1
|
Helbig I, Mefford HC, Sharp AJ, Guipponi M, Fichera M, Franke A, Muhle H, de Kovel C, Baker C, von Spiczak S, Kron KL, Steinich I, Kleefuss-Lie AA, Leu C, Gaus V, Schmitz B, Klein KM, Reif PS, Rosenow F, Weber Y, Lerche H, Zimprich F, Urak L, Fuchs K, Feucht M, Genton P, Thomas P, Visscher F, de Haan GJ, Møller RS, Hjalgrim H, Luciano D, Wittig M, Nothnagel M, Elger CE, Nürnberg P, Romano C, Malafosse A, Koeleman BPC, Lindhout D, Stephani U, Schreiber S, Eichler EE, Sander T. 15q13.3 microdeletions increase risk of idiopathic generalized epilepsy. Nat Genet 2009; 41:160-2. [PMID: 19136953 DOI: 10.1038/ng.292] [Citation(s) in RCA: 411] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Accepted: 10/27/2008] [Indexed: 11/09/2022]
Abstract
We identified 15q13.3 microdeletions encompassing the CHRNA7 gene in 12 of 1,223 individuals with idiopathic generalized epilepsy (IGE), which were not detected in 3,699 controls (joint P = 5.32 x 10(-8)). Most deletion carriers showed common IGE syndromes without other features previously associated with 15q13.3 microdeletions, such as intellectual disability, autism or schizophrenia. Our results indicate that 15q13.3 microdeletions constitute the most prevalent risk factor for common epilepsies identified to date.
Collapse
|
Research Support, Non-U.S. Gov't |
16 |
411 |
2
|
Mefford HC, Muhle H, Ostertag P, von Spiczak S, Buysse K, Baker C, Franke A, Malafosse A, Genton P, Thomas P, Gurnett CA, Schreiber S, Bassuk AG, Guipponi M, Stephani U, Helbig I, Eichler EE. Genome-wide copy number variation in epilepsy: novel susceptibility loci in idiopathic generalized and focal epilepsies. PLoS Genet 2010; 6:e1000962. [PMID: 20502679 PMCID: PMC2873910 DOI: 10.1371/journal.pgen.1000962] [Citation(s) in RCA: 352] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Accepted: 04/20/2010] [Indexed: 11/18/2022] Open
Abstract
Epilepsy is one of the most common neurological disorders in humans with a prevalence of 1% and a lifetime incidence of 3%. Several genes have been identified in rare autosomal dominant and severe sporadic forms of epilepsy, but the genetic cause is unknown in the vast majority of cases. Copy number variants (CNVs) are known to play an important role in the genetic etiology of many neurodevelopmental disorders, including intellectual disability (ID), autism, and schizophrenia. Genome-wide studies of copy number variation in epilepsy have not been performed. We have applied whole-genome oligonucleotide array comparative genomic hybridization to a cohort of 517 individuals with various idiopathic, non-lesional epilepsies. We detected one or more rare genic CNVs in 8.9% of affected individuals that are not present in 2,493 controls; five individuals had two rare CNVs. We identified CNVs in genes previously implicated in other neurodevelopmental disorders, including two deletions in AUTS2 and one deletion in CNTNAP2. Therefore, our findings indicate that rare CNVs are likely to contribute to a broad range of generalized and focal epilepsies. In addition, we find that 2.9% of patients carry deletions at 15q11.2, 15q13.3, or 16p13.11, genomic hotspots previously associated with ID, autism, or schizophrenia. In summary, our findings suggest common etiological factors for seemingly diverse diseases such as ID, autism, schizophrenia, and epilepsy.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
352 |
3
|
de Kovel CGF, Trucks H, Helbig I, Mefford HC, Baker C, Leu C, Kluck C, Muhle H, von Spiczak S, Ostertag P, Obermeier T, Kleefuss-Lie AA, Hallmann K, Steffens M, Gaus V, Klein KM, Hamer HM, Rosenow F, Brilstra EH, Trenité DKN, Swinkels MEM, Weber YG, Unterberger I, Zimprich F, Urak L, Feucht M, Fuchs K, Møller RS, Hjalgrim H, De Jonghe P, Suls A, Rückert IM, Wichmann HE, Franke A, Schreiber S, Nürnberg P, Elger CE, Lerche H, Stephani U, Koeleman BPC, Lindhout D, Eichler EE, Sander T. Recurrent microdeletions at 15q11.2 and 16p13.11 predispose to idiopathic generalized epilepsies. Brain 2009; 133:23-32. [PMID: 19843651 DOI: 10.1093/brain/awp262] [Citation(s) in RCA: 349] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Idiopathic generalized epilepsies account for 30% of all epilepsies. Despite a predominant genetic aetiology, the genetic factors predisposing to idiopathic generalized epilepsies remain elusive. Studies of structural genomic variations have revealed a significant excess of recurrent microdeletions at 1q21.1, 15q11.2, 15q13.3, 16p11.2, 16p13.11 and 22q11.2 in various neuropsychiatric disorders including autism, intellectual disability and schizophrenia. Microdeletions at 15q13.3 have recently been shown to constitute a strong genetic risk factor for common idiopathic generalized epilepsy syndromes, implicating that other recurrent microdeletions may also be involved in epileptogenesis. This study aimed to investigate the impact of five microdeletions at the genomic hotspot regions 1q21.1, 15q11.2, 16p11.2, 16p13.11 and 22q11.2 on the genetic risk to common idiopathic generalized epilepsy syndromes. The candidate microdeletions were assessed by high-density single nucleotide polymorphism arrays in 1234 patients with idiopathic generalized epilepsy from North-western Europe and 3022 controls from the German population. Microdeletions were validated by quantitative polymerase chain reaction and their breakpoints refined by array comparative genomic hybridization. In total, 22 patients with idiopathic generalized epilepsy (1.8%) carried one of the five novel microdeletions compared with nine controls (0.3%) (odds ratio = 6.1; 95% confidence interval 2.8-13.2; chi(2) = 26.7; 1 degree of freedom; P = 2.4 x 10(-7)). Microdeletions were observed at 1q21.1 [Idiopathic generalized epilepsy (IGE)/control: 1/1], 15q11.2 (IGE/control: 12/6), 16p11.2 IGE/control: 1/0, 16p13.11 (IGE/control: 6/2) and 22q11.2 (IGE/control: 2/0). Significant associations with IGEs were found for the microdeletions at 15q11.2 (odds ratio = 4.9; 95% confidence interval 1.8-13.2; P = 4.2 x 10(-4)) and 16p13.11 (odds ratio = 7.4; 95% confidence interval 1.3-74.7; P = 0.009). Including nine patients with idiopathic generalized epilepsy in this cohort with known 15q13.3 microdeletions (IGE/control: 9/0), parental transmission could be examined in 14 families. While 10 microdeletions were inherited (seven maternal and three paternal transmissions), four microdeletions occurred de novo at 15q13.3 (n = 1), 16p13.11 (n = 2) and 22q11.2 (n = 1). Eight of the transmitting parents were clinically unaffected, suggesting that the microdeletion itself is not sufficient to cause the epilepsy phenotype. Although the microdeletions investigated are individually rare (<1%) in patients with idiopathic generalized epilepsy, they collectively seem to account for a significant fraction of the genetic variance in common idiopathic generalized epilepsy syndromes. The present results indicate an involvement of microdeletions at 15q11.2 and 16p13.11 in epileptogenesis and strengthen the evidence that recurrent microdeletions at 15q11.2, 15q13.3 and 16p13.11 confer a pleiotropic susceptibility effect to a broad range of neuropsychiatric disorders.
