1
|
Niu H, Álvarez-Álvarez I, Guillén-Grima F, Aguinaga-Ontoso I. Prevalence and incidence of Alzheimer's disease in Europe: A meta-analysis. Neurologia 2016; 32:523-532. [PMID: 27130306 DOI: 10.1016/j.nrl.2016.02.016] [Citation(s) in RCA: 254] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 12/28/2015] [Accepted: 02/27/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND A disease of unknown aetiology, Alzheimer's disease (AD) is the most common type of dementia. As the elderly population grows worldwide, the number of patients with AD also increases rapidly. The aim of this meta-analysis is to evaluate the prevalence and incidence of AD in Europe. METHODOLOGY We conducted a literature search on Medline, Scopus, and CINAHL Complete using the keywords «Alzheimer», «Alzheimer's disease», and «AD» combined with «prevalence», «incidence», and «epidemiology». A Bayesian random effects model with 95% credible intervals was used. The I2 statistic was applied to assess heterogeneity. RESULTS The prevalence of Alzheimer's disease in Europe was estimated at 5.05% (95% CI, 4.73-5.39). The prevalence in men was 3.31% (95% CI, 2.85-3.80) and in women, 7.13% (95% CI, 6.56-7.72), and increased with age. The incidence of Alzheimer's disease in Europe was 11.08 per 1000 person-years (95% CI, 10.30-11.89). Broken down by sex, it was 7.02 per 1000 person-years (95% CI, 6.06-8.05) in men and 13.25 per 1000 person-years (95% CI, 12.05-14.51) in women; again these rates increased with age. CONCLUSIONS The results of our meta-analysis allow a better grasp of the impact of this disease in Europe.
Collapse
|
Review |
9 |
254 |
2
|
Niu H, Ye BH, Dalla-Favera R. Antigen receptor signaling induces MAP kinase-mediated phosphorylation and degradation of the BCL-6 transcription factor. Genes Dev 1998; 12:1953-61. [PMID: 9649500 PMCID: PMC316953 DOI: 10.1101/gad.12.13.1953] [Citation(s) in RCA: 237] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/1998] [Accepted: 05/04/1998] [Indexed: 01/08/2023]
Abstract
The bcl-6 proto-oncogene encodes a POZ/zinc finger transcriptional repressor expressed in germinal center (GC) B and T cells and required for GC formation and antibody affinity maturation. Deregulation of bcl-6 expression by chromosomal rearrangements and point mutations of the bcl-6 promoter region are implicated in the pathogenesis of B-cell lymphoma. The signals regulating bcl-6 expression are not known. Here we show that antigen receptor activation leads to BCL-6 phosphorylation by mitogen-activated protein kinase (MAPK). Phosphorylation, in turn, targets BCL-6 for rapid degradation by the ubiquitin/proteasome pathway. These findings indicate that BCL-6 expression is directly controlled by the antigen receptor via MAPK activation. This signaling pathway may be crucial for the control of B-cell differentiation and antibody response and has implications for the regulation of other POZ/zinc finger transcription factors in other tissues.
Collapse
|
research-article |
27 |
237 |
3
|
Ye BH, Chaganti S, Chang CC, Niu H, Corradini P, Chaganti RS, Dalla-Favera R. Chromosomal translocations cause deregulated BCL6 expression by promoter substitution in B cell lymphoma. EMBO J 1995; 14:6209-17. [PMID: 8557040 PMCID: PMC394745 DOI: 10.1002/j.1460-2075.1995.tb00311.x] [Citation(s) in RCA: 219] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The BCL6 gene codes for a zinc-finger transcription factor and is involved in chromosomal rearrangements in 30-40% of diffuse large-cell lymphoma (DLCL). These rearrangements cluster within the 5' regulatory region of BCL6 spanning its first non-coding exon. To determine the functional consequences of these alterations, we have analyzed the structure of the rearranged BCL6 alleles and their corresponding RNA and protein species in two DLCL biopsies and one tumor cell line which carried the t(3;14)(q27;q32) translocation involving the BCL6 and immunoglobulin heavy-chain (IgH) loci. In all three cases, the breakpoints were mapped within the IgH switch region and the BCL6 first intron, leading to the juxtaposition of part of the IgH locus upstream and in the same transcriptional orientation to the BCL6 coding exons. An analysis of cDNA clones showed that these recombinations generate chimeric IgH-BCL6 transcripts which initiated from IgH germline transcript promoters (I mu or I gamma 3), but retain a normal BCL6 coding domain. In the tumor cell line, the chimeric I gamma 3-BCL6 allele, but not the germline BCL6 gene, was transcriptionally active and produced a normal BCL6 protein. These findings indicate that t(3;14) translocations alter BCL6 expression by promoter substitution and imply that the consequence of these alterations is the deregulated expression of a normal BCL6 protein.
