the generation of mitochondrial signals that lead to insulin secretion. The electrons of the glycolysis-derived reduced form of nicotinamide adenine dinucleotide (NADH) are transferred to mitochondria through the NADH shuttle system. By abolishing the NADH shuttle function, glucose-induced increases in NADH autofluorescence, mitochondrial membrane potential, and adenosine triphosphate content were reduced and glucose-induced insulin secretion was abrogated. The NADH shuttle evidently couples glycolysis with activation of mitochondrial energy metabolism to trigger insulin secretion.
Collapse
|
|
26 |
362 |
10
|
Kohno T, Shinmura K, Tosaka M, Tani M, Kim SR, Sugimura H, Nohmi T, Kasai H, Yokota J. Genetic polymorphisms and alternative splicing of the hOGG1 gene, that is involved in the repair of 8-hydroxyguanine in damaged DNA. Oncogene 1998; 16:3219-25. [PMID: 9681819 DOI: 10.1038/sj.onc.1201872] [Citation(s) in RCA: 331] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The hOGG1 gene encodes a DNA glycosylase that excises 8-hydroxyguanine (oh8Gua) from damaged DNA. Structural analyses of the hOGG1 gene and its transcripts were performed in normal and lung cancer cells. Due to a genetic polymorphism at codon 326, hOGG1-Ser326 and hOGG1-Cys326 proteins were produced in human cells. Activity in the repair of oh8Gua was greater in hOGG1-Ser326 protein than in hOGG1-Cys326 protein in the complementation assay of an E. coli mutant defective in the repair of oh8Gua. Two isoforms of hOGG1 transcripts produced by alternative splicing encoded distinct hOGG1 proteins: one with and the other without a putative nuclear localization signal. Loss of heterozygosity at the hOGG1 locus was frequently (15/ 23, 62.2%) detected in lung cancer cells, and a cell line NCI-H526 had a mutation leading to the formation of the transcripts encoding a truncated hOGG1 protein. However, the oh8Gua levels in nuclear DNA were similar among lung cancer cells and leukocytes irrespective of the type of hOGG1 proteins expressed. These results suggest that the oh8Gua levels are maintained at a steady level, even though multiple hOGG1 proteins are produced due to genetic polymorphisms, mutations and alternative splicing of the hOGG1 gene.
Collapse
|
|
27 |
331 |
11
|
Kasai H, Augustine GJ. Cytosolic Ca2+ gradients triggering unidirectional fluid secretion from exocrine pancreas. Nature 1990; 348:735-8. [PMID: 1701852 DOI: 10.1038/348735a0] [Citation(s) in RCA: 293] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Exocrine gland cells secrete Cl(-)-rich fluid when stimulated by neurotransmitters or hormones. This is generally ascribed to a rise in cytosolic Ca2+ concentration ([Ca2+]i), which leads to activation of Ca2(+)-dependent ion channels. A precise understanding of Cl- secretion from these cells has been hampered by a lack of knowledge about the spatial distribution of the Ca2+ signal and of the Ca2(+)-dependent ion channels in the secreting epithelial cells. We have now used the whole-cell patch-clamp method and digital imaging of [Ca2+]i to examine the response of rat pancreatic acinar cells to acetylcholine. We found a polarization of [Ca2+]i elevation and ion channel activation, and suggest that this comprises a novel 'push-pull' mechanism for unidirectional Cl- secretion. This mechanism would represent a role for cytosolic Ca2+ gradients in cellular function. The cytosolic [Ca2+]i gradients and oscillations of many other cells could have similar roles.
Collapse
|
|
35 |
293 |
12
|
Kasai H, Li YX, Miyashita Y. Subcellular distribution of Ca2+ release channels underlying Ca2+ waves and oscillations in exocrine pancreas. Cell 1993; 74:669-77. [PMID: 8395348 DOI: 10.1016/0092-8674(93)90514-q] [Citation(s) in RCA: 292] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Agonists trigger Ca2+ waves and oscillations in exocrine gland cells. Our confocal Ca2+ imaging revealed three distinct phases during the Ca2+ waves in the rat pancreatic acinar cell. Rises in Ca2+ concentration were initiated at a small trigger zone, or T zone, in the granular area; then, Ca2+ waves rapidly spread within the area and, at high agonist concentrations, propagated slowly toward the basal pole. Injection of inositol 1,4,5-trisphosphate (IP3) or Ca2+ from patch pipettes demonstrated the presence of high sensitivity IP3 receptors at the T zone, Ca(2+)-induced Ca2+ release channels in the granular area, and low sensitivity IP3 receptors in the basal area. The IP3 receptors at the T zone appeared to generate autonomous Ca2+ spikes and to initiate patterned Ca2+ oscillations. Thus, heterogeneous cytosolic localization of Ca2+ release channels plays a key role in Ca2+ waves and oscillations.
