1
|
Terada R, Urawa H, Inagaki Y, Tsugane K, Iida S. Efficient gene targeting by homologous recombination in rice. Nat Biotechnol 2002; 20:1030-4. [PMID: 12219079 DOI: 10.1038/nbt737] [Citation(s) in RCA: 173] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2002] [Accepted: 06/24/2002] [Indexed: 11/09/2022]
Abstract
Modification of genes through homologous recombination, termed gene targeting, is the most direct method to characterize gene function. In higher plants, however, the method is far from a common practice. Here we describe an efficient and reproducible procedure with a strong positive/negative selection for gene targeting in rice, which feeds more than half of the world's population and is an important model plant. About 1% of selected calli and their regenerated fertile plants were heterozygous at the targeted locus, and only one copy of the selective marker used was found at the targeted site in their genomes. The procedure's applicability to other genes will make it feasible to obtain various gene-targeted lines of rice.
Collapse
|
Comparative Study |
23 |
173 |
2
|
Inagaki S, Suzuki T, Ohto MA, Urawa H, Horiuchi T, Nakamura K, Morikami A. Arabidopsis TEBICHI, with helicase and DNA polymerase domains, is required for regulated cell division and differentiation in meristems. THE PLANT CELL 2006; 18:879-92. [PMID: 16517762 PMCID: PMC1425847 DOI: 10.1105/tpc.105.036798] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
In plant meristems, each cell divides and differentiates in a spatially and temporally regulated manner, and continuous organogenesis occurs using cells derived from the meristem. We report the identification of the Arabidopsis thaliana TEBICHI (TEB) gene, which is required for regulated cell division and differentiation in meristems. The teb mutants show morphological defects, such as short roots, serrated leaves, and fasciation, as well as defective patterns of cell division and differentiation in the meristem. The TEB gene encodes a homolog of Drosophila MUS308 and mammalian DNA polymerase theta, which prevent spontaneous or DNA damage-induced production of DNA double strand breaks. As expected from the function of animal homologs, teb mutants show constitutively activated DNA damage responses. Unlike other fasciation mutants with activated DNA damage responses, however, teb mutants do not activate transcriptionally silenced genes. teb shows an accumulation of cells expressing cyclinB1;1:GUS in meristems, suggesting that constitutively activated DNA damage responses in teb lead to a defect in G2/M cell cycle progression. Furthermore, other fasciation mutants, such as fasciata2 and tonsoku/mgoun3/brushy1, also show an accumulation of cells expressing cyclinB1;1:GUS in meristems. These results suggest that cell cycle progression at G2/M is important for the regulation of the pattern of cell division and of differentiation during plant development.
Collapse
|
research-article |
19 |
97 |
3
|
Deguchi T, Itoh M, Urawa H, Matsumoto T, Nakayama S, Kawasaki T, Kitano T, Oda S, Mitani H, Takahashi T, Todo T, Sato J, Okada K, Hatta K, Yuba S, Kamei Y. Infrared laser-mediated local gene induction in medaka, zebrafish and Arabidopsis thaliana. Dev Growth Differ 2009; 51:769-75. [DOI: 10.1111/j.1440-169x.2009.01135.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
|
16 |
56 |
4
|
Nishihama R, Ishida S, Urawa H, Kamei Y, Kohchi T. Conditional Gene Expression/Deletion Systems for Marchantia polymorpha Using its Own Heat-Shock Promoter and Cre/loxP-Mediated Site-Specific Recombination. PLANT & CELL PHYSIOLOGY 2016; 57:271-280. [PMID: 26148498 DOI: 10.1093/pcp/pcv102] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 06/29/2015] [Indexed: 06/04/2023]
Abstract
The liverwort Marchantia polymorpha is an emerging model plant suitable for addressing, using genetic approaches, various evolutionary questions in the land plant lineage. Haploid dominancy in its life cycle facilitates genetic analyses, but conversely limits the ability to isolate mutants of essential genes. To overcome this issue and to be employed in cell lineage, mosaic and cell autonomy analyses, we developed a system that allows conditional gene expression and deletion using a promoter of a heat-shock protein (HSP) gene and the Cre/loxP site-specific recombination system. Because the widely used promoter of the Arabidopsis HSP18.2 gene did not operate in M. polymorpha, we identified a promoter of an endogenous HSP gene, MpHSP17.8A1, which exhibited a highly inducible transient expression level upon heat shock with a low basal activity level. Reporter genes fused to this promoter were induced globally in thalli under whole-plant heat treatment and also locally using a laser-assisted targeted heating technique. By expressing Cre fused to the glucocorticoid receptor under the control of the MpHSP17.8A1 promoter, a low background, sufficiently inducible control for loxP-mediated recombination could be achieved in M. polymorpha. Based on these findings, we developed a Gateway technology-based binary vector for the conditional induction of gene deletions.