Collapse
|
Research Support, Non-U.S. Gov't |
16 |
349 |
4
|
Wolff M, Johannesen KM, Hedrich UBS, Masnada S, Rubboli G, Gardella E, Lesca G, Ville D, Milh M, Villard L, Afenjar A, Chantot-Bastaraud S, Mignot C, Lardennois C, Nava C, Schwarz N, Gérard M, Perrin L, Doummar D, Auvin S, Miranda MJ, Hempel M, Brilstra E, Knoers N, Verbeek N, van Kempen M, Braun KP, Mancini G, Biskup S, Hörtnagel K, Döcker M, Bast T, Loddenkemper T, Wong-Kisiel L, Baumeister FM, Fazeli W, Striano P, Dilena R, Fontana E, Zara F, Kurlemann G, Klepper J, Thoene JG, Arndt DH, Deconinck N, Schmitt-Mechelke T, Maier O, Muhle H, Wical B, Finetti C, Brückner R, Pietz J, Golla G, Jillella D, Linnet KM, Charles P, Moog U, Õiglane-Shlik E, Mantovani JF, Park K, Deprez M, Lederer D, Mary S, Scalais E, Selim L, Van Coster R, Lagae L, Nikanorova M, Hjalgrim H, Korenke GC, Trivisano M, Specchio N, Ceulemans B, Dorn T, Helbig KL, Hardies K, Stamberger H, de Jonghe P, Weckhuysen S, Lemke JR, Krägeloh-Mann I, Helbig I, Kluger G, Lerche H, Møller RS. Genetic and phenotypic heterogeneity suggest therapeutic implications in SCN2A-related disorders. Brain 2017; 140:1316-1336. [DOI: 10.1093/brain/awx054] [Citation(s) in RCA: 311] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 01/18/2017] [Indexed: 11/13/2022] Open
|
|
8 |
311 |
5
|
Abou-Khalil B, Auce P, Avbersek A, Bahlo M, Balding DJ, Bast T, Baum L, Becker AJ, Becker F, Berghuis B, Berkovic SF, Boysen KE, Bradfield JP, Brody LC, Buono RJ, Campbell E, Cascino GD, Catarino CB, Cavalleri GL, Cherny SS, Chinthapalli K, Coffey AJ, Compston A, Coppola A, Cossette P, Craig JJ, de Haan GJ, De Jonghe P, de Kovel CGF, Delanty N, Depondt C, Devinsky O, Dlugos DJ, Doherty CP, Elger CE, Eriksson JG, Ferraro TN, Feucht M, Francis B, Franke A, French JA, Freytag S, Gaus V, Geller EB, Gieger C, Glauser T, Glynn S, Goldstein DB, Gui H, Guo Y, Haas KF, Hakonarson H, Hallmann K, Haut S, Heinzen EL, Helbig I, Hengsbach C, Hjalgrim H, Iacomino M, Ingason A, Jamnadas-Khoda J, Johnson MR, Kälviäinen R, Kantanen AM, Kasperavičiūte D, Kasteleijn-Nolst Trenite D, Kirsch HE, Knowlton RC, Koeleman BPC, Krause R, Krenn M, Kunz WS, Kuzniecky R, Kwan P, Lal D, Lau YL, Lehesjoki AE, Lerche H, Leu C, Lieb W, Lindhout D, Lo WD, Lopes-Cendes I, Lowenstein DH, Malovini A, Marson AG, Mayer T, McCormack M, Mills JL, Mirza N, Moerzinger M, Møller RS, Molloy AM, Muhle H, Newton M, Ng PW, Nöthen MM, Nürnberg P, O’Brien TJ, Oliver KL, Palotie A, Pangilinan F, Peter S, Petrovski S, Poduri A, Privitera M, Radtke R, Rau S, Reif PS, Reinthaler EM, Rosenow F, Sander JW, Sander T, Scattergood T, Schachter SC, Schankin CJ, Scheffer IE, Schmitz B, Schoch S, Sham PC, Shih JJ, Sills GJ, Sisodiya SM, Slattery L, Smith A, Smith DF, Smith MC, Smith PE, Sonsma ACM, Speed D, Sperling MR, Steinhoff BJ, Stephani U, Stevelink R, Strauch K, Striano P, Stroink H, Surges R, Tan KM, Thio LL, Thomas GN, Todaro M, Tozzi R, Vari MS, Vining EPG, Visscher F, von Spiczak S, Walley NM, Weber YG, Wei Z, Weisenberg J, Whelan CD, Widdess-Walsh P, Wolff M, Wolking S, Yang W, Zara F, Zimprich F. Genome-wide mega-analysis identifies 16 loci and highlights diverse biological mechanisms in the common epilepsies. Nat Commun 2018; 9:5269. [PMID: 30531953 PMCID: PMC6288131 DOI: 10.1038/s41467-018-07524-z] [Citation(s) in RCA: 254] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 10/30/2018] [Indexed: 12/16/2022] Open
Abstract
The epilepsies affect around 65 million people worldwide and have a substantial missing heritability component. We report a genome-wide mega-analysis involving 15,212 individuals with epilepsy and 29,677 controls, which reveals 16 genome-wide significant loci, of which 11 are novel. Using various prioritization criteria, we pinpoint the 21 most likely epilepsy genes at these loci, with the majority in genetic generalized epilepsies. These genes have diverse biological functions, including coding for ion-channel subunits, transcription factors and a vitamin-B6 metabolism enzyme. Converging evidence shows that the common variants associated with epilepsy play a role in epigenetic regulation of gene expression in the brain. The results show an enrichment for monogenic epilepsy genes as well as known targets of antiepileptic drugs. Using SNP-based heritability analyses we disentangle both the unique and overlapping genetic basis to seven different epilepsy subtypes. Together, these findings provide leads for epilepsy therapies based on underlying pathophysiology.
