1
|
Li Y, Meng Q, Yang M, Liu D, Hou X, Tang L, Wang X, Lyu Y, Chen X, Liu K, Yu AM, Zuo Z, Bi H. Current trends in drug metabolism and pharmacokinetics. Acta Pharm Sin B 2019; 9:1113-1144. [PMID: 31867160 PMCID: PMC6900561 DOI: 10.1016/j.apsb.2019.10.001] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 08/23/2019] [Accepted: 09/09/2019] [Indexed: 12/15/2022] Open
Abstract
Pharmacokinetics (PK) is the study of the absorption, distribution, metabolism, and excretion (ADME) processes of a drug. Understanding PK properties is essential for drug development and precision medication. In this review we provided an overview of recent research on PK with focus on the following aspects: (1) an update on drug-metabolizing enzymes and transporters in the determination of PK, as well as advances in xenobiotic receptors and noncoding RNAs (ncRNAs) in the modulation of PK, providing new understanding of the transcriptional and posttranscriptional regulatory mechanisms that result in inter-individual variations in pharmacotherapy; (2) current status and trends in assessing drug-drug interactions, especially interactions between drugs and herbs, between drugs and therapeutic biologics, and microbiota-mediated interactions; (3) advances in understanding the effects of diseases on PK, particularly changes in metabolizing enzymes and transporters with disease progression; (4) trends in mathematical modeling including physiologically-based PK modeling and novel animal models such as CRISPR/Cas9-based animal models for DMPK studies; (5) emerging non-classical xenobiotic metabolic pathways and the involvement of novel metabolic enzymes, especially non-P450s. Existing challenges and perspectives on future directions are discussed, and may stimulate the development of new research models, technologies, and strategies towards the development of better drugs and improved clinical practice.
Collapse
|
Review |
6 |
167 |
2
|
Sze CI, Bi H, Kleinschmidt-DeMasters BK, Filley CM, Martin LJ. Selective regional loss of exocytotic presynaptic vesicle proteins in Alzheimer's disease brains. J Neurol Sci 2000; 175:81-90. [PMID: 10831767 DOI: 10.1016/s0022-510x(00)00285-9] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We tested whether regional or selective alterations in presynaptic proteins occur in Alzheimer's disease (AD) and correlate with tests of cognitive function. We measured the levels of seven presynaptic proteins (synaptobrevin, synaptotagmin, SNAP-25, syntaxin, SV2, Rab3a, and synapsin I) by immunoblotting in postmortem tissue from four brain regions (hippocampus, entorhinal cortex, caudate nucleus, and occipital cortex). Three subject groups were studied: AD, possible/early AD (p-AD), and age-matched controls. Synaptobrevin and synaptotagmin were significantly reduced (29%, P<0.08; 38%, P<0. 07) in hippocampus in p-AD compared to controls. In definite AD compared to controls, selective regional reductions in vesicle proteins were found: synaptobrevin (46%, P<0.05), synaptotagmin (52%, P<0.01), and Rab3a (30%, P<0.05) in hippocampus; synaptobrevin (31%, P<0.01), synaptotagmin (15%, P<0.05), and Rab3a (44%, P<0.05) in entorhinal cortex. In contrast, the levels of two vesicle proteins (synapsin I and SV2) and two presynaptic membrane proteins (syntaxin and SNAP-25) were similar to controls. Synaptobrevin was the only vesicle protein reduced in AD in all four brain regions (occipital cortex 37%, P<0.05; caudate nucleus 31%, P<0.05). By univariate analysis of all cases, Mini-Mental State Examination, Blessed (BIMC) and Free Recall scores were strongly correlated with reduced levels of synaptic vesicle proteins synaptobrevin, synaptotagmin, and Rab3a in hippocampus and entorhinal cortex. These results suggest that there are selective and early defects in presynaptic vesicle proteins, but not synaptic plasma membrane proteins in AD and that defects correlate with cognitive dysfunction in this disease.
Collapse
|
|
25 |
127 |
3
|
Zhang N, Fountain ST, Bi H, Rossi DT. Quantification and rapid metabolite identification in drug discovery using API time-of-flight LC/MS. Anal Chem 2000; 72:800-6. [PMID: 10701265 DOI: 10.1021/ac9911701] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Liquid chromatography/mass spectrometry (LC/MS), utilizing a time-of-flight (TOF) mass analyzer, has been evaluated and applied to problems in bioanalysis for pharmacokinetics and drug metabolism. The data obtained by TOF MS differ from those obtained using quadrupole mass spectrometer instruments in that full-scan spectra can be routinely collected with greater sensitivity and speed. Both quantitative and qualitative information, including compound concentration in rat plasma and full-scan atmospheric pressure ionization mass spectra, are concurrently obtained. This approach has been used to characterize the disposition of several drug compounds that have been simultaneously dosed to rats in a cassette format. Quantitation limits in the 5-25 ng/mL range (approximately 20 nM) were obtained from nominal mass chromatograms (0.5 Da resolution). A reference lock mass was used to provide accurate mass measurement to reach third decimal place accuracy in the monoisotopic molecular weight. An improvement in quantitation limits was demonstrated after using accurate mass determinations. Several possible preliminary drug metabolites were confirmed or refuted, based on accurate mass. The trend of metabolite formation and clearance was qualitatively evaluated.