Collapse
|
|
32 |
292 |
13
|
Kodama H, Yamaguchi R, Fukuda J, Kasai H, Tanaka T. Increased oxidative deoxyribonucleic acid damage in the spermatozoa of infertile male patients. Fertil Steril 1997; 68:519-24. [PMID: 9314926 DOI: 10.1016/s0015-0282(97)00236-7] [Citation(s) in RCA: 289] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To investigate whether a high level of oxidative DNA damage in spermatozoa occurs in infertile male patients and to examine the influence of antioxidant treatments on the levels of this damage. DESIGN Controlled clinical study and uncontrolled pilot study. SETTING Department of Obstetrics and Gynecology, Akita University School of Medicine. PATIENT(S) Nineteen infertile male and 17 control patients. INTERVENTION(S) The levels of oxidative DNA damage in spermatozoa of infertile male and control patients were compared. In addition, 14 infertile males were given antioxidants for 2 months. MAIN OUTCOME MEASURE(S) The levels of 8-hydroxy-2'-deoxyguanosine, a form of oxidative damage, in the spermatozoa were determined using high-performance liquid chromatography with electrochemical detection. RESULT(S) The levels of 8-hydroxy-2'-deoxyguanosine in sperm DNA were significantly higher in male infertile patients than in the control patients (1.5 +/- 0.2 versus 1.0 +/- 0.1 per 10(5) deoxyguanosine) and were correlated with sperm concentrations in ejaculates. Antioxidant treatment resulted in significant positive effects on sperm concentrations, with a significant reduction in sperm 8-hydroxy-2'-deoxyguanosine levels (from 1.5 +/- 0.2 to 1.1 +/- 0.1 per 10(5) deoxyguanosine). CONCLUSION(S) Our present data demonstrate an association between the level of oxidative DNA damage in spermatozoa and male infertility and point to the possible use of antioxidants to reduce this damage.
Collapse
|
|
28 |
289 |
14
|
Wang H, Peca J, Matsuzaki M, Matsuzaki K, Noguchi J, Qiu L, Wang D, Zhang F, Boyden E, Deisseroth K, Kasai H, Hall WC, Feng G, Augustine GJ. High-speed mapping of synaptic connectivity using photostimulation in Channelrhodopsin-2 transgenic mice. Proc Natl Acad Sci U S A 2007; 104:8143-8. [PMID: 17483470 PMCID: PMC1876585 DOI: 10.1073/pnas.0700384104] [Citation(s) in RCA: 283] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To permit rapid optical control of brain activity, we have engineered multiple lines of transgenic mice that express the light-activated cation channel Channelrhodopsin-2 (ChR2) in subsets of neurons. Illumination of ChR2-positive neurons in brain slices produced photocurrents that generated action potentials within milliseconds and with precisely timed latencies. The number of light-evoked action potentials could be controlled by varying either the amplitude or duration of illumination. Furthermore, the frequency of light-evoked action potentials could be precisely controlled up to 30 Hz. Photostimulation also could evoke synaptic transmission between neurons, and, by scanning with a small laser light spot, we were able to map the spatial distribution of synaptic circuits connecting neurons within living cerebral cortex. We conclude that ChR2 is a genetically based photostimulation technology that permits analysis of neural circuits with high spatial and temporal resolution in transgenic mammals.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
283 |
15
|
Kasai H, Nishimura S, Kurokawa Y, Hayashi Y. Oral administration of the renal carcinogen, potassium bromate, specifically produces 8-hydroxydeoxyguanosine in rat target organ DNA. Carcinogenesis 1987; 8:1959-61. [PMID: 3677321 DOI: 10.1093/carcin/8.12.1959] [Citation(s) in RCA: 263] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Following oral administration of a renal carcinogen, potassium bromate (KBrO3), to the rat, a significant increase of 8-hydroxydeoxyguanosine (8-OH-dG) in kidney DNA was observed. In the liver, a non-target tissue, the increase in 8-OH-dG was not significant. The non carcinogenic oxidants, NaCIO and NaCIO2, had no effect on 8-OH-dG formation in kidney DNA. These results suggest that formation of 8-OH-dG in tissue DNA is closely related to KBrO3 carcinogenesis.