Collapse
|
research-article |
7 |
254 |
6
|
Stamberger H, Nikanorova M, Willemsen MH, Accorsi P, Angriman M, Baier H, Benkel-Herrenbrueck I, Benoit V, Budetta M, Caliebe A, Cantalupo G, Capovilla G, Casara G, Courage C, Deprez M, Destrée A, Dilena R, Erasmus CE, Fannemel M, Fjær R, Giordano L, Helbig KL, Heyne HO, Klepper J, Kluger GJ, Lederer D, Lodi M, Maier O, Merkenschlager A, Michelberger N, Minetti C, Muhle H, Phalin J, Ramsey K, Romeo A, Schallner J, Schanze I, Shinawi M, Sleegers K, Sterbova K, Syrbe S, Traverso M, Tzschach A, Uldall P, Van Coster R, Verhelst H, Viri M, Winter S, Wolff M, Zenker M, Zoccante L, De Jonghe P, Helbig I, Striano P, Lemke JR, Møller RS, Weckhuysen S. STXBP1encephalopathy. Neurology 2016; 86:954-62. [DOI: 10.1212/wnl.0000000000002457] [Citation(s) in RCA: 193] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 11/16/2015] [Indexed: 12/15/2022] Open
|
|
9 |
193 |
7
|
Feng YCA, Howrigan DP, Abbott LE, Tashman K, Cerrato F, Singh T, Heyne H, Byrnes A, Churchhouse C, Watts N, Solomonson M, Lal D, Heinzen EL, Dhindsa RS, Stanley KE, Cavalleri GL, Hakonarson H, Helbig I, Krause R, May P, Weckhuysen S, Petrovski S, Kamalakaran S, Sisodiya SM, Cossette P, Cotsapas C, De Jonghe P, Dixon-Salazar T, Guerrini R, Kwan P, Marson AG, Stewart R, Depondt C, Dlugos DJ, Scheffer IE, Striano P, Freyer C, McKenna K, Regan BM, Bellows ST, Leu C, Bennett CA, Johns EM, Macdonald A, Shilling H, Burgess R, Weckhuysen D, Bahlo M, O’Brien TJ, Todaro M, Stamberger H, Andrade DM, Sadoway TR, Mo K, Krestel H, Gallati S, Papacostas SS, Kousiappa I, Tanteles GA, Štěrbová K, Vlčková M, Sedláčková L, Laššuthová P, Klein KM, Rosenow F, Reif PS, Knake S, Kunz WS, Zsurka G, Elger CE, Bauer J, Rademacher M, Pendziwiat M, Muhle H, Rademacher A, van Baalen A, von Spiczak S, Stephani U, Afawi Z, Korczyn AD, Kanaan M, Canavati C, Kurlemann G, Müller-Schlüter K, Kluger G, Häusler M, Blatt I, Lemke JR, Krey I, Weber YG, Wolking S, Becker F, Hengsbach C, Rau S, Maisch AF, Steinhoff BJ, Schulze-Bonhage A, Schubert-Bast S, Schreiber H, Borggräfe I, Schankin CJ, Mayer T, Korinthenberg R, Brockmann K, Kurlemann G, Dennig D, Madeleyn R, Kälviäinen R, Auvinen P, Saarela A, Linnankivi T, Lehesjoki AE, Rees MI, Chung SK, Pickrell WO, Powell R, Schneider N, Balestrini S, Zagaglia S, Braatz V, Johnson MR, Auce P, Sills GJ, Baum LW, Sham PC, Cherny SS, Lui CH, Barišić N, Delanty N, Doherty CP, Shukralla A, McCormack M, El-Naggar H, Canafoglia L, Franceschetti S, Castellotti B, Granata T, Zara F, Iacomino M, Madia F, Vari MS, Mancardi MM, Salpietro V, Bisulli F, Tinuper P, Licchetta L, Pippucci T, Stipa C, Minardi R, Gambardella A, Labate A, Annesi G, Manna L, Gagliardi M, Parrini E, Mei D, Vetro A, Bianchini C, Montomoli M, Doccini V, Marini C, Suzuki T, Inoue Y, Yamakawa K, Tumiene B, Sadleir LG, King C, Mountier E, Caglayan SH, Arslan M, Yapıcı Z, Yis U, Topaloglu P, Kara B, Turkdogan D, Gundogdu-Eken A, Bebek N, Uğur-İşeri S, Baykan B, Salman B, Haryanyan G, Yücesan E, Kesim Y, Özkara Ç, Poduri A, Shiedley BR, Shain C, Buono RJ, Ferraro TN, Sperling MR, Lo W, Privitera M, French JA, Schachter S, Kuzniecky RI, Devinsky O, Hegde M, Khankhanian P, Helbig KL, Ellis CA, Spalletta G, Piras F, Piras F, Gili T, Ciullo V, Reif A, McQuillin A, Bass N, McIntosh A, Blackwood D, Johnstone M, Palotie A, Pato MT, Pato CN, Bromet EJ, Carvalho CB, Achtyes ED, Azevedo MH, Kotov R, Lehrer DS, Malaspina D, Marder SR, Medeiros H, Morley CP, Perkins DO, Sobell JL, Buckley PF, Macciardi F, Rapaport MH, Knowles JA, Fanous AH, McCarroll SA, Gupta N, Gabriel SB, Daly MJ, Lander ES, Lowenstein DH, Goldstein DB, Lerche H, Berkovic SF, Neale BM. Ultra-Rare Genetic Variation in the Epilepsies: A Whole-Exome Sequencing Study of 17,606 Individuals. Am J Hum Genet 2019; 105:267-282. [PMID: 31327507 PMCID: PMC6698801 DOI: 10.1016/j.ajhg.2019.05.020] [Citation(s) in RCA: 193] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 05/29/2019] [Indexed: 12/20/2022] Open
Abstract
Sequencing-based studies have identified novel risk genes associated with severe epilepsies and revealed an excess of rare deleterious variation in less-severe forms of epilepsy. To identify the shared and distinct ultra-rare genetic risk factors for different types of epilepsies, we performed a whole-exome sequencing (WES) analysis of 9,170 epilepsy-affected individuals and 8,436 controls of European ancestry. We focused on three phenotypic groups: severe developmental and epileptic encephalopathies (DEEs), genetic generalized epilepsy (GGE), and non-acquired focal epilepsy (NAFE). We observed that compared to controls, individuals with any type of epilepsy carried an excess of ultra-rare, deleterious variants in constrained genes and in genes previously associated with epilepsy; we saw the strongest enrichment in individuals with DEEs and the least strong in individuals with NAFE. Moreover, we found that inhibitory GABAA receptor genes were enriched for missense variants across all three classes of epilepsy, whereas no enrichment was seen in excitatory receptor genes. The larger gene groups for the GABAergic pathway or cation channels also showed a significant mutational burden in DEEs and GGE. Although no single gene surpassed exome-wide significance among individuals with GGE or NAFE, highly constrained genes and genes encoding ion channels were among the lead associations; such genes included CACNA1G, EEF1A2, and GABRG2 for GGE and LGI1, TRIM3, and GABRG2 for NAFE. Our study, the largest epilepsy WES study to date, confirms a convergence in the genetics of severe and less-severe epilepsies associated with ultra-rare coding variation, and it highlights a ubiquitous role for GABAergic inhibition in epilepsy etiology.