Collapse
|
|
25 |
114 |
4
|
Bi H, Zhang B, Tao X, Harwerth RS, Smith EL, Chino YM. Neuronal responses in visual area V2 (V2) of macaque monkeys with strabismic amblyopia. Cereb Cortex 2011; 21:2033-45. [PMID: 21263036 PMCID: PMC3155601 DOI: 10.1093/cercor/bhq272] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Amblyopia, a developmental disorder of spatial vision, is thought to result from a cascade of cortical deficits over several processing stages beginning at the primary visual cortex (V1). However, beyond V1, little is known about how cortical development limits the visual performance of amblyopic primates. We quantitatively analyzed the monocular and binocular responses of V1 and V2 neurons in a group of strabismic monkeys exhibiting varying depths of amblyopia. Unlike in V1, the relative effectiveness of the affected eye to drive V2 neurons was drastically reduced in the amblyopic monkeys. The spatial resolution and the orientation bias of V2, but not V1, neurons were subnormal for the affected eyes. Binocular suppression was robust in both cortical areas, and the magnitude of suppression in individual monkeys was correlated with the depth of their amblyopia. These results suggest that the reduced functional connections beyond V1 and the subnormal spatial filter properties of V2 neurons might have substantially limited the sensitivity of the amblyopic eyes and that interocular suppression was likely to have played a key role in the observed alterations of V2 responses and the emergence of amblyopia.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
109 |
5
|
Sze C, Bi H, Kleinschmidt-DeMasters BK, Filley CM, Martin LJ. N-Methyl-D-aspartate receptor subunit proteins and their phosphorylation status are altered selectively in Alzheimer's disease. J Neurol Sci 2001; 182:151-9. [PMID: 11137521 DOI: 10.1016/s0022-510x(00)00467-6] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The N-methyl-D-aspartate (NMDA) receptor is a subtype of the ionotropic glutamate receptor that plays a pivotal role in synaptic mechanisms of learning and memory. We tested the hypothesis that NMDA receptor protein levels are abnormal in Alzheimer's disease (AD). By immunoblotting, we assessed levels of both non-phosphorylated and phosphorylated receptor subunit proteins from four separate regions of 16 post-mortem brains. Three patient groups with thorough pre-mortem neuropsychological testing were evaluated, including AD, early AD (p-AD), and control patients. Protein levels and phosphorylation status of NMDA receptor subunits NR1, NR2A and NR2B were correlated with measurements of cognitive performance. Selective regional reductions in NMDA receptor subunit protein levels were found in AD compared to controls, but protein levels in the p-AD group were similar to controls. Reductions of NR1 (53%, P<0.05) and NR2B (40%, P<0.05) were identified in hippocampus. Reductions of NR2A (39%, P<0.05) and NR2B (31%, P<0.01) were found in entorhinal cortex. No reductions were noted in occipital cortex and caudate. Phosphorylated NR2A (30%, P<0.05) and NR2B (56%, P<0.01) were selectively reduced in entorhinal cortex in AD when compared to controls. Both phosphorylated and non-phosphorylated NMDA receptor protein levels in entorhinal cortex correlated with Mini-Mental Status Examination (MMSE) and Blessed (BIMC) scores. The losses of phosphorylated and non-phosphorylated NMDA receptor subunit proteins correlated with changes in synaptobrevin levels (a presynaptic protein), but not with age or post-mortem interval. Our results demonstrate that NMDA receptor subunits are selectively and differentially reduced in areas of AD brain, and these abnormalities correlate with presynaptic alterations and cognitive deficits in AD.
Collapse
|
|
24 |
103 |
6
|
Wang Y, Jiang Y, Fan X, Tan H, Zeng H, Wang Y, Chen P, Huang M, Bi H. Hepato-protective effect of resveratrol against acetaminophen-induced liver injury is associated with inhibition of CYP-mediated bioactivation and regulation of SIRT1-p53 signaling pathways. Toxicol Lett 2015; 236:82-9. [PMID: 25956474 DOI: 10.1016/j.toxlet.2015.05.001] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 04/29/2015] [Accepted: 05/03/2015] [Indexed: 12/22/2022]
Abstract
Resveratrol (RES) has been shown to possess many pharmacological activities including protective effect against liver damage induced by hepatotoxins. In the present study, the hepato-protective effect of RES against acetaminophen (APAP)-induced liver injury in mice and the involved mechanisms was investigated. This study clearly demonstrated that administration of RES three days before APAP treatment significantly alleviated APAP-induced hepatotoxicity, as evidenced by morphological, histopathological, and biochemical assessments such as GSH content and serum ALT/AST activity. Treatment with RES resulted in significant inhibition of CYP2E1, CYP3A11, and CYP1A2 activities, and then caused significant inhibition of the bioactivation of APAP into toxic metabolite NAPQI. Pretreatment with RES significantly reduced APAP-induced JNK activation to protect against mitochondrial injury. Additionally, RES treatment significantly induced SIRT1 and then negatively regulated p53 signaling to induce cell proliferation-associated proteins including cyclin D1, CDK4, and PCNA to promote hepatocyte proliferation. This study demonstrated that RES prevents APAP-induced hepatotoxicity by inhibition of CYP-mediated APAP bioactivation and regulation of SIRT1, p53, cyclin D1 and PCNA to facilitate liver regeneration following APAP-induced liver injury.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
98 |
7
|
Bi H, Krausz KW, Manna SK, Li F, Johnson CH, Gonzalez FJ. Optimization of harvesting, extraction, and analytical protocols for UPLC-ESI-MS-based metabolomic analysis of adherent mammalian cancer cells. Anal Bioanal Chem 2013; 405:5279-89. [PMID: 23604415 PMCID: PMC3678261 DOI: 10.1007/s00216-013-6927-9] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 03/15/2013] [Accepted: 03/18/2013] [Indexed: 11/30/2022]
Abstract