Collapse
|
|
9 |
28 |
5
|
Maruyama K, Ogata T, Kanamori N, Yoshiwara K, Goto S, Yamamoto YY, Tokoro Y, Noda C, Takaki Y, Urawa H, Iuchi S, Urano K, Yoshida T, Sakurai T, Kojima M, Sakakibara H, Shinozaki K, Yamaguchi-Shinozaki K. Design of an optimal promoter involved in the heat-induced transcriptional pathway in Arabidopsis, soybean, rice and maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:671-680. [PMID: 27862521 DOI: 10.1111/tpj.13420] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 10/30/2016] [Accepted: 11/04/2016] [Indexed: 05/24/2023]
Abstract
Interactions between heat shock (HS) factors (HSFs) and heat shock response elements (HSEs) are important during the heat shock response (HSR) of flora and fauna. Moreover, plant HSFs that are involved in heat stress are also involved in abiotic stresses such as dehydration and cold as well as development, cell differentiation and proliferation. Because the specific combination of HSFs and HSEs involved in plants under heat stress remains unclear, the mechanism of their interaction has not yet been utilized in molecular breeding of plants for climate change. For the study reported herein, we compared the sequences of HS-inducible genes and their promoters in Arabidopsis, soybean, rice and maize and then designed an optimal HS-inducible promoter. Our analyses suggest that, for the four species, the abscisic acid-independent, HSE/HSF-dependent transcriptional pathway plays a major role in HS-inducible gene expression. We found that an 18-bp sequence that includes the HSE has an important role in the HSR, and that those sequences could be classified as representative of monocotyledons or dicotyledons. With the HS-inducible promoter designed based on our bioinformatic predictions, we were able to develop an optimal HS-specific inducible promoter for seedlings or single cells in roots. These findings demonstrate the utility of our HS-specific inducible promoter, which we expect will contribute to molecular breeding efforts and cell-targeted gene expression in specific plant tissues.
Collapse
|
|
8 |
20 |
6
|
Urawa H, Hidaka M, Ishiguro S, Okada K, Horiuchi T. Enhanced homologous recombination caused by the non-transcribed spacer of the rDNA in Arabidopsis. Mol Genet Genomics 2001; 266:546-55. [PMID: 11810225 DOI: 10.1007/s004380100547] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2000] [Accepted: 06/21/2001] [Indexed: 10/28/2022]
Abstract
The problem of the low frequency of homologous recombination observed in higher plants has been approached in several ways. Here, we report a new strategy to enhance homologous recombination in Arabidopsis. In Escherichia coli and Saccharomyces cerevisiae, hotspots that enhance homologous recombination nearby have been identified in regions close to sites associated with the blocking of DNA replication forks or with intensive transcriptional activity. In yeast, a recombination hotspot (HOT1) was found in a region spanning two non-transcribed spacers (NTS) between ribosomal RNA genes (rDNA), which contains both a replication fork barrier ( RFB) and the promoter for transcription of the 35S rRNA gene. Since rDNA has a common structure among eukaryotes, we analyzed the effect of the endogenous NTS on homologous mitotic recombination in a higher plant. We constructed transgenic lines of Arabidopsis containing this NTS and a recombination substrate, in which two 3'- and 5'-deleted uidA (beta-glucuronidase) genes with partially overlapping sequences are separated by a Hyg(r) gene. Reconstitution of functional uidA genes by homologous recombination was monitored by histochemical GUS staining. We found that recombination occurred more frequently in all organs tested in F (Fork block) lines transgenic for the NTS than in C (Control) lines without the NTS. The average number of GUS+ spots on leaves in F lines was more than nine-fold higher than in C lines. Furthermore, by genomic Southern analysis, post-recombinational molecules were detected in a transgenic line, F43, which had an extremely high number of GUS+ blue spots. These results strongly suggest that NTS-dependent enhancement of homologous recombination may be a common feature of higher plants as well as yeast.