Collapse
|
Research Support, N.I.H., Extramural |
6 |
193 |
8
|
Carvill GL, Weckhuysen S, McMahon JM, Hartmann C, Møller RS, Hjalgrim H, Cook J, Geraghty E, O'Roak BJ, Petrou S, Clarke A, Gill D, Sadleir LG, Muhle H, von Spiczak S, Nikanorova M, Hodgson BL, Gazina EV, Suls A, Shendure J, Dibbens LM, De Jonghe P, Helbig I, Berkovic SF, Scheffer IE, Mefford HC. GABRA1 and STXBP1: novel genetic causes of Dravet syndrome. Neurology 2014; 82:1245-53. [PMID: 24623842 PMCID: PMC4001207 DOI: 10.1212/wnl.0000000000000291] [Citation(s) in RCA: 186] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 01/02/2014] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVE To determine the genes underlying Dravet syndrome in patients who do not have an SCN1A mutation on routine testing. METHODS We performed whole-exome sequencing in 13 SCN1A-negative patients with Dravet syndrome and targeted resequencing in 67 additional patients to identify new genes for this disorder. RESULTS We detected disease-causing mutations in 2 novel genes for Dravet syndrome, with mutations in GABRA1 in 4 cases and STXBP1 in 3. Furthermore, we identified 3 patients with previously undetected SCN1A mutations, suggesting that SCN1A mutations occur in even more than the currently accepted ∼ 75% of cases. CONCLUSIONS We show that GABRA1 and STXBP1 make a significant contribution to Dravet syndrome after SCN1A abnormalities have been excluded. Our results have important implications for diagnostic testing, clinical management, and genetic counseling of patients with this devastating disorder and their families.
Collapse
|
Research Support, N.I.H., Extramural |
11 |
186 |
9
|
Moeller F, Siebner HR, Wolff S, Muhle H, Granert O, Jansen O, Stephani U, Siniatchkin M. Simultaneous EEG-fMRI in drug-naive children with newly diagnosed absence epilepsy. Epilepsia 2008; 49:1510-9. [PMID: 18435752 DOI: 10.1111/j.1528-1167.2008.01626.x] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PURPOSE In patients with idiopathic generalized epilepsy (IGE), blood oxygen level dependent (BOLD) EEG during functional MRI (EEG-fMRI) has been successfully used to link changes in regional neuronal activity to the occurrence of generalized spike-and-wave (GSW) discharges. Most EEG-fMRI studies have been performed on adult patients with long-standing epilepsy who were on antiepileptic medication. Here, we applied EEG-fMRI to investigate BOLD signal changes during absence seizures in children with newly diagnosed childhood absence epilepsy (CAE). METHODS Ten drug-naive children with newly diagnosed CAE underwent simultaneous EEG-fMRI. BOLD signal changes associated with ictal EEG activity (i.e., periods of three per second GSW) were analyzed in predefined regions-of-interests (ROIs), including the thalamus, the precuneus, and caudate nucleus. RESULTS In 6 out of 10 children, EEG recordings showed periods of three per second GSW during fMRI. Three per second GSW were associated with regional BOLD signal decreases in parietal areas, precuneus, and caudate nucleus along with a bilateral increase in the BOLD signal in the medial thalamus. Taking into account the normal delay in the hemodynamic response, temporal analysis showed that the onset of BOLD signal changes coincided with the onset of GSW. DISCUSSION In drug-naive individuals with CAE, ictal three per second GSW are associated with BOLD signal changes in the same striato-thalamo-cortical network that changes its regional activity during primary and secondary generalized paroxysms in treated adults. No BOLD signal changes in the striato-thalamo-cortical network preceded the onset of three per second GSW in unmediated children with CAE.
Collapse
|
Research Support, Non-U.S. Gov't |
17 |
169 |
10
|
Heyne HO, Singh T, Stamberger H, Abou Jamra R, Caglayan H, Craiu D, De Jonghe P, Guerrini R, Helbig KL, Koeleman BPC, Kosmicki JA, Linnankivi T, May P, Muhle H, Møller RS, Neubauer BA, Palotie A, Pendziwiat M, Striano P, Tang S, Wu S, Poduri A, Weber YG, Weckhuysen S, Sisodiya SM, Daly MJ, Helbig I, Lal D, Lemke JR. De novo variants in neurodevelopmental disorders with epilepsy. Nat Genet 2018; 50:1048-1053. [DOI: 10.1038/s41588-018-0143-7] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 04/09/2018] [Indexed: 12/31/2022]
|
|
7 |
168 |
11
|
Heinrich U, Muhle H, Takenaka S, Ernst H, Fuhst R, Mohr U, Pott F, Stöber W. Chronic effects on the respiratory tract of hamsters, mice and rats after long-term inhalation of high concentrations of filtered and unfiltered diesel engine emissions. J Appl Toxicol 1986; 6:383-95. [PMID: 2433325 DOI: 10.1002/jat.2550060602] [Citation(s) in RCA: 163] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A long-term exposure study with hamsters, mice and rats inhaling filtered and unfiltered diesel engine exhaust was carried out to investigate effects of chronic toxicity and, predominantly, carcinogenicity in the respiratory tract. The level of diesel exhaust in the exposure chambers corresponded to a concentration close to 4 mg m-3 in the unfiltered diesel exhaust. Satellite groups of animals were additionally treated with BaP, DBahA or nitrosamines in order to check for syncarcinogenic effects. In hamsters and rats, alveolar lung clearance and mechanical lung function tests as well as biochemical and cytological measurements in lung lavage fluids showed significant changes only after exposure to unfiltered diesel exhaust and, predominantly, in rats. No lung tumors were found in hamsters. Spontaneous tumor rates occurred in mice and both types of diesel exhaust increased the incidence of adenocarcinomas in the lungs. In rats, only the unfiltered diesel exhaust caused a lung tumor incidence. It amounted to 16% with no tumors in the controls. The heavy load of particulate matter in the lungs of rats was caused by an exposure-related impairment of the alveolar lung clearance and may have been instrumental in the induction of squamous cell tumors. However, an effect of particle-associated PAH cannot be excluded. Syncarcinogenic effects of diesel exhaust after initial carcinogen treatment were found only in the respiratory tract of rats.