Collapse
MESH Headings
- Alleles
- Base Sequence
- Chimera/genetics
- Chromosomes, Human, Pair 14/genetics
- Chromosomes, Human, Pair 3/genetics
- Cloning, Molecular
- DNA Primers/genetics
- DNA, Complementary/genetics
- DNA, Neoplasm/genetics
- DNA-Binding Proteins/genetics
- Gene Expression Regulation, Neoplastic
- Genes, Immunoglobulin
- Humans
- Lymphoma, B-Cell/genetics
- Lymphoma, Large B-Cell, Diffuse/genetics
- Molecular Sequence Data
- Promoter Regions, Genetic
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins c-bcl-6
- Transcription Factors/genetics
- Translocation, Genetic
- Tumor Cells, Cultured
Collapse
|
|
30 |
219 |
4
|
Yao R, Burr DH, Doig P, Trust TJ, Niu H, Guerry P. Isolation of motile and non-motile insertional mutants of Campylobacter jejuni: the role of motility in adherence and invasion of eukaryotic cells. Mol Microbiol 1994; 14:883-93. [PMID: 7715450 DOI: 10.1111/j.1365-2958.1994.tb01324.x] [Citation(s) in RCA: 181] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A method of insertional mutagenesis for naturally transformable organisms has been adapted from Haemophilus influenzae and applied to the study of the pathogenesis of Campylobacter jejuni. A series of kanamycin-resistant insertional mutants of C. jejuni 81-176 has been generated and screened for loss of ability to invade INT407 cells. Eight noninvasive mutants were identified which showed 18-200-fold reductions in the level of invasion compared with the parent. Three of these eight show defects in motility, and five are fully motile. The three mutants with motility defects were further characterized to evaluate the method. One mutant, K2-32, which is non-adherent and non-invasive, has an insertion of the kanamycin-resistance cassette into the flaA flagellin gene and has greatly reduced motility and a truncated flagellar filament typical of flaA mutants. The adherent non-invasive mutants K2-37 and K2-55 are phenotypically paralysed, i.e. they have a full-length flagellar filament but are non-motile. All three mutants show an aberration in flagellar structure at the point at which the filament attaches to the cell. Mutants K2-37 and K2-55 represent overlapping deletions affecting the same gene, termed pflA (paralysed flagella). This gene encodes a predicted protein of 788 amino acid residues and a molecular weight of 90,977 with no significant homology to known proteins. Site-specific insertional mutants into this open reading frame result in the same paralysed flagellar phenotype and the same invasion defects as the original mutants. The differences in adherence between the two classes of flagellar mutant suggest that flagellin can serve as a secondary adhesion, although other adhesins mediate a motility-dependent internalization process. Characterization of the mutants at the molecular level and in animal models should further contribute to our understanding of the pathogenicity of these organisms.
