1
|
Isogai M, Yoshikoshi M, Seki K, Masuko-Suzuki H, Watanabe M, Matsuo K, Yaegashi H. Seed transmission of raspberry bushy dwarf virus is blocked in Nicotiana benthamiana plants by preventing virus entry into the embryo from the infected embryo sac and endosperm. Arch Virol 2023; 168:138. [PMID: 37046148 DOI: 10.1007/s00705-023-05767-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023]
Abstract
Raspberry bushy dwarf virus (RBDV) is transmitted through seed in infected red raspberry plants after pollination with pollen grains from healthy red raspberry plants. Here, we show that RBDV is not transmitted through seeds in infected Nicotiana benthamiana (Nb) plants after pollination with virus-free Nb pollen grains. Chromogenic in situ hybridization revealed that the virus invades the shoot apical meristem and the ovule, including the embryo sac, of RBDV-infected Nb plants; however, in seeds that developed from infected embryo sacs after fertilization by virus-free sperm cells, RBDV was absent in the embryos and present in the endosperms. When we analyzed seed transmission of RBDV in Nb mutants with mutations in dicer-like enzyme 2 and 4 (NbDCL2&4) or RNA-dependent RNA polymerase 6 (NbRDR6), RBDV was not present in the offspring from seeds with embryos and endosperms that did not express NbDCL2&4 or NbRDR6. These results suggest that seed transmission of RBDV is prevented by evasion of infection by the embryo and that RNA silencing is not essential for preventing seed transmission of RBDV in Nb plants.
Collapse
|
2
|
Mori S, Shimma S, Masuko-Suzuki H, Watanabe M, Nakanishi T, Tsukioka J, Goto K, Fukui H, Hirai N. Fluorescence from abnormally sterile pollen of the Japanese apricot. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2021; 38:355-366. [PMID: 34782823 PMCID: PMC8562573 DOI: 10.5511/plantbiotechnology.21.0730a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
We observed trees of the Japanese apricot, Prunus mume 'Nanko' (Rosaceae), bearing two types of flowers: 34% had blue fluorescent pollen under UV irradiation, and 66% had non-fluorescent pollen. The fluorescent pollen grains were abnormally crushed, sterile, and devoid of intine and pollenkitt. The development of microspores within anthers was investigated: in the abnormally developed anthers, tapetal cells were vacuolated at the unicellular microspore stage, and fluorescent pollen was produced. Compounds responsible for the blue fluorescence of pollen were identified as chlorogenic acid and 1-O-feruloyl-β-D-glucose. The anthers with fluorescent pollen contained 6.7-fold higher and 3.8-fold lower amounts of chlorogenic acid and N 1,N 5,N 10-tri-p-coumaroylspermidine, respectively, compared to those with non-fluorescent pollen. The tapetal vacuolization, highly accumulated chlorogenic acid, and deficiency of N 1,N 5,N 10-tri-p-coumaroylspermidine imply that low-temperature stress during the early unicellular microspore stage caused a failure in microsporogenesis. Furthermore, potential effects of the visual difference on the bee behavior were also discussed through the colorimetry. The sterility, likely induced by low-temperature stress, and the preference of honeybees for fluorescence may reduce the pollination efficiency of P. mume.