Collapse
|
|
39 |
163 |
12
|
Schubert J, Siekierska A, Langlois M, May P, Huneau C, Becker F, Muhle H, Suls A, Lemke JR, de Kovel CGF, Thiele H, Konrad K, Kawalia A, Toliat MR, Sander T, Rüschendorf F, Caliebe A, Nagel I, Kohl B, Kecskés A, Jacmin M, Hardies K, Weckhuysen S, Riesch E, Dorn T, Brilstra EH, Baulac S, Møller RS, Hjalgrim H, Koeleman BPC, Jurkat-Rott K, Lehmann-Horn F, Roach JC, Glusman G, Hood L, Galas DJ, Martin B, de Witte PAM, Biskup S, De Jonghe P, Helbig I, Balling R, Nürnberg P, Crawford AD, Esguerra CV, Weber YG, Lerche H. Mutations in STX1B, encoding a presynaptic protein, cause fever-associated epilepsy syndromes. Nat Genet 2014; 46:1327-32. [DOI: 10.1038/ng.3130] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 10/06/2014] [Indexed: 01/12/2023]
|
|
11 |
144 |
13
|
Moeller F, Siebner HR, Wolff S, Muhle H, Boor R, Granert O, Jansen O, Stephani U, Siniatchkin M. Changes in activity of striato–thalamo–cortical network precede generalized spike wave discharges. Neuroimage 2008; 39:1839-49. [DOI: 10.1016/j.neuroimage.2007.10.058] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Revised: 10/30/2007] [Accepted: 10/31/2007] [Indexed: 10/22/2022] Open
|
|
17 |
136 |
14
|
Moeller F, LeVan P, Muhle H, Stephani U, Dubeau F, Siniatchkin M, Gotman J. Absence seizures: individual patterns revealed by EEG-fMRI. Epilepsia 2010; 51:2000-10. [PMID: 20726875 DOI: 10.1111/j.1528-1167.2010.02698.x] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PURPOSE Absences are characterized by an abrupt onset and end of generalized 3-4 Hz spike and wave discharges (GSWs), accompanied by unresponsiveness. Although previous electroencephalography-functional magnetic resonance imaging (EEG-fMRI) studies showed that thalamus, default mode areas, and caudate nuclei are involved in absence seizures, the contribution of these regions throughout the ictal evolution of absences remains unclear. Furthermore, animal models provide evidence that absences are initiated by a cortical focus with a secondary involvement of the thalamus. The aim of this study was to investigate dynamic changes during absences. METHODS Seventeen absences from nine patients with absence epilepsy and classical pattern of 3-4 Hz GSWs during EEG-fMRI recording were included in the study. The absences were studied in a sliding window analysis, providing a temporal sequence of blood oxygen-level dependent (BOLD) response maps. RESULTS Thalamic activation was found in 16 absences (94%), deactivation in default mode areas in 15 (88%), deactivation of the caudate nuclei in 10 (59%), and cortical activation in patient-specific areas in 10 (59%) of the absences. Cortical activations and deactivations in default mode areas and caudate nucleus occurred significantly earlier than thalamic responses. DISCUSSION Like a fingerprint, patient-specific BOLD signal changes were remarkably consistent in space and time across different absences of one patient but were quite different from patient to patient, despite having similar EEG pattern and clinical semiology. Early frontal activations could support the cortical focus theory, but with an addition: This early activation is patient specific.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
126 |
15
|
Steffens M, Leu C, Ruppert AK, Zara F, Striano P, Robbiano A, Capovilla G, Tinuper P, Gambardella A, Bianchi A, La Neve A, Crichiutti G, de Kovel CGF, Kasteleijn-Nolst Trenité D, de Haan GJ, Lindhout D, Gaus V, Schmitz B, Janz D, Weber YG, Becker F, Lerche H, Steinhoff BJ, Kleefuß-Lie AA, Kunz WS, Surges R, Elger CE, Muhle H, von Spiczak S, Ostertag P, Helbig I, Stephani U, Møller RS, Hjalgrim H, Dibbens LM, Bellows S, Oliver K, Mullen S, Scheffer IE, Berkovic SF, Everett KV, Gardiner MR, Marini C, Guerrini R, Lehesjoki AE, Siren A, Guipponi M, Malafosse A, Thomas P, Nabbout R, Baulac S, Leguern E, Guerrero R, Serratosa JM, Reif PS, Rosenow F, Mörzinger M, Feucht M, Zimprich F, Kapser C, Schankin CJ, Suls A, Smets K, De Jonghe P, Jordanova A, Caglayan H, Yapici Z, Yalcin DA, Baykan B, Bebek N, Ozbek U, Gieger C, Wichmann HE, Balschun T, Ellinghaus D, Franke A, Meesters C, Becker T, Wienker TF, Hempelmann A, Schulz H, Rüschendorf F, Leber M, Pauck SM, Trucks H, Toliat MR, Nürnberg P, Avanzini G, Koeleman BPC, Sander T. Genome-wide association analysis of genetic generalized epilepsies implicates susceptibility loci at 1q43, 2p16.1, 2q22.3 and 17q21.32. Hum Mol Genet 2012; 21:5359-72. [PMID: 22949513 DOI: 10.1093/hmg/dds373] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Genetic generalized epilepsies (GGEs) have a lifetime prevalence of 0.3% and account for 20-30% of all epilepsies. Despite their high heritability of 80%, the genetic factors predisposing to GGEs remain elusive. To identify susceptibility variants shared across common GGE syndromes, we carried out a two-stage genome-wide association study (GWAS) including 3020 patients with GGEs and 3954 controls of European ancestry. To dissect out syndrome-related variants, we also explored two distinct GGE subgroups comprising 1434 patients with genetic absence epilepsies (GAEs) and 1134 patients with juvenile myoclonic epilepsy (JME). Joint Stage-1 and 2 analyses revealed genome-wide significant associations for GGEs at 2p16.1 (rs13026414, P(meta) = 2.5 × 10(-9), OR[T] = 0.81) and 17q21.32 (rs72823592, P(meta) = 9.3 × 10(-9), OR[A] = 0.77). The search for syndrome-related susceptibility alleles identified significant associations for GAEs at 2q22.3 (rs10496964, P(meta) = 9.1 × 10(-9), OR[T] = 0.68) and at 1q43 for JME (rs12059546, P(meta) = 4.1 × 10(-8), OR[G] = 1.42). Suggestive evidence for an association with GGEs was found in the region 2q24.3 (rs11890028, P(meta) = 4.0 × 10(-6)) nearby the SCN1A gene, which is currently the gene with the largest number of known epilepsy-related mutations. The associated regions harbor high-ranking candidate genes: CHRM3 at 1q43, VRK2 at 2p16.1, ZEB2 at 2q22.3, SCN1A at 2q24.3 and PNPO at 17q21.32. Further replication efforts are necessary to elucidate whether these positional candidate genes contribute to the heritability of the common GGE syndromes.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
113 |
16
|