Collapse
|
|
31 |
181 |
5
|
Liu Q, Niu H, Zhang W, Mu H, Sun C, Duan J. Synergy among thymol, eugenol, berberine, cinnamaldehyde and streptomycin against planktonic and biofilm-associated food-borne pathogens. Lett Appl Microbiol 2015; 60:421-30. [PMID: 25661823 DOI: 10.1111/lam.12401] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Revised: 01/21/2015] [Accepted: 02/02/2015] [Indexed: 11/29/2022]
Abstract
UNLABELLED Essential oils have been found to exert antibacterial, antifungal, spasmolytic, and antiplasmodial activity and therapeutic effect in cancer treatment. In this study, the antibacterial activities of four main essential oils' components (thymol (Thy), eugenol (Eug), berberine (Ber), and cinnamaldehyde (Cin)) were evaluated against two food-borne pathogens, Listeria monocytogenes and Salmonella Typhimurium, either alone or in combination with streptomycin. Checkerboard assay demonstrated that Thy and Cin elicited a synergistic effect with streptomycin against L. monocytogenes, while a synergy existed between Cin or Eug and streptomycin against Salm. Typhimurium. Further experiments showed that this synergy was sufficient to eradicate biofilms formed by these two bacteria. Thus, our data highlighted that the combinations of specific components from essential oils and streptomycin were useful for the treatment of food-borne pathogens, which might help prevent the spread of antibiotic resistance through improving antibiotic effectiveness. SIGNIFICANCE AND IMPACT OF THE STUDY This study has shown the synergistic effect of four components of essential oil (thymol, eugenol, berberine and cinnamaldehyde) combined with streptomycin on planktonic and biofilm-associated food-borne pathogens Listeria monocytogenes and Salmonella Typhimurium. These findings indicate that combination of specific components of essential oils with streptomycin may provide alternative methods to overcome the problem of food-borne bacteria both in suspension and in biofilm.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
85 |
6
|
Pan ZQ, Amin AA, Gibbs E, Niu H, Hurwitz J. Phosphorylation of the p34 subunit of human single-stranded-DNA-binding protein in cyclin A-activated G1 extracts is catalyzed by cdk-cyclin A complex and DNA-dependent protein kinase. Proc Natl Acad Sci U S A 1994; 91:8343-7. [PMID: 8078885 PMCID: PMC44602 DOI: 10.1073/pnas.91.18.8343] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The human single-stranded-DNA-binding protein (HSSB, also called RP-A) is a trimeric complex (p70, p34, and p14) required for multiple functions in DNA transactions. We report here that the p34 subunit of HSSB was hyperphosphorylated by kinase activities present in G1 extract (obtained from HeLa cells in G1 phase) preincubated with human cyclin A. This hyperphosphorylated HSSB product included at least four species of p34 that migrated more slowly through denaturing polyacrylamide gels than the hypophosphorylated form. Fractionation of cyclin A-activated G1 extract identified two kinases involved in the hyperphosphorylation of HSSB p34: cdk-cyclin A complex and DNA-dependent p350 protein kinase (DNA-PK). Kinetic analysis revealed that in cyclin A-activated G1 extract, p34 was first phosphorylated by cdk-cyclin A prior to the action of DNA-PK. Addition of p21cip1, a specific inhibitor of cdk-cyclin A but not DNA-PK, nearly abolished the hyperphosphorylation of HSSB p34 in G1 extract preincubated with cyclin A. This suggests a requirement of the cdk-cyclin A activity for the phosphorylation of p34 by DNA-PK in G1 extract.
Collapse
|
research-article |
31 |
81 |
7
|
Tao S, Yuan XC, Lin J, Peng X, Niu H. Fractional optical vortex beam induced rotation of particles. OPTICS EXPRESS 2005; 13:7726-31. [PMID: 19498800 DOI: 10.1364/opex.13.007726] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
We experimentally demonstrate optical rotation and manipulation of microscopic particles by use of optical vortex beams with fractional topological charges, namely fractional optical vortex beams, which are coupled in an optical tweezers system. Like the vortex beams with integer topological charges, the fractional optical vortex beams are also capable of rotating particles induced by the transfer of orbital angular momentum. However, the unique radial opening (low-intensity gap) in the intensity ring encompassing the dark core, due to the fractional nature of the beam, hinders the rotation significantly. The fractional vortex beam's orbital angular momentum and radial opening are exploited to guide and transport microscopic particles.