Collapse
|
|
24 |
13 |
7
|
Tamatani T, Urawa H, Hashimoto T, Onozaki K. Tumor necrosis factor as an interleukin 1-dependent differentiation inducing factor (D-factor) for mouse myeloid leukemic cells. Biochem Biophys Res Commun 1987; 143:390-7. [PMID: 3493776 DOI: 10.1016/0006-291x(87)90678-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Experiments were conducted to purify the differentiation-inducing factor (D-factor), which induces differentiation of mouse myeloid leukemic cell line, Ml, into macrophage-like cells, in a conditioned medium of guinea pig peritoneal macrophages stimulated with lipopolysaccharide. On gel filtration under high performance liquid column chromatography (HPLC), D-factor eluted at the position of 45-15 KD. By the subsequent separation on DEAE HPLC the D-factor activity disappeared. However, in the presence of recombinant human IL 1 alpha the D-factor activity appeared at a position where tumor necrosis factor (TNF) eluted. Even after fractionation on hydroxyapatite HPLC the IL 1-dependent D-factor was co-chromatographed with TNF. Recombinant human TNF as well as the partially purified guinea pig TNF induced differentiation of Ml cells in conjunction with either the partially purified guinea pig IL 1 or recombinant human IL 1 alpha, although these factors by themselves did not induce differentiation. These findings suggest that a part of D-factor activity in the conditioned medium resulted from the cooperative effects between TNF and IL 1.
Collapse
|
|
38 |
13 |
8
|
Johzuka-Hisatomi Y, Maekawa M, Takagi K, Eun CH, Yamauchi T, Shimatani Z, Ahmed N, Urawa H, Tsugane K, Terada R, Iida S. Homologous Recombination-dependent Gene Targeting and an Active DNA Transposon nDart-promoted Gene Tagging for Rice Functional Genomics. RICE BIOLOGY IN THE GENOMICS ERA 2008. [DOI: 10.1007/978-3-540-74250-0_7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
|
17 |
9 |
9
|
Hwang D, Wada S, Takahashi A, Urawa H, Kamei Y, Nishikawa SI. Development of a Heat-Inducible Gene Expression System Using Female Gametophytes of Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2019; 60:2564-2572. [PMID: 31359050 DOI: 10.1093/pcp/pcz148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 07/22/2019] [Indexed: 05/13/2023]
Abstract
Female gametophyte (FG) is crucial for reproduction in flowering plants. Arabidopsis thaliana produces Polygonum-type FGs, which consist of an egg cell, two synergid cells, three antipodal cells and a central cell. Egg cell and central cell are the two female gametes that give rise to the embryo and surrounding endosperm, respectively, after fertilization. During the development of a FG, a single megaspore produced by meiosis undergoes three rounds of mitosis to produce an eight-nucleate cell. A seven-celled FG is formed after cellularization. The central cell initially contains two polar nuclei that fuse during female gametogenesis to form the secondary nucleus. In this study, we developed a gene induction system for analyzing the functions of various genes in developing Arabidopsis FGs. This system allows transgene expression in developing FGs using the heat-inducible Cre-loxP recombination system and FG-specific embryo sac 2 (ES2) promoter. Efficient gene induction was achieved in FGs by incubating flower buds and isolated pistils at 35�C for short periods of time (1-5 min). Gene induction was also induced in developing FGs by heat treatment of isolated ovules using the infrared laser-evoked gene operator (IR-LEGO) system. Expression of a dominant-negative mutant of Sad1/UNC84 (SUN) proteins in developing FGs using the gene induction system developed in this study caused defects in polar nuclear fusion, indicating the roles of SUN proteins in this process. This strategy represents a new tool for analyzing the functions of genes in FG development and FG functions.