Collapse
|
|
38 |
263 |
16
|
|
Review |
31 |
247 |
17
|
Asami S, Manabe H, Miyake J, Tsurudome Y, Hirano T, Yamaguchi R, Itoh H, Kasai H. Cigarette smoking induces an increase in oxidative DNA damage, 8-hydroxydeoxyguanosine, in a central site of the human lung. Carcinogenesis 1997; 18:1763-6. [PMID: 9328173 DOI: 10.1093/carcin/18.9.1763] [Citation(s) in RCA: 215] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
To evaluate the effect of cigarette smoking on oxidative stress in lung tissues, we compared the levels of a type of oxidative DNA damage, 8-hydroxydeoxyguanosine (8-OH-dG), in tissue obtained from the central sites of lungs from 14 current smokers, seven ex-smokers and nine non-smokers. The mean level of 8-OH-dG in the lung tissues from smokers was 1.43-fold higher than that of the non-smokers (the difference was statistically significant, P = 0.0262). A positive correlation between the 8-OH-dG levels in normal lung tissues and the Brinkman index was obtained from smokers and ex-smokers (r = 0.525; P = 0.0134). A positive correlation was also obtained for the 8-OH-dG levels in normal lung tissues and the number of cigarettes smoked per day (r = 0.436; P = 0.0132). These results suggest that oxidative DNA damage is induced in lung DNA by cigarette smoking.
Collapse
|
|
28 |
215 |
18
|
Kasai H, Petersen OH. Spatial dynamics of second messengers: IP3 and cAMP as long-range and associative messengers. Trends Neurosci 1994; 17:95-101. [PMID: 7515531 DOI: 10.1016/0166-2236(94)90112-0] [Citation(s) in RCA: 202] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Recent imaging experiments have revealed the distinct spatial dynamics of second-messenger actions. In general, actions of Ca2+ tend to be local, whereas those of other messengers such as inositol 1,4,5-trisphosphate (IP3) and cAMP are long range. In pancreatic acinar cells, IP3 generated at the base can diffuse across the cell and evoke a spatially confined Ca2+ signal in the apical pole, triggering enzyme and fluid secretion. Similar mechanisms might also operate in other cell types. We propose that the distinct dynamics of messengers might be relevant to neuronal function: IP3 and cAMP could convey signals over long distances along neurites, and serve as mediators for association and co-operation, for example, during learning.
Collapse
|
Review |
31 |
202 |
19
|
Aosaki T, Kasai H. Characterization of two kinds of high-voltage-activated Ca-channel currents in chick sensory neurons. Differential sensitivity to dihydropyridines and omega-conotoxin GVIA. Pflugers Arch 1989; 414:150-6. [PMID: 2547195 DOI: 10.1007/bf00580957] [Citation(s) in RCA: 202] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
High-voltage-activated (HVA) Ca-channel currents in chick sensory neurons were characterized by dihydropyridine compounds (DHPs) and omega-conotoxin GVIA (omega CTX) using patch-clamp methods. In single-channel recordings, two HVA-currents were identified by their single-channel conductances, 13 pS and 25 pS in 110 mM BaCl2. DHPs selectively affected the large-conductance channel. omega CTX (5 microM), on the other hand, irreversibly eliminated only the small-conductance channel, while the large-conductance channel was either unaffected or only transiently blocked. In whole-cell recordings the macroscopic HVA-current was completely and irreversibly blocked by omega CTX but insensitive to DHPs in 60% of the cells. This current presumably was carried by the 13 pS channel. In the remaining cells, a part of the HVA-current (10%, SD = 11%) was either unaffected or transiently blocked by omega CTX and was sensitive to DHPs. This current presumably was carried by the 25 pS channel. Inactivation of both macroscopic current component was incomplete during a 150 ms long depolarization. Our data suggest that the HVA-currents in chick sensory neurons are carried by two distinct Ca-channels that are differentially affected by omega CTX and DHPs.