Collapse
|
3
|
Fukushima K, Kanomata T, Kon A, Masuko-Suzuki H, Ito K, Ogata S, Takada Y, Komatsubara Y, Nakamura T, Watanabe T, Koizumi S, Sanuki H, Park JI, Niikura S, Suwabe K, Fujii S, Murase K, Takayama S, Suzuki G, Watanabe M. Spatiogenetic characterization of S receptor kinase (SRK) alleles in naturalized populations of Raphanus sativus L. var. raphanistroides on Yakushima island. Genes Genet Syst 2021; 96:129-139. [PMID: 34148895 DOI: 10.1266/ggs.20-00066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In various coastal areas of Japan, naturalized radish populations are observed. Radish is a cruciferous plant and exhibits self-incompatibility, involving a system controlled by a single locus with multiple S alleles. Although the S allele diversity of radish cultivars and wild radishes has been characterized, the S allele distribution in naturalized populations has not yet been analyzed in relation to the positions of the plants in situ. Here, we show the S allele distribution in naturalized radish populations of Yakushima, a small island in the East China Sea, with positions of the plants. Radish plants were sampled in coastal areas in Yakushima, and their S alleles were detected and characterized. Most of the S alleles had been previously identified in radish cultivars. However, four novel S alleles, which may be unique to Yakushima, were also found. Moreover, seeds in siliques from plants growing in the study areas were sampled, and S allele determination in DNA extracted from these seeds suggested that the plants had exchanged their pollen among their close neighbors. There was also a problem in that the PCR amplification of some SRK alleles was difficult because of their sequence diversity in the naturalized populations, as occurs in cultivars. Our results suggest that the exchange of S alleles between cultivars and naturalized populations occurs and that S alleles in naturalized populations are highly diverse. The methodology established in our study should be applicable to other self-incompatible species to dissect the diversity of S allele distribution in naturalized populations.
Collapse
|
4
|
Suwabe K, Nagasaka K, Windari EA, Hoshiai C, Ota T, Takada M, Kitazumi A, Masuko-Suzuki H, Kagaya Y, Yano K, Tsuchimatsu T, Shimizu KK, Takayama S, Suzuki G, Watanabe M. Double-Locking Mechanism of Self-Compatibility in Arabidopsis thaliana: The Synergistic Effect of Transcriptional Depression and Disruption of Coding Region in the Male Specificity Gene. FRONTIERS IN PLANT SCIENCE 2020; 11:576140. [PMID: 33042191 PMCID: PMC7517786 DOI: 10.3389/fpls.2020.576140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/31/2020] [Indexed: 06/11/2023]
Abstract
Self-compatibility in Arabidopsis thaliana represents the relatively recent disruption of ancestral obligate cross pollination, recognized as one of the prevalent evolutionary pathways in flowering plants, as noted by Darwin. Our previous study found that inversion of the male specificity gene (SP11/SCR) disrupted self-incompatibility, which was restored by overexpressing the SCR with the reversed inversion. However, SCR in A. thaliana has other mutations aside from the pivotal inversion, in both promoter and coding regions, with probable effects on transcriptional regulation. To examine the functional consequences of these mutations, we conducted reciprocal introductions of native promoters and downstream sequences from orthologous loci of self-compatible A. thaliana and self-incompatible A. halleri. Use of this inter-species pair enabled us to expand the scope of the analysis to transcriptional regulation and deletion in the intron, in addition to inversion in the native genomic background. Initial analysis revealed that A. thaliana has a significantly lower basal expression level of SCR transcripts in the critical reproductive stage compared to that of A. halleri, suggesting that the promoter was attenuated in inducing transcription in A. thaliana. However, in reciprocal transgenic experiments, this A. thaliana promoter was able to restore partial function if coupled with the functional A. halleri coding sequence, despite extensive alterations due to the self-compatible mode of reproduction in A. thaliana. This represents a synergistic effect of the promoter and the inversion resulting in fixation of self-compatibility, primarily enforced by disruption of SCR. Our findings elucidate the functional and evolutionary context of the historical transition in A. thaliana thus contributing to the understanding of the molecular events leading to development of self-compatibility.