In this study, a liquid chromatography mass spectrometry (LC/MS)-based metabolomics protocol was optimized for quenching, harvesting, and extraction of metabolites from the human pancreatic cancer cell line Panc-1. Trypsin/ethylenediaminetetraacetic acid (EDTA) treatment and cell scraping in water were compared for sample harvesting. Four different extraction methods were compared to investigate the efficiency of intracellular metabolite extraction, including pure acetonitrile, methanol, methanol/chloroform/H2O, and methanol/chloroform/acetonitrile. The separation efficiencies of hydrophilic interaction chromatography (HILIC) and reversed-phase liquid chromatography (RPLC) with UPLC-QTOF-MS were also evaluated. Global metabolomics profiles were compared; the number of total detected features and the recovery and relative extraction efficiencies of target metabolites were assessed. Trypsin/EDTA treatment caused substantial metabolite leakage proving it inadequate for metabolomics studies. Direct scraping after flash quenching with liquid nitrogen was chosen to harvest Panc-1 cells which allowed for samples to be stored before extraction. Methanol/chloroform/H2O was chosen as the optimal extraction solvent to recover the highest number of intracellular features with the best reproducibility. HILIC had better resolution for intracellular metabolites of Panc-1 cells. This optimized method therefore provides high sensitivity and reproducibility for a variety of cellular metabolites and can be applicable to further LC/MS-based global metabolomics study on Panc-1 cell lines and possibly other cancer cell lines with similar chemical and physical properties.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
96 |
8
|
Jiang Y, Fan X, Wang Y, Tan H, Chen P, Zeng H, Huang M, Bi H. Hepato-protective effects of six schisandra lignans on acetaminophen-induced liver injury are partially associated with the inhibition of CYP-mediated bioactivation. Chem Biol Interact 2015; 231:83-9. [PMID: 25753323 DOI: 10.1016/j.cbi.2015.02.022] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 02/19/2015] [Accepted: 02/26/2015] [Indexed: 02/06/2023]
Abstract
Acetaminophen (APAP) overdose is the most frequent cause of drug-induced acute liver failure. Schisandra fructus is widely-used traditional Chinese medicine which possesses hepato-protective potential. Schisandrin A (SinA), Schisandrin B (SinB), Schisandrin C (SinC), Schisandrol A (SolA), Schisandrol B (SolB), and Schisantherin A (SthA) are the major bioactive lignans. Most recently, we found SolB exerts significant hepato-protection against APAP-induced liver injury. In this study, the protective effects of the other five schisandra lignans against APAP-induced acute hepatotoxicity in mice were investigated and compared with that of SolB. The results of morphological and biochemical assessment clearly demonstrated significant protective effects of SinA, SinB, SinC, SolA, SolB, and SthA against APAP-induced liver injury. Among these schisandra lignans, SinC and SolB exerted the strongest hepato-protective effects against APAP-induced hepatotoxicity. Six lignans pretreatment before APAP dosing could prevent the depletions of total liver glutathione (GSH) and mitochondrial GSH caused by APAP. Additionally, the lignans treatment inhibited the enzymatic activities of three CYP450 isoforms (CYP2E1, CYP1A2, and CYP3A11) related to APAP bioactivation, and further decreased the formation of APAP toxic intermediate N-acetyl-p-benzoquinone imine (NAPQI) in mouse microsomal incubation system. This study demonstrated that SinA, SinB, SinC, SolA, SolB and SthA exhibited significant protective actions toward APAP-induced liver injury, which was partially associated with the inhibition of CYP-mediated APAP bioactivation.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
93 |
9
|
Jiang Y, Feng D, Ma X, Fan S, Gao Y, Fu K, Wang Y, Sun J, Yao X, Liu C, Zhang H, Xu L, Liu A, Gonzalez FJ, Yang Y, Gao B, Huang M, Bi H. Pregnane X Receptor Regulates Liver Size and Liver Cell Fate by Yes-Associated Protein Activation in Mice. Hepatology 2019; 69:343-358. [PMID: 30048004 PMCID: PMC6324985 DOI: 10.1002/hep.30131] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 05/30/2018] [Indexed: 12/13/2022]
Abstract
Activation of pregnane X receptor (PXR), a nuclear receptor that controls xenobiotic and endobiotic metabolism, is known to induce liver enlargement, but the molecular signals and cell types responding to PXR-induced hepatomegaly remain unknown. In this study, the effect of PXR activation on liver enlargement and cell change was evaluated in several strains of genetically modified mice and animal models. Lineage labeling using AAV-Tbg-Cre-treated Rosa26EYFP mice or Sox9-CreERT , Rosa26EYFP mice was performed and Pxr-null mice or AAV Yap short hairpin RNA (shRNA)-treated mice were used to confirm the role of PXR or yes-associated protein (YAP). Treatment with selective PXR activators induced liver enlargement and accelerated regeneration in wild-type (WT) and PXR-humanized mice, but not in Pxr-null mice, by increase of cell size, induction of a regenerative hybrid hepatocyte (HybHP) reprogramming, and promotion of hepatocyte and HybHP proliferation. Mechanistically, PXR interacted with YAP and PXR activation induced nuclear translocation of YAP. Blockade of YAP abolished PXR-induced liver enlargement in mice. Conclusion: These findings revealed a function of PXR in enlarging liver size and changing liver cell fate by activation of the YAP signaling pathway. These results have implications for understanding the physiological functions of PXR and suggest the potential for manipulation of liver size and liver cell fate.
Collapse
|
research-article |
6 |
81 |
10
|
He F, Bi HC, Xie ZY, Zuo Z, Li JK, Li X, Zhao LZ, Chen X, Huang M. Rapid determination of six metabolites from multiple cytochrome P450 probe substrates in human liver microsome by liquid chromatography/mass spectrometry: application to high-throughput inhibition screening of terpenoids. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2007; 21:635-43. [PMID: 17279482 DOI: 10.1002/rcm.2881] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
A rapid liquid chromatography/tandem mass spectrometry (LC/MS/MS) method was developed for the determination of six cytochrome P450 (CYP) probe substrate metabolites including paracetamol (PAR) for CYP1A2, 4-hydroxytolbutamide (OHTOL) for CYP2C9, 5-hydroxyomeprazole (OHOMe) for CYP2C19, dextrorphan (DEXM) for CYP2D6, 6-hydroxychlorzoxazone (OHCHL) for CYP2E1 and dehydronifedipine (DNIF) for CYP3A4. The triple-quadrupole mass spectrometer was operated in both positive and negative modes, and selective reaction monitoring was used for quantification. The method was validated over the concentration ranges (0.075/0.04/0.05/0.02/0.1/0.0625 microM to 4.8/2.56/3.2/1.28/6.4/4.0 microM) for PAR/OHTOL/OHOME/DEXP/OHCHL/DNIF analytes with acceptable accuracy and precision. The inhibitory effect on the six CYP enzymes has been verified with their known specific inhibitors. This high-throughput inhibition screening approach has been successfully applied to study the inhibitory effects of 18 terpenoids on CYP enzymes. Among them, tanshinone IIA and cryptotanshinone are found to be potent inhibitors to CYP1A2, while artemisinin is a marginal inhibitor to CYP1A2 and glycyrrhetic acid is a weak inhibitor to CYP2C9.