Muhle H, Bellmann B, Creutzenberg O, Dasenbrock C, Ernst H, Kilpper R, MacKenzie JC, Morrow P, Mohr U, Takenaka S. Pulmonary response to toner upon chronic inhalation exposure in rats. FUNDAMENTAL AND APPLIED TOXICOLOGY : OFFICIAL JOURNAL OF THE SOCIETY OF TOXICOLOGY 1991; 17:280-99. [PMID: 1662648 DOI: 10.1016/0272-0590(91)90219-t] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A chronic inhalation study of a test toner was conducted by exposure of groups of F-344 rats for 6 hr/day, 5 days/week for 24 months. The test toner was a special Xerox 9000 type xerographic toner, enriched in respirable-sized particles compared to commercial toner, such that it was about 35% respirable according to the ACGIH criteria. The target test aerosol exposure concentrations were 0, 1.0 (low), 4.0 (medium), and 16.0 (high) mg/m3. Titanium dioxide (5 mg/m3) and crystalline silicon dioxide (1 mg/m3), used as negative and positive controls for fibrogenicity, were also evaluated. Inhalation of the test toner or the control materials showed no signs of overt toxicity. Body weight, clinical chemistry values, food consumption, and organ weights were normal in the toner- and TiO2-exposed groups, except for a 40% increase in lung weight in the toner high-exposure group. All of the changes in the toner-exposed groups were restricted to the lungs or associated lymph nodes. A chronic inflammatory response was evident from the bronchoalveolar lavage parameters for the toner high-exposure group. The incidence of primary lung tumors was comparable among the three toner-exposed groups and the TiO2-exposed, and air-only controls, as well as consistent with historical background levels. A mild to moderate degree of lung fibrosis was observed in 92% of the rats in the toner high-exposure group, and a minimal to mild degree of fibrosis was noted in 22% of the animals in the toner middle-exposure group. The pulmonary changes in the toner high-exposure group were smaller in magnitude than those found in the crystalline silica-exposed group. The comparative fibrogenic potency of TiO2, toner, and SiO2 was estimated to be 1:5:418 using a dosimetric model and assuming a common mechanistic basis. There were no pulmonary changes of any type at the toner low-exposure level, which is most relevant in regard to potential human exposures. The lung alterations in the toner high-exposure group are interpreted in terms of "lung overloading," a generic response of the respiratory system to saturation of its detoxification capacity. The maximum tolerated dose (MTD) criterion was met at the toner high (16 mg/m3)-exposure level.
Collapse
|
|
34 |
105 |
17
|
Johannesen K, Marini C, Pfeffer S, Møller RS, Dorn T, Niturad CE, Gardella E, Weber Y, Søndergård M, Hjalgrim H, Nikanorova M, Becker F, Larsen LH, Dahl HA, Maier O, Mei D, Biskup S, Klein KM, Reif PS, Rosenow F, Elias AF, Hudson C, Helbig KL, Schubert-Bast S, Scordo MR, Craiu D, Djémié T, Hoffman-Zacharska D, Caglayan H, Helbig I, Serratosa J, Striano P, De Jonghe P, Weckhuysen S, Suls A, Muru K, Talvik I, Talvik T, Muhle H, Borggraefe I, Rost I, Guerrini R, Lerche H, Lemke JR, Rubboli G, Maljevic S. Phenotypic spectrum of
GABRA1. Neurology 2016; 87:1140-51. [DOI: 10.1212/wnl.0000000000003087] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 06/03/2016] [Indexed: 11/15/2022] Open
|
|
9 |
88 |
18
|
Lal D, Reinthaler EM, Schubert J, Muhle H, Riesch E, Kluger G, Jabbari K, Kawalia A, Bäumel C, Holthausen H, Hahn A, Feucht M, Neophytou B, Haberlandt E, Becker F, Altmüller J, Thiele H, Lemke JR, Lerche H, Nürnberg P, Sander T, Weber Y, Zimprich F, Neubauer BA. DEPDC5 mutations in genetic focal epilepsies of childhood. Ann Neurol 2014; 75:788-92. [PMID: 24591017 DOI: 10.1002/ana.24127] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Revised: 02/18/2014] [Accepted: 02/26/2014] [Indexed: 01/25/2023]
Abstract
Recent studies reported DEPDC5 loss-of-function mutations in different focal epilepsy syndromes. Here we identified 1 predicted truncation and 2 missense mutations in 3 children with rolandic epilepsy (3 of 207). In addition, we identified 3 families with unclassified focal childhood epilepsies carrying predicted truncating DEPDC5 mutations (3 of 82). The detected variants were all novel, inherited, and present in all tested affected (n=11) and in 7 unaffected family members, indicating low penetrance. Our findings extend the phenotypic spectrum associated with mutations in DEPDC5 and suggest that rolandic epilepsy, albeit rarely, and other nonlesional childhood epilepsies are among the associated syndromes.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
86 |
19
|
Galizia EC, Myers CT, Leu C, de Kovel CGF, Afrikanova T, Cordero-Maldonado ML, Martins TG, Jacmin M, Drury S, Krishna Chinthapalli V, Muhle H, Pendziwiat M, Sander T, Ruppert AK, Møller RS, Thiele H, Krause R, Schubert J, Lehesjoki AE, Nürnberg P, Lerche H, Palotie A, Coppola A, Striano S, Gaudio LD, Boustred C, Schneider AL, Lench N, Jocic-Jakubi B, Covanis A, Capovilla G, Veggiotti P, Piccioli M, Parisi P, Cantonetti L, Sadleir LG, Mullen SA, Berkovic SF, Stephani U, Helbig I, Crawford AD, Esguerra CV, Kasteleijn-Nolst Trenité DGA, Koeleman BPC, Mefford HC, Scheffer IE, Sisodiya SM. CHD2 variants are a risk factor for photosensitivity in epilepsy. Brain 2015; 138:1198-207. [PMID: 25783594 PMCID: PMC4407192 DOI: 10.1093/brain/awv052] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 01/07/2015] [Indexed: 12/24/2022] Open
Abstract
Photosensitivity in epilepsy is common and has high heritability, but its genetic basis remains uncertain. Galizia et al. reveal an overrepresentation of unique variants of CHD2 — which encodes the transcriptional regulator ‘chromodomain helicase DNA-binding protein 2’ — in photosensitive epilepsies, and show that chd2 knockdown in zebrafish causes photosensitivity. Photosensitivity is a heritable abnormal cortical response to flickering light, manifesting as particular electroencephalographic changes, with or without seizures. Photosensitivity is prominent in a very rare epileptic encephalopathy due to de novo CHD2 mutations, but is also seen in epileptic encephalopathies due to other gene mutations. We determined whether CHD2 variation underlies photosensitivity in common epilepsies, specific photosensitive epilepsies and individuals with photosensitivity without seizures. We studied 580 individuals with epilepsy and either photosensitive seizures or abnormal photoparoxysmal response on electroencephalography, or both, and 55 individuals with photoparoxysmal response but no seizures. We compared CHD2 sequence data to publicly available data from 34 427 individuals, not enriched for epilepsy. We investigated the role of unique variants seen only once in the entire data set. We sought CHD2 variants in 238 exomes from familial genetic generalized epilepsies, and in other public exome data sets. We identified 11 unique variants in the 580 individuals with photosensitive epilepsies and 128 unique variants in the 34 427 controls: unique CHD2 variation is over-represented in cases overall (P = 2·17 × 10−5). Among epilepsy syndromes, there was over-representation of unique CHD2 variants (3/36 cases) in the archetypal photosensitive epilepsy syndrome, eyelid myoclonia with absences (P = 3·50 × 10−4). CHD2 variation was not over-represented in photoparoxysmal response without seizures. Zebrafish larvae with chd2 knockdown were tested for photosensitivity. Chd2 knockdown markedly enhanced mild innate zebrafish larval photosensitivity. CHD2 mutation is the first identified cause of the archetypal generalized photosensitive epilepsy syndrome, eyelid myoclonia with absences. Unique CHD2 variants are also associated with photosensitivity in common epilepsies. CHD2 does not encode an ion channel, opening new avenues for research into human cortical excitability.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