Collapse
|
|
6 |
1 |
10
|
Onozaki K, Urawa H, Tamatani T, Iwamura Y, Hashimoto T, Baba T, Suzuki H, Yamada M, Yamamoto S, Oppenheim JJ. Synergistic interactions of interleukin 1, interferon-beta, and tumor necrosis factor in terminally differentiating a mouse myeloid leukemic cell line (M1). Evidence that interferon-beta is an autocrine differentiating factor. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 1988; 140:112-9. [PMID: 3275716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The effect was investigated of combinations of cytokines known to be cytostatic for some tumor cells, namely interleukin 1 alpha (IL-1 alpha), interferon-beta (IFN-beta), and tumor necrosis factor (TNF), on the growth and differentiation of the mouse myeloid leukemic cell line, M1, cells. IL-1 alpha, IFN-beta, and TNF by themselves are antiproliferative for M1 cells. Treatment of cells with a mixture of any two of the three cytokines resulted in at least additive growth inhibition. None of these cytokines by themselves induced differentiation of M1 cells as assessed by increased expression of Fc receptors (FcR), stimulation of phagocytic activity and by morphologic criteria. However, as little as 1 U/ml IL-1 alpha in conjunction with IFN-beta or TNF increased FcR expression, phagocytic activity and morphologic changes in addition to inhibiting the growth of M1 cells. The combination of IFN-beta and TNF did not induce differentiation, although the growth of the cells was markedly inhibited. Both TNF and lipopolysaccharide (LPS) induced the in vitro production of IFN activity by M1 cells. Furthermore, the induction of differentiation of M1 cells by a combination of IL-1 alpha with either IFN-beta, TNF, or LPS was inhibited by antibody against mouse IFN-beta. Therefore, it appears that IFN-beta provides one of the two required signals for differentiation of M1 cells by these combinations of stimulants, the other being IL-1. Furthermore, the cytostatic effect of TNF by itself on M1 cells was also partly blocked by anti-IFN-beta antibody, suggesting that IFN-beta is also involved in the growth inhibitory effect of TNF for M1 cells. In contrast, the cytostatic effect of IL-1 on M1 cells was not blocked by anti-IFN-beta antibody. In conclusion, both the cytostatic and differentiative effect of TNF appear to be mediated by IFN-beta. Thus, the combination of IL-1 and IFN-beta or inducers of IFN-beta resulted in terminal differentiation of M1 cells. Northern blot analysis using cDNAs for murine IFN-beta1 or human IFN-beta2 showed an increased expression of mRNA for IFN-beta1 but not for IFN-beta2 by stimulation with TNF or LPS, strongly suggesting that IFN-beta 1 rather than IFN-beta 2 is responsible for TNF or LPS effects.