Collapse
|
|
20 |
71 |
8
|
Niu H, Erdjument-Bromage H, Pan ZQ, Lee SH, Tempst P, Hurwitz J. Mapping of amino acid residues in the p34 subunit of human single-stranded DNA-binding protein phosphorylated by DNA-dependent protein kinase and Cdc2 kinase in vitro. J Biol Chem 1997; 272:12634-41. [PMID: 9139719 DOI: 10.1074/jbc.272.19.12634] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Human single-stranded DNA-binding protein (HSSB, also called RPA), is a heterotrimeric complex that consists of three subunits, p70, p34, and p11. HSSB is essential for the in vitro replication of SV40 DNA and nucleotide excision repair. It also has important functions in other DNA transactions, including DNA recombination, transcription, and double-stranded DNA break repair. The p34 subunit of HSSB is phosphorylated in a cell cycle-dependent manner. Both Cdc2 kinase and the DNA-dependent protein kinase (DNA-PK) phosphorylate HSSB-p34 in vitro. In this study, we show that efficient phosphorylation of HSSB-p34 by DNA-PK requires Ku as well as DNA. The DNA-PK phosphorylation sites in HSSB-p34 have been mapped at Thr-21 and Ser-33. Kinetic studies demonstrated that a phosphate residue is first incorporated at Thr-21 followed by the incorporation of a second phosphate residue at Ser-33. We also identified Ser-29 as the major Cdc2 kinase phosphorylation site in the p34 subunit.
Collapse
|
|
28 |
70 |
9
|
Huang X, Han K, Zhao D, Liu Y, Zhang J, Niu H, Zhang K, Zhu J, Wu D, Gao L, Li Y. Identification and molecular characterization of a novel flavivirus isolated from geese in China. Res Vet Sci 2012; 94:774-80. [PMID: 23270919 DOI: 10.1016/j.rvsc.2012.11.014] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 10/28/2012] [Accepted: 11/22/2012] [Indexed: 11/24/2022]
Abstract
Since April 2010, a novel contagious disease in ducks and geese, with egg drop, feed uptake decline and neurological signs, caused by a newly emerged virus has spread around Eastern China. Dissection conducted on the dead geese demonstrated hemorrhage in brain, lung, liver, heart, ovary, and enlarged and necrotic spleen. A new virus, named Goose/Jiangsu/804/2010 (JS804) virus, was isolated in Jiangsu area from geese. Then the virus was re-isolated from the affected geese and replicated well in duck embryo fibroblasts and Vero cells, causing the cytopathic effect. The virus was identified as an enveloped positive stranded RNA virus with a size of approximately 40-60 nm in diameter. The full-length genome of this isolated virus was determined, showing that it is closely related to Tembusu virus (a mosquito-borne Ntaya group flavivirus) than other members of the Flaviviridae based on the data of phylogenetic analyses. Our systematic studies fulfill Koch's postulates precisely, and therefore, the causative agent of geese occurring in Eastern China is a new flavivirus. This is the first report that flavivirus infects not only egg-laying and breeder ducks but also geese. The findings extend our understanding of how the virus spreads and causes disease.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
70 |
10
|
Guo QQ, Xiao MR, Ma Y, Niu H, Zhang GS. Polyester microfiber and natural organic matter impact microbial communities, carbon-degraded enzymes, and carbon accumulation in a clayey soil. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:124701. [PMID: 33278723 DOI: 10.1016/j.jhazmat.2020.124701] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/29/2020] [Accepted: 11/25/2020] [Indexed: 06/12/2023]
Abstract
Microplastics can alter microbial communities and enzymatic activities in soils. However, the influences of microplastics on soil carbon cycling which driven by microbial communities remain largely unknown. In this study, we investigated the effects of polyester microfiber (PMF) and natural organic matter(OM)on soil microbial communities, carbon-degraded enzymes, and carbon accumulation through an incubation experiment. Our results showed that the addition of PMF increased the activities of soil cellulase and laccase but did not impact soil bacterial and fungal communities too much. However, the addition of OM largely altered soil microbial communities and the activities of carbon-degraded enzymes, then mitigated the PMF effects on the activities of soil cellulase and laccase. On the other hand, greater alpha diversity of bacterial community attached on PMF was observed than those in the surrounding soils. The interaction of PMF and OM increased the richness of bacterial community in soils and on PMF. More importantly, we observed that the accumulation of natural organic carbon in soils reduced with increasing PMF. Thus, our results provide valuable insights into the effects of microplastics on soil organic carbon dynamics and microbial communities, and further work is required to clarify the biochemical processes at the surface of microplastics.