Collapse
|
Validation Study |
18 |
74 |
11
|
|
|
16 |
73 |
12
|
Fan S, Gao Y, Qu A, Jiang Y, Li H, Xie G, Yao X, Yang X, Zhu S, Yagai T, Tian J, Wang R, Gonzalez FJ, Huang M, Bi H. YAP-TEAD mediates PPAR α-induced hepatomegaly and liver regeneration in mice. Hepatology 2022; 75:74-88. [PMID: 34387904 DOI: 10.1002/hep.32105] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 07/22/2021] [Accepted: 08/06/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Peroxisome proliferator-activated receptor α (PPARα, NR1C1) is a ligand-activated nuclear receptor involved in the regulation of lipid catabolism and energy homeostasis. PPARα activation induces hepatomegaly and plays an important role in liver regeneration, but the underlying mechanisms remain unclear. APPROACH AND RESULTS In this study, the effect of PPARα activation on liver enlargement and regeneration was investigated in several strains of genetically modified mice. PPARα activation by the specific agonist WY-14643 significantly induced hepatomegaly and accelerated liver regeneration after 70% partial hepatectomy (PHx) in wild-type mice and Pparafl/fl mice, while these effects were abolished in hepatocyte-specific Ppara-deficient (PparaΔHep ) mice. Moreover, PPARα activation promoted hepatocyte hypertrophy around the central vein area and hepatocyte proliferation around the portal vein area. Mechanistically, PPARα activation regulated expression of yes-associated protein (YAP) and its downstream targets (connective tissue growth factor, cysteine-rich angiogenic inducer 61, and ankyrin repeat domain 1) as well as proliferation-related proteins (cyclins A1, D1, and E1). Binding of YAP with the PPARα E domain was critical for the interaction between YAP and PPARα. PPARα activation further induced nuclear translocation of YAP. Disruption of the YAP-transcriptional enhancer factor domain family member (TEAD) association significantly suppressed PPARα-induced hepatomegaly and hepatocyte enlargement and proliferation. In addition, PPARα failed to induce hepatomegaly in adeno-associated virus-Yap short hairpin RNA-treated mice and liver-specific Yap-deficient mice. Blockade of YAP signaling abolished PPARα-induced hepatocyte hypertrophy around the central vein area and hepatocyte proliferation around the portal vein area. CONCLUSIONS This study revealed a function of PPARα in regulating liver size and liver regeneration through activation of the YAP-TEAD signaling pathway. These findings have implications for understanding the physiological functions of PPARα and suggest its potential for manipulation of liver size and liver regeneration.
Collapse
|
|
3 |
71 |
13
|
Zhang J, Huang M, Guan S, Bi HC, Pan Y, Duan W, Chan SY, Chen X, Hong YH, Bian JS, Yang HY, Zhou S. A mechanistic study of the intestinal absorption of cryptotanshinone, the major active constituent of Salvia miltiorrhiza. J Pharmacol Exp Ther 2006; 317:1285-94. [PMID: 16497784 DOI: 10.1124/jpet.105.100701] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The nature of intestinal absorption of most herbal medicine is unknown. Cryptotanshinone (CTS) is the principal active constituent of the widely used cardiovascular herb Salvia miltiorrhiza (Danshen). We investigated the oral bioavailability of CTS in rats and the mechanism for its intestinal absorption using several in vitro and in vivo models: 1) Caco-2 cell monolayers; 2) monolayers of MDCKII cells overexpressing P-glycoprotein (PgP); and 3) single-pass rat intestinal perfusion with mesenteric vein cannulation. The systemic bioavailabilities of CTS after oral and intraperitoneal administration at 100 mg/kg were 2.05 and 10.60%, respectively. In the perfused rat intestinal model, permeability coefficients based on CTS disappearance from the luminal perfusate (Plumen) were 6.7- to 10.3-fold higher than permeability coefficients based on drug appearance in venous blood (Pblood). Pblood significantly increased in the presence of the P-gP inhibitor, verapamil. CTS transport across Caco-2 monolayers was pH-, temperature- and ATP-dependent. The transport from the apical (AP) to the basolateral (BL) side was 3- to 9-fold lower than that from the BL to the AP side. Inclusion of verapamil (50 microM) in both AP and BL sides abolished the polarized CTS transport across Caco-2 cells. Moreover, CTS was significantly more permeable in the BL to AP than in the AP to BL direction in MDCKII and MDR1-MDCKII cells. The permeability coefficients in the BL to AP direction were significantly higher in MDCKII cells overexpressing PgP. These findings indicate that CTS is a substrate for PgP that can pump CTS into the luminal side.