Collapse
|
|
36 |
202 |
20
|
Terauchi Y, Sakura H, Yasuda K, Iwamoto K, Takahashi N, Ito K, Kasai H, Suzuki H, Ueda O, Kamada N. Pancreatic beta-cell-specific targeted disruption of glucokinase gene. Diabetes mellitus due to defective insulin secretion to glucose. J Biol Chem 1995; 270:30253-6. [PMID: 8530440 DOI: 10.1074/jbc.270.51.30253] [Citation(s) in RCA: 176] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Mice carrying a null mutation in the glucokinase (GK) gene in pancreatic beta-cells, but not in the liver, were generated by disrupting the beta-cell-specific exon. Heterozygous mutant mice showed early-onset mild diabetes due to impaired insulin-secretory response to glucose. Homozygotes showed severe diabetes shortly after birth and died within a week. GK-deficient islets isolated from homozygotes showed defective insulin secretion in response to glucose, while they responded to other secretagogues: almost normally to arginine and to some extent to sulfonylureas. These data provide the first direct proof that GK serves as a glucose sensor molecule for insulin secretion and plays a pivotal role in glucose homeostasis. GK-deficient mice serve as an animal model of the insulin-secretory defect in human non-insulin-dependent diabetes mellitus.
Collapse
|
|
30 |
176 |
21
|
Fujikawa K, Kamiya H, Yakushiji H, Fujii Y, Nakabeppu Y, Kasai H. The oxidized forms of dATP are substrates for the human MutT homologue, the hMTH1 protein. J Biol Chem 1999; 274:18201-5. [PMID: 10373420 DOI: 10.1074/jbc.274.26.18201] [Citation(s) in RCA: 172] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The possibility that Escherichia coli MutT and human MTH1 (hMTH1) hydrolyze oxidized DNA precursors other than 8-hydroxy-dGTP (8-OH-dGTP) was investigated. We report here that hMTH1 hydrolyzed 2-hydroxy-dATP (2-OH-dATP) and 8-hydroxy-dATP (8-OH-dATP), oxidized forms of dATP, but not (R)-8,5'-cyclo-dATP, 5-hydroxy-dCTP, and 5-formyl-dUTP. The kinetic parameters indicated that 2-OH-dATP was hydrolyzed more efficiently and with higher affinity than 8-OH-dGTP. 8-OH-dATP was hydrolyzed as efficiently as 8-OH-dGTP. The preferential hydrolysis of 2-OH-dATP over 8-OH-dGTP was observed at all of the pH values tested (pH 7.2 to pH 8.8). In particular, a 5-fold difference in the hydrolysis efficiencies for 2-OH-dATP over 8-OH-dGTP was found at pH 7.2. However, E. coli MutT had no hydrolysis activity for either 2-OH-dATP or 8-OH-dATP. Thus, E. coli MutT is an imperfect counterpart for hMTH1. Furthermore, we found that 2-hydroxy-dADP and 8-hydroxy-dGDP competitively inhibited both the 2-OH-dATP hydrolase and 8-OH-dGTP hydrolase activities of hMTH1. The inhibitory effects of 2-hydroxy-dADP were 3-fold stronger than those of 8-hydroxy-dGDP. These results suggest that the three damaged nucleotides share the same recognition site of hMTH1 and that it is a more important sanitization enzyme than expected thus far.
Collapse
|
|
26 |
172 |
22
|
Kasai H, Oashi Z, Harada F, Nishimura S, Oppenheimer NJ, Crain PF, Liehr JG, von Minden DL, McCloskey JA. Structure of the modified nucleoside Q isolated from Escherichia coli transfer ribonucleic acid. 7-(4,5-cis-Dihydroxy-1-cyclopenten-3-ylaminomethyl)-7-deazaguanosine. Biochemistry 1975; 14:4198-208. [PMID: 1101947 DOI: 10.1021/bi00690a008] [Citation(s) in RCA: 161] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The structure of the unknown modified nucleoside Q, which is present in the first position of the anticodons of Escherichia coli tRNA Tyr, tRNA His, tRNA Asn, tRNA Asp, is proposed to be 7-(4,5-cis-dihydroxy-1-cyclopenten-3-ylaminomethyl)-7-deazaguanosine (1). The structure of Q was deduced by means of its uv absorption, mass spectrometry, proton magnetic resonance spectroscopy, and studies of its chemical reactivity. The structure of Q is unique since it is a derivative of 7-deazaguanosine having cyclopentenediol in the side chain at the C-7 position. This is the first example of purine skeleton modification in a nucleoside from tRNA.