85 |
20
|
Carvill GL, Engel KL, Ramamurthy A, Cochran JN, Roovers J, Stamberger H, Lim N, Schneider AL, Hollingsworth G, Holder DH, Regan BM, Lawlor J, Lagae L, Ceulemans B, Bebin EM, Nguyen J, Barsh GS, Weckhuysen S, Meisler M, Berkovic SF, De Jonghe P, Scheffer IE, Myers RM, Cooper GM, Mefford HC, Striano P, Zara F, Helbig I, Møller RS, von Spiczak S, Muhle H, Caglayan H, Sterbova K, Craiu D, Hoffman D, Lehesjoki AE, Selmer K, Depienne C, Lemke J, Marini C, Guerrini R, Neubauer B, Talvik T, Leguern E, de Jonghe P, Weckhuysen S. Aberrant Inclusion of a Poison Exon Causes Dravet Syndrome and Related SCN1A-Associated Genetic Epilepsies. Am J Hum Genet 2018; 103:1022-1029. [PMID: 30526861 DOI: 10.1016/j.ajhg.2018.10.023] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/25/2018] [Indexed: 12/30/2022] Open
Abstract
Developmental and epileptic encephalopathies (DEEs) are a group of severe epilepsies characterized by refractory seizures and developmental impairment. Sequencing approaches have identified causal genetic variants in only about 50% of individuals with DEEs.1-3 This suggests that unknown genetic etiologies exist, potentially in the ∼98% of human genomes not covered by exome sequencing (ES). Here we describe seven likely pathogenic variants in regions outside of the annotated coding exons of the most frequently implicated epilepsy gene, SCN1A, encoding the alpha-1 sodium channel subunit. We provide evidence that five of these variants promote inclusion of a "poison" exon that leads to reduced amounts of full-length SCN1A protein. This mechanism is likely to be broadly relevant to human disease; transcriptome studies have revealed hundreds of poison exons,4,5 including some present within genes encoding other sodium channels and in genes involved in neurodevelopment more broadly.6 Future research on the mechanisms that govern neuronal-specific splicing behavior might allow researchers to co-opt this system for RNA therapeutics.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
83 |
21
|
Møller RS, Wuttke TV, Helbig I, Marini C, Johannesen KM, Brilstra EH, Vaher U, Borggraefe I, Talvik I, Talvik T, Kluger G, Francois LL, Lesca G, de Bellescize J, Blichfeldt S, Chatron N, Holert N, Jacobs J, Swinkels M, Betzler C, Syrbe S, Nikanorova M, Myers CT, Larsen LHG, Vejzovic S, Pendziwiat M, von Spiczak S, Hopkins S, Dubbs H, Mang Y, Mukhin K, Holthausen H, van Gassen KL, Dahl HA, Tommerup N, Mefford HC, Rubboli G, Guerrini R, Lemke JR, Lerche H, Muhle H, Maljevic S. Mutations in GABRB3: From febrile seizures to epileptic encephalopathies. Neurology 2017; 88:483-492. [PMID: 28053010 DOI: 10.1212/wnl.0000000000003565] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 11/07/2016] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVE To examine the role of mutations in GABRB3 encoding the β3 subunit of the GABAA receptor in individual patients with epilepsy with regard to causality, the spectrum of genetic variants, their pathophysiology, and associated phenotypes. METHODS We performed massive parallel sequencing of GABRB3 in 416 patients with a range of epileptic encephalopathies and childhood-onset epilepsies and recruited additional patients with epilepsy with GABRB3 mutations from other research and diagnostic programs. RESULTS We identified 22 patients with heterozygous mutations in GABRB3, including 3 probands from multiplex families. The phenotypic spectrum of the mutation carriers ranged from simple febrile seizures, genetic epilepsies with febrile seizures plus, and epilepsy with myoclonic-atonic seizures to West syndrome and other types of severe, early-onset epileptic encephalopathies. Electrophysiologic analysis of 7 mutations in Xenopus laevis oocytes, using coexpression of wild-type or mutant β3, together with α5 and γ2s subunits and an automated 2-microelectrode voltage-clamp system, revealed reduced GABA-induced current amplitudes or GABA sensitivity for 5 of 7 mutations. CONCLUSIONS Our results indicate that GABRB3 mutations are associated with a broad phenotypic spectrum of epilepsies and that reduced receptor function causing GABAergic disinhibition represents the relevant disease mechanism.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
82 |
22
|
Lal D, Reinthaler EM, Altmüller J, Toliat MR, Thiele H, Nürnberg P, Lerche H, Hahn A, Møller RS, Muhle H, Sander T, Zimprich F, Neubauer BA. RBFOX1 and RBFOX3 mutations in rolandic epilepsy. PLoS One 2013; 8:e73323. [PMID: 24039908 PMCID: PMC3765197 DOI: 10.1371/journal.pone.0073323] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 07/19/2013] [Indexed: 12/20/2022] Open
Abstract
Partial deletions of the gene encoding the neuronal splicing regulator RBFOX1 have been reported in a range of neurodevelopmental diseases, including idiopathic generalized epilepsy. The RBFOX1 protein and its homologues (RBFOX2 and RBFOX3) regulate alternative splicing of many neuronal transcripts involved in the homeostatic control of neuronal excitability. In this study, we explored if structural microdeletions and exonic sequence variations in RBFOX1, RBFOX2, RBFOX3 confer susceptibility to rolandic epilepsy (RE), a common idiopathic focal childhood epilepsy. By high-density SNP array screening of 289 unrelated RE patients, we identified two hemizygous deletions, a 365 kb deletion affecting two untranslated 5′-terminal exons of RBFOX1 and a 43 kb deletion spanning exon 3 of RBFOX3. Exome sequencing of 242 RE patients revealed two novel probably deleterious variants in RBFOX1, a frameshift mutation (p.A233Vfs*74) and a hexanucleotide deletion (p.A299_A300del), and a novel nonsense mutation in RBFOX3 (p.Y287*). Although the three variants were inherited from unaffected parents, they were present in all family members exhibiting the RE trait clinically or electroencephalographically with only one exception. In contrast, no deleterious mutations of RBFOX1 and RBFOX3 were found in the exomes of 6503 non-RE subjects deposited in the Exome Variant Server database. The observed RBFOX3 exon 3 deletion and nonsense mutation suggest that RBFOX3 represents a novel risk factor for RE, indicating that exon deletions and truncating mutations of RBFOX1 and RBFOX3 contribute to the genetic variance of partial and generalized idiopathic epilepsy syndromes.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