Collapse
|
|
19 |
69 |
14
|
Zeng H, Jiang Y, Chen P, Fan X, Li D, Liu A, Ma X, Xie W, Liu P, Gonzalez FJ, Huang M, Bi H. Schisandrol B protects against cholestatic liver injury through pregnane X receptors. Br J Pharmacol 2017; 174:672-688. [PMID: 28128437 DOI: 10.1111/bph.13729] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 01/22/2017] [Accepted: 01/23/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE Currently, ursodeoxycholic acid and obeticholic acid are the only two FDA-approved drugs for cholestatic liver diseases. Thus, new therapeutic approaches need to be developed. Here we have evaluated the anti-cholestasis effects of Schisandrol B (SolB), a bioactive compound isolated from Schisandra sphenanthera. EXPERIMENTAL APPROACH Hepatoprotective effect of SolB against intrahepatic cholestasis, induced by lithocholic acid (LCA), was evaluated in mice. Metabolomic analysis and gene analysis were used to assess involvement of pregnane X receptor (PXR). Molecular docking, cell-based reporter gene analysis and knockout mice were used to demonstrate the critical role of the PXR pathway in the anti-cholestasis effects of SolB. KEY RESULTS SolB protected against LCA-induced intrahepatic cholestasis. Furthermore, therapeutic treatment with SolB decreased mortality in cholestatic mice. Metabolomics and gene analysis showed that SolB accelerated metabolism of bile acids, promoted bile acid efflux into the intestine, and induced hepatic expression of the PXR-target genes Cyp3a11, Ugt1a1, and Oatp2, which are involved in bile acid homeostasis. Mechanistic studies showed that SolB activated human PXR and up-regulated PXR target genes in human cell lines. Additionally, SolB did not protect Pxr-null mice from liver injury induced by intrahepatic cholestasis, thus providing genetic evidence that the effect of SolB was PXR-dependent. CONCLUSION AND IMPLICATIONS These findings provide direct evidence for the hepatoprotective effects of SolB against cholestasis by activating PXR. Therefore, SolB may provide a new and effective approach to the prevention and treatment of cholestatic liver diseases.
Collapse
|
Journal Article |
8 |
66 |
15
|
Jiang Y, Fan X, Wang Y, Chen P, Zeng H, Tan H, Gonzalez FJ, Huang M, Bi H. Schisandrol B protects against acetaminophen-induced hepatotoxicity by inhibition of CYP-mediated bioactivation and regulation of liver regeneration. Toxicol Sci 2014; 143:107-15. [PMID: 25319358 DOI: 10.1093/toxsci/kfu216] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Acetaminophen (APAP) overdose is the most frequent cause of drug-induced acute liver failure. Schisandra sphenanthera is a traditional hepato-protective Chinese medicine and Schisandrol B (SolB) is one of its major active constituents. In this study, the protective effect of SolB against APAP-induced acute hepatotoxicity in mice and the involved mechanisms were investigated. Morphological and biochemical assessments clearly demonstrated a protective effect of SolB against APAP-induced liver injury. SolB pretreatment significantly attenuated the increases in alanine aminotransferase and aspartate aminotransferase activity, and prevented elevated hepatic malondialdehyde formation and the depletion of mitochondrial glutathione (GSH) in a dose-dependent manner. SolB also dramatically altered APAP metabolic activation by inhibiting the activities of CYP2E1 and CYP3A11, which was evidenced by significant inhibition of the formation of the oxidized APAP metabolite NAPQI-GSH. A molecular docking model also predicted that SolB had potential to interact with the CYP2E1 and CYP3A4 active sites. In addition, SolB abrogated APAP-induced activation of p53 and p21, and increased expression of liver regeneration and antiapoptotic-related proteins such as cyclin D1 (CCND1), PCNA, and BCL-2. This study demonstrated that SolB exhibited a significant protective effect toward APAP-induced liver injury, potentially through inhibition of CYP-mediated APAP bioactivation and regulation of the p53, p21, CCND1, PCNA, and BCL-2 to promote liver regeneration.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
64 |
16
|
Zhao F, Wang M, Li S, Bai X, Bi H, Liu Y, Ao X, Jia Z, Wu H. DACH1 inhibits SNAI1-mediated epithelial-mesenchymal transition and represses breast carcinoma metastasis. Oncogenesis 2015; 4:e143. [PMID: 25775416 PMCID: PMC5399170 DOI: 10.1038/oncsis.2015.3] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 01/06/2015] [Accepted: 01/28/2015] [Indexed: 02/06/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) has a major role in cancer progression and metastasis. However, the specific mechanism of transcriptional repression involved in this process remains largely unknown. Dachshund homologue 1 (DACH1) expression is lost in invasive breast cancer with poor prognosis, and the role of DACH1 in regulating breast cancer metastasis is poorly understood. In this study, significant correlation between the expression of DACH1 and the morphology of breast cancer cells was observed. Subsequent investigation into the relationship between DACH1 and EMT showed that overexpression of DACH1 in ZR-75-30 cells induced a shift towards epithelial morphology and cell-cell adhesion, as well as increased the expression of the epithelial marker E-cadherin and suppressed cell migration and invasion. In contrast, silencing DACH1 in MCF-7 and T47D cells disrupted the epithelial morphology and cell-cell contact, reduced the expression of E-cadherin, and induced cell migration and invasion. DACH1 also specifically interacted with SNAI1, but not SNAI2, to form a complex, which could bind to the E-box on the E-cadherin promoter in an SNAI1-dependent manner. DACH1 inhibited the transcriptional activity of SNAI1, leading to the activation of E-cadherin in breast cancer cells. Furthermore, the level of DACH1 also correlated with the extent of metastasis in a mouse model. DACH1 overexpression significantly decreased the metastasis and growth of 4T1/Luc cells in BALB/c mice. Analysis of tissue samples taken from human breast cancers showed a significant correlation between the expression of DACH1 and E-cadherin in SNAI1-positive breast cancer. Collectively, our data identified a new mechanistic pathway for the regulation of EMT and metastasis of breast cancer cells, one that is based on the regulation of E-cadherin expression by direct DACH1-SNAI1 interaction.