Collapse
|
5
|
Osaka M, Nabemoto M, Maeda S, Sakazono S, Masuko-Suzuki H, Ito K, Takada Y, Kobayashi I, Lim YP, Nakazono M, Fujii S, Murase K, Takayama S, Suzuki G, Suwabe K, Watanabe M. Genetic and tissue-specific RNA-sequencing analysis of self-compatible mutant TSC28 in Brassica rapa L. toward identification of a novel self-incompatibility factor. Genes Genet Syst 2019; 94:167-176. [PMID: 31474624 DOI: 10.1266/ggs.19-00010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Self-incompatibility (SI) is a sophisticated system for pollen selectivity to prevent pollination by genetically identical pollen. In Brassica, it is genetically controlled by a single, highly polymorphic S-locus, and the male and female S-determinant factors have been identified as S-locus protein 11 (SP11)/S-locus cysteine-rich protein (SCR) and S-locus receptor kinase (SRK), respectively. However, the overall molecular system and identity of factors in the downstream cascade of the SI reaction remain unclear. Previously, we identified a self-compatible B. rapa mutant line, TSC28, which has a disruption in an unidentified novel factor of the SI signaling cascade. Here, in a genetic analysis of TSC28, using an F2 population from a cross with the reference B. rapa SI line Chiifu-401, the causal gene was mapped to a genetic region of DNA containing markers BrSA64 and ACMP297 in B. rapa chromosome A1. By fine mapping using an F2 population of 1,034 plants, it was narrowed down to a genetic region between DNA markers ACMP297 and BrgMS4028, with physical length approximately 1.01 Mbp. In this genomic region, 113 genes are known to be located and, among these, we identified 55 genes that were expressed in the papilla cells. These are candidates for the gene responsible for the disruption of SI in TSC28. This list of candidate genes will contribute to the discovery of a novel downstream factor in the SP11-SRK signaling cascade in the Brassica SI system.
Collapse
|
6
|
Ito-Inaba Y, Masuko-Suzuki H, Maekawa H, Watanabe M, Inaba T. Characterization of two PEBP genes, SrFT and SrMFT, in thermogenic skunk cabbage (Symplocarpus renifolius). Sci Rep 2016; 6:29440. [PMID: 27389636 PMCID: PMC4937424 DOI: 10.1038/srep29440] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 06/20/2016] [Indexed: 01/17/2023] Open
Abstract
Floral thermogenesis has been found in dozens of primitive seed plants and the reproductive organs in these plants produce heat during anthesis. Thus, characterization of the molecular mechanisms underlying flowering is required to fully understand the role of thermogenesis, but this aspect of thermogenic plant development is largely unknown. In this study, extensive database searches and cloning experiments suggest that thermogenic skunk cabbage (Symplocarpus renifolius), which is a member of the family Araceae, possesses two genes encoding phosphatidyl ethanolamine-binding proteins (PEBP), FLOWERING LOCUS T (SrFT) and MOTHER OF FT AND TFL1 (SrMFT). Functional analyses of SrFT and SrMFT in Arabidopsis indicate that SrFT promotes flowering, whereas SrMFT does not. In S. renifolius, the stage- and tissue-specific expression of SrFT was more evident than that of SrMFT. SrFT was highly expressed in flowers and leaves and was mainly localized in fibrovascular tissues. In addition, microarray analysis revealed that, within floral tissues, SrFT was co-regulated with the genes associated with cellular respiration and mitochondrial function, including ALTERNATIVE OXIDASE gene proposed to play a major role in floral thermogenesis. Taken together, these data suggest that, among the PEBP genes, SrFT plays a role in flowering and floral development in the thermogenic skunk cabbage.
Collapse
|
7
|
Maeda S, Sakazono S, Masuko-Suzuki H, Taguchi M, Yamamura K, Nagano K, Endo T, Saeki K, Osaka M, Nabemoto M, Ito K, Kudo T, Kobayashi M, Kawagishi M, Fujita K, Nanjo H, Shindo T, Yano K, Suzuki G, Suwabe K, Watanabe M. Comparative analysis of microRNA profiles of rice anthers between cool-sensitive and cool-tolerant cultivars under cool-temperature stress. Genes Genet Syst 2016; 91:97-109. [PMID: 27021915 DOI: 10.1266/ggs.15-00056] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Plants subjected to abiotic stress can regulate gene expression post-transcriptionally by means of small RNAs such as microRNAs. Cool-temperature stress causes abnormal tapetum hypertrophy in rice anthers, leading to pollen sterility. As a first step toward understanding the molecular mechanisms of cool tolerance in developing anthers of rice, we report here a comprehensive comparative analysis of microRNAs between cool-sensitive Sasanishiki and cool-tolerant Hitomebore cultivars. High-throughput Illumina sequencing revealed 241 known and 46 novel microRNAs. Interestingly, 15 of these microRNAs accumulated differentially in the two cultivars at the uninucleate microspore stage under cool conditions. Inverse correlations between expression patterns of microRNAs and their target genes were confirmed by quantitative RT-PCR analysis, and cleavage sites of some of the target genes were determined by 5' RNA ligase-mediated RACE experiments. Thus, our data are useful resources to elucidate microRNA-mediated mechanism(s) of cool tolerance in rice anthers at the booting stage.