81 |
23
|
Jacobs J, Kobayashi E, Boor R, Muhle H, Stephan W, Hawco C, Dubeau F, Jansen O, Stephani U, Gotman J, Siniatchkin M. Hemodynamic Responses to Interictal Epileptiform Discharges in Children with Symptomatic Epilepsy. Epilepsia 2007; 48:2068-78. [PMID: 17645544 DOI: 10.1111/j.1528-1167.2007.01192.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PURPOSE Simultaneous electroencephalogram (EEG) and functional magnetic resonance imaging (fMRI) (EEG-fMRI) recording is a noninvasive tool for investigating epileptogenic networks. Most EEG-fMRI studies in epilepsy have been performed in adults. Childhood epilepsies, however, differ from those in adults due to interactions between epileptogenic and developmental processes. The purpose of this study was to investigate EEG-fMRI in children with lesional epilepsies. METHODS Thirteen children with symptomatic epilepsy underwent a 20-min EEG-fMRI acquisition at 3 T under sedation-induced sleep. Statistical analysis was performed using the timing of spikes as events, modelled with hemodynamic response functions (HRFs) that peaked at 3, 5, 7, and 9 s after the spike. RESULTS Each spike type was analyzed separately, resulting in 25 studies. In 84% of the studies, blood oxygenation level-dependent (BOLD) responses were localized in the lesion or brain area presumably generating spikes. Activation (positive BOLD) corresponding with the lesion was seen in 20% and deactivation (negative BOLD) in 52% of the studies. In the area of spike generation, activation was found in 48% of studies and deactivation in 36%. CONCLUSIONS Despite the necessarily short recording times (20 min), good results could be obtained from the EEG-fMRI recordings, performed in sedated children using a high field scanner and individual HRFs. In contrast to studies in adults, deactivations in the lesion and the irritative zone were more common than activations. The impact of age, sleep, and sedation on the BOLD response might explain these findings, but future studies in children should not disregard the importance of deactivations in relation to the epileptogenic network.
Collapse
|
|
18 |
80 |
24
|
Reutlinger C, Helbig I, Gawelczyk B, Subero JIM, Tönnies H, Muhle H, Finsterwalder K, Vermeer S, Pfundt R, Sperner J, Stefanova I, Gillessen-Kaesbach G, von Spiczak S, van Baalen A, Boor R, Siebert R, Stephani U, Caliebe A. Deletions in 16p13 including GRIN2A in patients with intellectual disability, various dysmorphic features, and seizure disorders of the rolandic region. Epilepsia 2010; 51:1870-3. [PMID: 20384727 DOI: 10.1111/j.1528-1167.2010.02555.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Seizure disorders of the rolandic region comprise a spectrum of different epilepsy syndromes ranging from benign rolandic epilepsy to more severe seizure disorders including atypical benign partial epilepsy/pseudo-Lennox syndrome,electrical status epilepticus during sleep, and Landau-Kleffner syndrome. Centrotemporal spikes are the unifying electroencephalographic hallmark of these benign focal epilepsies, indicating a pathophysiologic relationship between the various epilepsies arising from the rolandic region. The etiology of these epilepsies is elusive, but a genetic component is assumed given the heritability of the characteristic electrographic trait. Herein we report on three patients with intellectual disability, various dysmorphic features, and epilepsies involving the rolandic region, carrying previously undescribed deletions in 16p13. The only gene located in the critical region shared by all three patients is GRIN2A coding for the alpha-2 subunit of the neuronal N-methyl-D-aspartate(NMDA) receptor.
Collapse
|
Journal Article |
15 |
77 |
25
|
Bellmann B, Muhle H, Creutzenberg O, Dasenbrock C, Kilpper R, MacKenzie JC, Morrow P, Mermelstein R. Lung clearance and retention of toner, utilizing a tracer technique, during chronic inhalation exposure in rats. FUNDAMENTAL AND APPLIED TOXICOLOGY : OFFICIAL JOURNAL OF THE SOCIETY OF TOXICOLOGY 1991; 17:300-13. [PMID: 1662649 DOI: 10.1016/0272-0590(91)90220-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Male and female F-344 rats were exposed to 6 hr/day, 5 days/week for up to 24 months to a special test toner at 0, 1, 4, and 16 mg/m3, TiO2 at 5 mg/m3, or SiO2 at 1 mg/m3 by the inhalation route. 59Fe-labeled iron oxide and 85Sr-labeled polystyrene particles were periodically inhaled by the nose-only route and used to measure alveolar clearance rates during the course of the study. This method was used to describe a maximum functionally tolerated dose (MFTD). Pulmonary retention of toner and control materials (TiO2 and SiO2) was measured after 3, 9, 15, 21, and 24 months of exposure. The quantity of all three materials retained in the lungs and lung-associated lymph nodes increased with exposure duration and level. The final pulmonary burdens of toner at the three exposure levels were 0.22, 1.73, and 15.6 mg/lung, respectively. Alveolar clearance of both tracers was substantially impaired at the toner high-exposure level, and moderately slowed at the toner middle-exposure level. The excessive quantity of toner retained and the substantially retarded clearance in the toner high-exposure group are indicative of "lung overloading." Alveolar clearance of 85Sr-polystyrene particles was slightly slowed in the TiO2-exposed group and substantially impaired in the SiO2-exposed group. The alveolar clearance of the unexposed rats decreased about 30% during the study, a change ascribed to aging. For a general description of the toxicokinetics of the various dusts, a semiempirical kinetic model was developed, which could generally be useful for the extrapolation of lung retention of insoluble particles from a subchronic to a chronic inhalation study. Both the maximum tolerated dose (MTD) and the MFTD were exceeded at the toner high-exposure level during the study in rats.
Collapse
|
|
34 |
74 |