Collapse
|
Journal Article |
10 |
62 |
17
|
Chen P, Zeng H, Wang Y, Fan X, Xu C, Deng R, Zhou X, Bi H, Huang M. Low dose of oleanolic acid protects against lithocholic acid-induced cholestasis in mice: potential involvement of nuclear factor-E2-related factor 2-mediated upregulation of multidrug resistance-associated proteins. Drug Metab Dispos 2014; 42:844-52. [PMID: 24510383 DOI: 10.1124/dmd.113.056549] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Oleanolic acid (OA) is a natural triterpenoid and has been demonstrated to protect against varieties of hepatotoxicants. Recently, however, OA at high doses was reported to produce apparent cholestasis in mice. In this study, we characterized the protective effect of OA at low doses against lithocholic acid (LCA)-induced cholestasis in mice and explored further mechanisms. OA cotreatment (5, 10, and 20 mg/kg, i.p.) significantly improved mouse survival rate, attenuated liver necrosis, and decreased serum alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase; more importantly, serum total bile acids and bilirubin, as well as hepatic total bile acids were also remarkably reduced. Gene and protein expression analysis showed that hepatic expression of multidrug resistance-associated protein 2 (Mrp2), Mrp3, and Mrp4 was significantly increased by OA cotreatment, whereas other bile acid metabolism- and transport-related genes, including Na+/taurocholate cotransporter, organic anion transporter 1b2, bile salt export pump, multidrug resistance protein 3, Cyp3a11, Cyp2b10, Sulfotransferase 2a1 (Sult2a1), and UDP-glucuronosyltransferase 1a1 (Ugt1a1), were only slightly changed. OA also caused increased nuclear factor-E2-related factor (Nrf2) mRNA expression and nuclear protein accumulation, whereas nuclear receptors farnesoid X receptor (FXR), pregnane X receptor (PXR), and constitutive androstane receptor were not significantly influenced by OA. Luciferase (Luc) assays performed in HepG2 cells illustrated that OA was a strong Nrf2 agonist with moderate PXR and weak FXR agonism. Finally, in mouse primary cultured hepatocytes, OA dose- and time-dependently induced expression of Mrp2, Mrp3, and Mrp4; however, this upregulation was abrogated when Nrf2 was silenced. In conclusion, OA produces a protective effect against LCA-induced hepatotoxicity and cholestasis, possibly due to Nrf2-mediated upregulation of Mrp2, Mrp3, and Mrp4.
Collapse
|
|
11 |
61 |
18
|
Cen HJ, Zeng WT, Leng XY, Huang M, Chen X, Li JL, Huang ZY, Bi HC, Wang XD, He YL, He F, Zhou RN, Zheng QS, Zhao LZ. CYP4F2 rs2108622: a minor significant genetic factor of warfarin dose in Han Chinese patients with mechanical heart valve replacement. Br J Clin Pharmacol 2011; 70:234-40. [PMID: 20653676 DOI: 10.1111/j.1365-2125.2010.03698.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT * Genetic polymorphisms of VKORC1 and CYP2C9 are known to influence warfarin dosage. * Recent studies among Caucasians showed that polymorphisms of CYP4F2 also play a role in warfarin pharmacogenetics. * The contribution of CYP4F2 variants to the variability inwarfarin dose requirement in Chinese subjects remains to be investigated. WHAT THIS STUDY ADDS * This research was to study the effect of CYP4F2 variants on warfarin requirements in the Han Chinese population. * This study developed a multiple regression model including CYP2C9, VKORC1 3673G>A, CYP4F2 genotypes and age, weight, combination use of amiodarone which could explain 56.1% of the individual variability in warfarin dose CYP4F2 could explain 4% of the variance in warfarin dose. * We found that one novel genotypic polymorphism 5417G>T for Asp36Tyr, which was identified as an important marker of warfarin resistance, was absent in the Han Chinese population in our study. AIMS The objective of this study was to assess the effect of the CYP4F2 on the daily stable warfarin dose requirement in Han Chinese patients with mechanical heart valve replacement (MHVR). METHODS From March 2007 to November 2008, 222 Han Chinese MHVR patients were recruited in our study. VKORC1 3673G>A, 5417G>T, CYP2C9*3 and CYP4F2 rs2108622 were genotyped by using the polymerase chain reaction restriction fragment length polymorphism method (PCR-RFLP). Polymorphisms of VKORC1 9041G>A were detected by direct sequencing. Multiple linear regression analysis was used to investigate the contribution of CYP4F2. RESULTS The CYP4F2 rs2108622 CT/TT group took a significantly higher stable warfarin dose (3.2 mg day(-1)) than the CC group (2.9 mg day(-1), 95% CI 0.2, 1.0, P= 0.033). The multiple linear regression model included VKORC1 3673G>A, CYP2C9, CYP4F2 genotypes and clinical characteristics. The model could explain 56.1% of the variance in stable warfarin dose in Han Chinese patients with MHVR. CYP4F2 contributed about 4% to the variance in the warfarin dose. There was no variation in the SNPs of VKORC1 5417G>T. CONCLUSION CYP4F2 is a minor significant factor of individual variability in the stable warfarin dose in Han Chinese patients with MHVR. The effect of CYP2C9 and VKORC1 genotypes on variability in the stable warfarin dose had also been confirmed.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
58 |
19
|
Bi H, Li S, Qu X, Wang M, Bai X, Xu Z, Ao X, Jia Z, Jiang X, Yang Y, Wu H. DEC1 regulates breast cancer cell proliferation by stabilizing cyclin E protein and delays the progression of cell cycle S phase. Cell Death Dis 2015; 6:e1891. [PMID: 26402517 PMCID: PMC4650443 DOI: 10.1038/cddis.2015.247] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 07/24/2015] [Accepted: 07/28/2015] [Indexed: 02/07/2023]
Abstract