Collapse
|
|
37 |
|
11
|
Onozaki K, Urawa H, Tamatani T, Iwamura Y, Hashimoto T, Baba T, Suzuki H, Yamada M, Yamamoto S, Oppenheim JJ. Synergistic interactions of interleukin 1, interferon-beta, and tumor necrosis factor in terminally differentiating a mouse myeloid leukemic cell line (M1). Evidence that interferon-beta is an autocrine differentiating factor. THE JOURNAL OF IMMUNOLOGY 1988. [DOI: 10.4049/jimmunol.140.1.112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abstract
The effect was investigated of combinations of cytokines known to be cytostatic for some tumor cells, namely interleukin 1 alpha (IL-1 alpha), interferon-beta (IFN-beta), and tumor necrosis factor (TNF), on the growth and differentiation of the mouse myeloid leukemic cell line, M1, cells. IL-1 alpha, IFN-beta, and TNF by themselves are antiproliferative for M1 cells. Treatment of cells with a mixture of any two of the three cytokines resulted in at least additive growth inhibition. None of these cytokines by themselves induced differentiation of M1 cells as assessed by increased expression of Fc receptors (FcR), stimulation of phagocytic activity and by morphologic criteria. However, as little as 1 U/ml IL-1 alpha in conjunction with IFN-beta or TNF increased FcR expression, phagocytic activity and morphologic changes in addition to inhibiting the growth of M1 cells. The combination of IFN-beta and TNF did not induce differentiation, although the growth of the cells was markedly inhibited. Both TNF and lipopolysaccharide (LPS) induced the in vitro production of IFN activity by M1 cells. Furthermore, the induction of differentiation of M1 cells by a combination of IL-1 alpha with either IFN-beta, TNF, or LPS was inhibited by antibody against mouse IFN-beta. Therefore, it appears that IFN-beta provides one of the two required signals for differentiation of M1 cells by these combinations of stimulants, the other being IL-1. Furthermore, the cytostatic effect of TNF by itself on M1 cells was also partly blocked by anti-IFN-beta antibody, suggesting that IFN-beta is also involved in the growth inhibitory effect of TNF for M1 cells. In contrast, the cytostatic effect of IL-1 on M1 cells was not blocked by anti-IFN-beta antibody. In conclusion, both the cytostatic and differentiative effect of TNF appear to be mediated by IFN-beta. Thus, the combination of IL-1 and IFN-beta or inducers of IFN-beta resulted in terminal differentiation of M1 cells. Northern blot analysis using cDNAs for murine IFN-beta1 or human IFN-beta2 showed an increased expression of mRNA for IFN-beta1 but not for IFN-beta2 by stimulation with TNF or LPS, strongly suggesting that IFN-beta 1 rather than IFN-beta 2 is responsible for TNF or LPS effects.
Collapse
|
|
37 |
|
12
|
Tomoi T, Tameshige T, Betsuyaku E, Hamada S, Sakamoto J, Uchida N, Torii K, Shimizu KK, Tamada Y, Urawa H, Okada K, Fukuda H, Tatematsu K, Kamei Y, Betsuyaku S. Targeted single-cell gene induction by optimizing the dually regulated CRE/ loxP system by a newly defined heat-shock promoter and the steroid hormone in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2023; 14:1171531. [PMID: 37351202 PMCID: PMC10283073 DOI: 10.3389/fpls.2023.1171531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/28/2023] [Indexed: 06/24/2023]
Abstract
Multicellular organisms rely on intercellular communication systems to organize their cellular functions. In studies focusing on intercellular communication, the key experimental techniques include the generation of chimeric tissue using transgenic DNA recombination systems represented by the CRE/loxP system. If an experimental system enables the induction of chimeras at highly targeted cell(s), it will facilitate the reproducibility and precision of experiments. However, multiple technical limitations have made this challenging. The stochastic nature of DNA recombination events, especially, hampers reproducible generation of intended chimeric patterns. Infrared laser-evoked gene operator (IR-LEGO), a microscopic system that irradiates targeted cells using an IR laser, can induce heat shock-mediated expression of transgenes, for example, CRE recombinase gene, in the cells. In this study, we developed a method that induces CRE/loxP recombination in the target cell(s) of plant roots and leaves in a highly specific manner. We combined IR-LEGO, an improved heat-shock-specific promoter, and dexamethasone-dependent regulation of CRE. The optimal IR-laser power and irradiation duration were estimated via exhaustive irradiation trials and subsequent statistical modeling. Under optimized conditions, CRE/loxP recombination was efficiently induced without cellular damage. We also found that the induction efficiency varied among tissue types and cellular sizes. The developed method offers an experimental system to generate a precisely designed chimeric tissue, and thus, will be useful for analyzing intercellular communication at high resolution in roots and leaves.
Collapse
|
research-article |
2 |
|
13
|
Tanaka T, Mukai J, Urawa H. [Molecular and cellular mechanism of enzyme inhibitor action]. NIHON RINSHO. JAPANESE JOURNAL OF CLINICAL MEDICINE 1991; 49:1961-5. [PMID: 1960862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
|
34 |
|