SUGIMOTO A, TSUCHIDA H, NAGAE M, INOUE N, UENOYAMA Y, TSUKAMURA H. Central somatostatin-somatostatin receptor 2 signaling mediates lactational suppression of luteinizing hormone release via the inhibition of glutamatergic interneurons during late lactation in rats.
J Reprod Dev 2022;
68:190-197. [PMID:
35249910 PMCID:
PMC9184827 DOI:
10.1262/jrd.2022-009]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Reproductive function is suppressed during lactation owing to the suckling-induced suppression of the kisspeptin gene (Kiss1) expression in the arcuate nucleus (ARC) and
subsequent suppression of luteinizing hormone (LH) release. Our previous study revealed that somatostatin (SST) neurons mediate suckling-induced suppression of LH release via SST receptor 2
(SSTR2) in ovariectomized lactating rats during early lactation. This study examined whether central SST-SSTR2 signaling mediates the inhibition of ARC Kiss1 expression and
LH release in lactating rats during late lactation and whether the inhibition of glutamatergic neurons, stimulators of LH release, is involved in the suppression of LH release mediated by
central SST-SSTR2 signaling in lactating rats. A central injection of the SSTR2 antagonist CYN154806 (CYN) significantly increased ARC Kiss1 expression in lactating rats on
day 16 of lactation. Dual in situ hybridization revealed that few ARC Kiss1-positive cells co-expressed Sstr2, and some of the ARC
Slc17a6 (a glutamatergic neuronal marker)-positive cells co-expressed Sstr2. Furthermore, almost all ARC Kiss1-positive cells
co-expressed Grin1, a subunit of N-methyl-D-aspartate (NMDA) receptors. The numbers of Slc17a6/Sstr2 double-labeled and
Slc17a6 single-labeled cells were significantly lower in lactating dams than in non-lactating rats whose pups had been removed after parturition. A central injection of an
NMDA antagonist reversed the CYN-induced increase in LH release in lactating rats. Overall, these results suggest that central SST-SSTR2 signaling, at least partly, mediates the suppression
of ARC Kiss1 expression and LH release by inhibiting ARC glutamatergic interneurons in lactating rats.
Collapse