Breast cancer that is accompanied by a high level of cyclin E expression usually exhibits poor prognosis and clinical outcome. Several factors are known to regulate the level of cyclin E during the cell cycle progression. The transcription factor DEC1 (also known as STRA13 and SHARP2) plays an important role in cell proliferation and apoptosis. Nevertheless, the mechanism of its role in cell proliferation is poorly understood. In this study, using the breast cancer cell lines MCF-7 and T47D, we showed that DEC1 could inhibit the cell cycle progression of breast cancer cells independently of its transcriptional activity. The cell cycle-dependent timing of DEC1 overexpression could affect the progression of the cell cycle through regulating the level of cyclin E protein. DEC1 stabilized cyclin E at the protein level by interacting with cyclin E. Overexpression of DEC1 repressed the interaction between cyclin E and its E3 ligase Fbw7α, consequently reducing the level of polyunbiquitinated cyclin E and increased the accumulation of non-ubiquitinated cyclin E. Furthermore, DEC1 also promoted the nuclear accumulation of Cdk2 and the formation of cyclin E/Cdk2 complex, as well as upregulating the activity of the cyclin E/Cdk2 complex, which inhibited the subsequent association of cyclin A with Cdk2. This had the effect of prolonging the S phase and suppressing the growth of breast cancers in a mouse xenograft model. These events probably constitute the essential steps in DEC1-regulated cell proliferation, thus opening up the possibility of a protein-based molecular strategy for eliminating cancer cells that manifest a high-level expression of cyclin E.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
57 |
20
|
Wu Y, Yang Z, Cheng K, Bi H, Chen J. Small molecule-based immunomodulators for cancer therapy. Acta Pharm Sin B 2022; 12:4287-4308. [PMID: 36562003 PMCID: PMC9764074 DOI: 10.1016/j.apsb.2022.11.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 11/13/2022] Open
Abstract
Immunotherapy has led to a paradigm shift in the treatment of cancer. Current cancer immunotherapies are mostly antibody-based, thus possessing advantages in regard to pharmacodynamics (e.g., specificity and efficacy). However, they have limitations in terms of pharmacokinetics including long half-lives, poor tissue/tumor penetration, and little/no oral bioavailability. In addition, therapeutic antibodies are immunogenic, thus may cause unwanted adverse effects. Therefore, researchers have shifted their efforts towards the development of small molecule-based cancer immunotherapy, as small molecules may overcome the above disadvantages associated with antibodies. Further, small molecule-based immunomodulators and therapeutic antibodies are complementary modalities for cancer treatment, and may be combined to elicit synergistic effects. Recent years have witnessed the rapid development of small molecule-based cancer immunotherapy. In this review, we describe the current progress in small molecule-based immunomodulators (inhibitors/agonists/degraders) for cancer therapy, including those targeting PD-1/PD-L1, chemokine receptors, stimulator of interferon genes (STING), Toll-like receptor (TLR), etc. The tumorigenesis mechanism of various targets and their respective modulators that have entered clinical trials are also summarized.
Collapse
|
Review |
3 |
56 |
21
|
Fan X, Jiang Y, Wang Y, Tan H, Zeng H, Wang Y, Chen P, Qu A, Gonzalez FJ, Huang M, Bi H. Wuzhi tablet (Schisandra Sphenanthera extract) protects against acetaminophen-induced hepatotoxicity by inhibition of CYP-mediated bioactivation and regulation of NRF2-ARE and p53/p21 pathways. Drug Metab Dispos 2014; 42:1982-90. [PMID: 25217484 PMCID: PMC6067381 DOI: 10.1124/dmd.114.059535] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 09/11/2014] [Indexed: 12/13/2022] Open
Abstract
Schisandra sphenanthera is widely used as a tonic and restorative in many countries to enhance the function of liver and other organs. Wuzhi tablet (WZ) is a preparation of an ethanol extract of Schisandra sphenanthera. Our previous study demonstrated that WZ exerted a protective effect toward acetaminophen (APAP)-induced hepatotoxicity. However, the molecular mechanisms of this protection remain unclear. This study aimed to determine what molecular pathways contributed to the hepatoprotective effects of WZ against APAP toxicity. Administration of WZ 3 days before APAP treatment significantly attenuated APAP hepatotoxicity in a dose-dependent manner and reduced APAP-induced JNK activation. Treatment with WZ resulted in potent inhibition of CYP2E1, CYP3A11, and CYP1A2 activities and then caused significant inhibition of the formation of the oxidized APAP metabolite N-acetyl-p-benzoquinone imine-reduced glutathione. The expression of NRF2 was increased after APAP and/or WZ treatment, whereas KEAP1 levels were decreased. The protein expression of NRF2 target genes including Gclc, Gclm, Ho-1, and Nqo1 was significantly increased by WZ treatment. Furthermore, APAP increased the levels of p53 and its downstream gene p21 to trigger cell cycle arrest and apoptosis, whereas WZ pretreatment could inhibit p53/p21 signaling to induce cell proliferation-associated proteins including cyclin D1, CDK4, PCNA, and ALR to promote hepatocyte proliferation. This study demonstrated that WZ prevented APAP-induced liver injury by inhibition of cytochrome P450-mediated APAP bioactivation, activation of the NRF2-antioxidant response element pathway to induce detoxification and antioxidation, and regulation of the p53, p21, cyclin D1, CDK4, PCNA, and ALR to facilitate liver regeneration after APAP-induced liver injury.