Collapse
|
8
|
Matsuda T, Matsushima M, Nabemoto M, Osaka M, Sakazono S, Masuko-Suzuki H, Takahashi H, Nakazono M, Iwano M, Takayama S, Shimizu KK, Okumura K, Suzuki G, Watanabe M, Suwabe K. Transcriptional characteristics and differences in Arabidopsis stigmatic papilla cells pre- and post-pollination. PLANT & CELL PHYSIOLOGY 2015; 56:663-73. [PMID: 25527828 DOI: 10.1093/pcp/pcu209] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Accepted: 12/13/2014] [Indexed: 05/09/2023]
Abstract
Pollination is an important early step in sexual plant reproduction. In Arabidopsis thaliana, sequential pollination events, from pollen adhesion onto the stigma surface to pollen tube germination and elongation, occur on the stigmatic papilla cells. Following successful completion of these events, the pollen tube penetrates the stigma and finally fertilizes a female gametophyte. The pollination events are thought to be initiated and regulated by interactions between papilla cells and pollen. Here, we report the characterization of gene expression profiles of unpollinated (UP), compatible pollinated (CP) and incompatible pollinated (IP) papilla cells in A. thaliana. Based on cell type-specific transcriptome analysis from a combination of laser microdissection and RNA sequencing, 15,475, 17,360 and 16,918 genes were identified as expressed in UP, CP and IP papilla cells, respectively, and, of these, 14,392 genes were present in all three data sets. Differentially expressed gene (DEG) analyses identified 147 and 71 genes up-regulated in CP and IP papilla cells, respectively, and 115 and 46 genes down-regulated. Gene Ontology and metabolic pathway analyses revealed that papilla cells play an active role as the female reproductive component in pollination, particularly in information exchange, signal transduction, internal physiological changes and external morphological modification. This study provides fundamental information on the molecular mechanisms involved in pollination in papilla cells, furthering our understanding of the reproductive role of papilla cells.
Collapse
|
9
|
Sudo K, Park JI, Sakazono S, Masuko-Suzuki H, Osaka M, Kawagishi M, Fujita K, Maruoka M, Nanjo H, Suzuki G, Suwabe K, Watanabe M. Demonstration in vivo of the role of Arabidopsis PLIM2 actin-binding proteins during pollination. Genes Genet Syst 2014; 88:279-87. [PMID: 24694391 DOI: 10.1266/ggs.88.279] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In plant reproduction, pollination is the initial key process in bringing together the male and female gametophytes. When a pollen grain lands on the surface of the stigma, information is exchanged between the pollen and stigmatic cell to determine whether the pollen grain will be accepted or rejected. If it is accepted, the stigmatic papilla cell supplies water and other resources to the pollen for germination and pollen tube elongation. Cellular processes involving actin are essential for pollen germination and tube growth, and actin-binding proteins regulate these processes by interacting with actin filaments to assemble cytoskeletal structures and actin networks. LIM proteins, which belong to a subfamily of cysteine-rich proteins, are a family of actin-binding proteins in plants, and are considered to be important for formation of the actin cytoskeleton and maintenance of its dynamics. Although the physiological and biochemical characteristics of LIMs have been elucidated in vitro in a variety of cell types, their exact role in pollen germination and pollen tube growth during pollination remained unclear. In this manuscript, we focus on the pollen-specific LIM proteins, AtPLIM2a and AtPLIM2c, and define their biological function during pollination in Arabidopsis thaliana. The atplim2a/atplim2c double knockdown RNAi plants showed a reduced pollen germination, approximately one-fifth of wild type, and slower pollen tube growth in the pistil, that is 80.4 μm/hr compared to 140.8 μm/hr in wild type. These defects led to an occasional unfertilized ovule at the bottom of the silique in RNAi plants. Our data provide direct evidence of the biological function of LIM proteins during pollination as actin-binding proteins, modulating cytoskeletal structures and actin networks, and their consequent importance in seed production.