Collapse
|
|
50 |
161 |
23
|
Asao H, Sasaki Y, Arita T, Tanaka N, Endo K, Kasai H, Takeshita T, Endo Y, Fujita T, Sugamura K. Hrs is associated with STAM, a signal-transducing adaptor molecule. Its suppressive effect on cytokine-induced cell growth. J Biol Chem 1997; 272:32785-91. [PMID: 9407053 DOI: 10.1074/jbc.272.52.32785] [Citation(s) in RCA: 159] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We previously reported a new type of signal-transducing adaptor molecule, STAM, which was shown to be involved in cytokine-mediated intracellular signal transduction. In this study, we molecularly cloned a 110-kDa phosphotyrosine protein inducible by stimulation with interleukin 2 (IL-2). The 110-kDa molecule was found to be a human counterpart of mouse Hrs (hepatocyte growth factor-regulated tyrosine kinase substrate) and to be associated with STAM. Tyrosine phosphorylation of Hrs is induced rapidly after stimulation with IL-2 and granulocyte-macrophage colony-stimulating factor as well as hepatocyte growth factor. The mutual association sites of Hrs and STAM include highly conserved coiled-coil sequences, suggesting that their association is mediated by the coiled-coil structures. Exogenous introduction of the wild-type Hrs significantly suppressed DNA synthesis upon stimulation with IL-2 and granulocyte-macrophage colony-stimulating factor, while the Hrs mutant deleted of the STAM-binding site lost such suppressive ability. These results suggest that Hrs counteracts the STAM function which is critical for cell growth signaling mediated by the cytokines.
Collapse
|
|
28 |
159 |
24
|
Kasai H, Fukada S, Yamaizumi Z, Sugie S, Mori H. Action of chlorogenic acid in vegetables and fruits as an inhibitor of 8-hydroxydeoxyguanosine formation in vitro and in a rat carcinogenesis model. Food Chem Toxicol 2000; 38:467-71. [PMID: 10762733 DOI: 10.1016/s0278-6915(00)00014-4] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Various plant extracts, such as carrot, burdock (gobou), apricot and prune, showed inhibitory effects in an in vitro assay of lipid peroxide-induced 8-hydroxydeoxyguanosine (8-OH-dG) formation. The major inhibitor purified from various plants extracts was identified as chlorogenic acid (CA), on the basis of UV- and mass-spectra and comparison with a standard sample. To examine whether CA also inhibits 8-OH-dG formation in animal organs, an oxygen radical-forming carcinogen, 4-nitroquinoline-1-oxide, was administered to rats, with or without CA. The 8-OH-dG level in the DNA of the rat tongue, the target organ, was significantly reduced in the CA-treated group.
Collapse
|
|
25 |
159 |
25
|
Kasai H, Ezaki T, Harayama S. Differentiation of phylogenetically related slowly growing mycobacteria by their gyrB sequences. J Clin Microbiol 2000; 38:301-8. [PMID: 10618105 PMCID: PMC88713 DOI: 10.1128/jcm.38.1.301-308.2000] [Citation(s) in RCA: 157] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/1999] [Accepted: 10/04/1999] [Indexed: 11/20/2022] Open
Abstract
The conventional methods for identifying mycobacterial species are based on their phenotypic characterization. Since some problematic species are slow growers, their taxonomy takes several weeks or months to identify. The ribosomal DNA (rDNA) sequence-based identification strategy has been adopted to solve this problem. More recently, the gyrB sequences have been shown to be useful phylogenetic markers for the identification of species. We determined the gyrB sequences of 43 slowly growing strains belonging to 15 species in the genus Mycobacterium. The frequencies of base substitutions in the gyrB sequences were comparable to those in the 16S-23S rDNA internal transcribed spacer (ITS) sequences. The ITS sequences of four species belonging to the M. tuberculosis complex (M. tuberculosis, M. bovis, M. africanum, and M. microti) were 100% identical, while four synonymous substitutions were found in the gyrB sequences of these strains. Based on the differences found in the gyrB sequences, we developed PCR and PCR-restriction fragment length polymorphism methods to discriminate these species.
Collapse
|
Comparative Study |
25 |
157 |