Collapse
|
research-article |
11 |
52 |
22
|
Chen J, Bi H, Hou J, Zhang X, Zhang C, Yue L, Wen X, Liu D, Shi H, Yuan J, Liu J, Liu B. Atorvastatin overcomes gefitinib resistance in KRAS mutant human non-small cell lung carcinoma cells. Cell Death Dis 2013; 4:e814. [PMID: 24071646 PMCID: PMC3789171 DOI: 10.1038/cddis.2013.312] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 07/17/2013] [Accepted: 07/29/2013] [Indexed: 12/11/2022]
Abstract
The exact influence of statins on gefitinib resistance in human non-small cell lung cancer (NSCLC) cells with KRAS mutation alone or KRAS/PIK3CA and KRAS/PTEN comutations remains unclear. This work found that transfection of mutant KRAS plasmids significantly suppressed the gefitinib cytotoxicity in Calu3 cells (wild-type KRAS). Gefitinib disrupted the Kras/PI3K and Kras/Raf complexes in Calu3 cells, whereas not in Calu3 KRAS mutant cells. These trends were corresponding to the expression of pAKT and pERK in gefitinib treatment. Atorvastatin (1 μM) plus gefitinib treatment inhibited proliferation, promoted cell apoptosis, and reduced the AKT activity in KRAS mutant NSCLC cells compared with gefitinib alone. Atorvastatin (5 μM) further enhanced the gefitinib cytotoxicity through concomitant inhibition of AKT and ERK activity. Atorvastatin could interrupt Kras/PI3K and Kras/Raf complexes, leading to suppression of AKT and ERK activity. Similar results were also obtained in comutant KRAS/PTEN or KRAS/PIK3CA NSCLC cells. Furthermore, mevalonate administration reversed the effects of atorvastatin on the Kras/Raf and Kras/PI3K complexes, as well as AKT and ERK activity in both A549 and Calu1 cells. The in vivo results were similar to those obtained in vitro. Therefore, mutant KRAS-mediated gefitinib insensitivity is mainly derived from failure to disrupt the Kras/Raf and Kras/PI3K complexes in KRAS mutant NSCLC cells. Atorvastatin overcomes gefitinib resistance in KRAS mutant NSCLC cells irrespective of PIK3CA and PTEN statuses through inhibition of HMG-CoA reductase-dependent disruption of the Kras/Raf and Kras/PI3K complexes.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
48 |
23
|
Li S, Wang M, Ao X, Chang AK, Yang C, Zhao F, Bi H, Liu Y, Xiao L, Wu H. CLOCK is a substrate of SUMO and sumoylation of CLOCK upregulates the transcriptional activity of estrogen receptor-α. Oncogene 2012; 32:4883-91. [DOI: 10.1038/onc.2012.518] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 09/06/2012] [Accepted: 09/28/2012] [Indexed: 11/09/2022]
|
|
13 |
47 |
24
|
Chen Y, Wang Y, Huang Y, Zeng H, Hu B, Guan L, Zhang H, Yu AM, Johnson CH, Gonzalez FJ, Huang M, Bi H. PPARα regulates tumor cell proliferation and senescence via a novel target gene carnitine palmitoyltransferase 1C. Carcinogenesis 2017; 38:474-483. [PMID: 28334197 DOI: 10.1093/carcin/bgx023] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 03/01/2017] [Indexed: 12/16/2022] Open
Abstract
Carnitine palmitoyltransferase 1C (CPT1C), an enzyme located in the outer mitochondria membrane, has a crucial role in fatty acid transport and oxidation. It is also involved in cell proliferation and is a potential driver for cancer cell senescence. However, its upstream regulatory mechanism is unknown. Peroxisome proliferator activated receptor α (PPARα) is a ligand-activated transcription factor that regulates lipid metabolism and tumor progression. The current study aimed to elucidate whether and how PPARα regulates CPT1C and then affects cancer cell proliferation and senescence. Here, for the first time we report that PPARα directly activated CPT1C transcription and CPT1C was a novel target gene of PPARα, as revealed by dual-luciferase reporter and chromatin immunoprecipitation (ChIP) assays. Moreover, regulation of CPT1C by PPARα was p53-independent. We further confirmed that depletion of PPARα resulted in low CPT1C expression and then inhibited proliferation and induced senescence of MDA-MB-231 and PANC-1 tumor cell lines in a CPT1C-dependent manner, while forced PPARα overexpression promoted cell proliferation and reversed cellular senescence. Taken together, these results indicate that CPT1C is a novel PPARα target gene that regulates cancer cell proliferation and senescence. The PPARα-CPT1C axis may be a new target for the intervention of cancer cellular proliferation and senescence.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
46 |
25
|
Yu T, Wang YT, Chen P, Li YH, Chen YX, Zeng H, Yu AM, Huang M, Bi HC. Effects of nicotinamide N-methyltransferase on PANC-1 cells proliferation, metastatic potential and survival under metabolic stress. Cell Physiol Biochem 2015; 35:710-21. [PMID: 25592232 DOI: 10.1159/000369731] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2014] [Indexed: 12/16/2023] Open
Abstract
BACKGROUND Aberrant expression of Nicotinamide N-methyltransferase (NNMT) has been reported in pancreatic cancer. However, the role of NNMT in pancreatic cancer development remains elusive. Therefore, the present study was to investigate the impact of NNMT on pancreatic cancer cell proliferation, metastatic potential and survival under metabolic stress. METHODS Pancreatic cancer cell line PANC-1 was transfected with NNMT expression plasmid or small interfering RNA of NNMT to overexpress or knockdown intracellular NNMT expression, respectively. Rate of cell proliferation was monitored. Transwell migration and matrigel invasion assays were conducted to assess cell migration and invasion capacity. Resistance to glucose deprivation, sensitivity to glycolytic inhibition, mitochondrial inhibtion and resistance to rapamycin were examined to evaluate cell survival under metabolic stress. RESULTS NNMT silencing markedly reduced cell proliferation, whereas NNMT overexpression promoted cell growth moderately. Knocking down NNMT also significantly suppressed the migration and invasion capacities of PANC-1 cells. Conversely, NNMT upregulation enhanced cell migration and invasion capacities. In addition, NNMT knockdown cells were much less resistant to glucose deprivation and rapamycin as well as glycolytic inhibitor 2-deoxyglucose whereas NNMT-expressing cells showed opposite effects although the effects were not so striking. CONCLUSIONS These data sugguest that NNMT plays an important role in PANC-1 cell proliferation, metastatic potential and survival under metabolic stress.
Collapse
|
|
10 |
45 |