Collapse
|
10
|
Osaka M, Matsuda T, Sakazono S, Masuko-Suzuki H, Maeda S, Sewaki M, Sone M, Takahashi H, Nakazono M, Iwano M, Takayama S, Shimizu KK, Yano K, Lim YP, Suzuki G, Suwabe K, Watanabe M. Cell type-specific transcriptome of Brassicaceae stigmatic papilla cells from a combination of laser microdissection and RNA sequencing. PLANT & CELL PHYSIOLOGY 2013; 54:1894-906. [PMID: 24058146 PMCID: PMC3814185 DOI: 10.1093/pcp/pct133] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Pollination is an early and critical step in plant reproduction, leading to successful fertilization. It consists of many sequential processes, including adhesion of pollen grains onto the surface of stigmatic papilla cells, foot formation to strengthen pollen-stigma interaction, pollen hydration and germination, and pollen tube elongation and penetration. We have focused on an examination of the expressed genes in papilla cells, to increase understanding of the molecular systems of pollination. From three representative species of Brassicaceae (Arabidopsis thaliana, A. halleri and Brassica rapa), stigmatic papilla cells were isolated precisely by laser microdissection, and cell type-specific gene expression in papilla cells was determined by RNA sequencing. As a result, 17,240, 19,260 and 21,026 unigenes were defined in papilla cells of A. thaliana, A. halleri and B. rapa, respectively, and, among these, 12,311 genes were common to all three species. Among the17,240 genes predicted in A. thaliana, one-third were papilla specific while approximately half of the genes were detected in all tissues examined. Bioinformatics analysis revealed that genes related to a wide range of reproduction and development functions are expressed in papilla cells, particularly metabolism, transcription and membrane-mediated information exchange. These results reflect the conserved features of general cellular function and also the specific reproductive role of papilla cells, highlighting a complex cellular system regulated by a diverse range of molecules in these cells. This study provides fundamental biological knowledge to dissect the molecular mechanisms of pollination in papilla cells and will shed light on our understanding of plant reproduction mechanisms.
Collapse
|
11
|
Hiroi K, Sone M, Sakazono S, Osaka M, Masuko-Suzuki H, Matsuda T, Suzuki G, Suwabe K, Watanabe M. Time-lapse imaging of self- and cross-pollinations in Brassica rapa. ANNALS OF BOTANY 2013; 112:115-22. [PMID: 23644359 PMCID: PMC3690991 DOI: 10.1093/aob/mct102] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Accepted: 03/15/2013] [Indexed: 05/21/2023]
Abstract
BACKGROUND AND AIMS Pollination is an important process in the life cycle of plants and is the first step in bringing together the male and female gametophytes for plant reproduction. While pollination has been studied for many years, accurate knowledge of the morphological aspects of this process is still far from complete. This study therefore focuses on a morphological characterization of pollination, using time-series image analysis of self- and cross-pollinations in Brassica rapa. METHODS Time-lapse imaging of pollen behaviour during self- and cross-pollinations was recorded for 90 min, at 1 min intervals, using a stereoscopic microscope. Using time-series digital images of pollination, characteristic features of pollen behaviours during self- and cross-pollinations were studied. KEY RESULTS Pollen exhibited various behaviours in both self- and cross-pollinations, and these were classified into six representative patterns: germination, expansion, contraction, sudden contraction, pulsation and no change. It is noteworthy that in 'contraction' pollen grains shrunk within a short period of 30-50 min, and in 'pulsation' repeated expansion and contraction occurred with an interval of 10 min, suggesting that a dehydration system is operating in pollination. All of the six patterns were observed on an individual stigma with both self- and cross-pollinations, and the difference between self- and cross-pollinations was in the ratios of the different behaviours. With regard to water transport to and from pollen grains, this occurred in multiple steps, before, during and after hydration. Thus, pollination is regulated by a combination of multiple components of hydration, rehydration and dehydration systems. CONCLUSIONS Regulated hydration of pollen is a key process for both pollination and self-incompatibility, and this is achieved by a balanced complex of hydration, dehydration and nutrient supply to pollen grains from stigmatic papilla cells.
Collapse
|