Collapse
|
|
4 |
55 |
11
|
Kumar S, Peng X, Daley J, Yang L, Shen J, Nguyen N, Bae G, Niu H, Peng Y, Hsieh HJ, Wang L, Rao C, Stephan CC, Sung P, Ira G, Peng G. Inhibition of DNA2 nuclease as a therapeutic strategy targeting replication stress in cancer cells. Oncogenesis 2017; 6:e319. [PMID: 28414320 PMCID: PMC5520492 DOI: 10.1038/oncsis.2017.15] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 02/10/2017] [Indexed: 02/06/2023] Open
Abstract
Replication stress is a characteristic feature of cancer cells, which is resulted from sustained proliferative signaling induced by activation of oncogenes or loss of tumor suppressors. In cancer cells, oncogene-induced replication stress manifests as replication-associated lesions, predominantly double-strand DNA breaks (DSBs). An essential mechanism utilized by cells to repair replication-associated DSBs is homologous recombination (HR). In order to overcome replication stress and survive, cancer cells often require enhanced HR repair capacity. Therefore, the key link between HR repair and cellular tolerance to replication-associated DSBs provides us with a mechanistic rationale for exploiting synthetic lethality between HR repair inhibition and replication stress. DNA2 nuclease is an evolutionarily conserved essential enzyme in replication and HR repair. Here we demonstrate that DNA2 is overexpressed in pancreatic cancers, one of the deadliest and more aggressive forms of human cancers, where mutations in the KRAS are present in 90–95% of cases. In addition, depletion of DNA2 significantly reduces pancreatic cancer cell survival and xenograft tumor growth, suggesting the therapeutic potential of DNA2 inhibition. Finally, we develop a robust high-throughput biochemistry assay to screen for inhibitors of the DNA2 nuclease activity. The top inhibitors were shown to be efficacious against both yeast Dna2 and human DNA2. Treatment of cancer cells with DNA2 inhibitors recapitulates phenotypes observed upon DNA2 depletion, including decreased DNA double strand break end resection and attenuation of HR repair. Similar to genetic ablation of DNA2, chemical inhibition of DNA2 selectively attenuates the growth of various cancer cells with oncogene-induced replication stress. Taken together, our findings open a new avenue to develop a new class of anticancer drugs by targeting druggable nuclease DNA2. We propose DNA2 inhibition as new strategy in cancer therapy by targeting replication stress, a molecular property of cancer cells that is acquired as a result of oncogene activation instead of targeting currently undruggable oncoprotein itself such as KRAS.
Collapse
|
Journal Article |
8 |
52 |
12
|
Mekata F, Niu H. Biophysical effects of adrenaline on the smooth muscle of the rabbit common carotid artery. J Gen Physiol 1972; 59:92-102. [PMID: 5007265 PMCID: PMC2213786 DOI: 10.1085/jgp.59.1.92] [Citation(s) in RCA: 48] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Effects of adrenaline on the smooth muscle of the rabbit common carotid artery were studied by the partitional chamber method. The experiments on excitation-contraction coupling were carried out in isotonic Krebs solution; the other experiments were carried out in hypertonic Krebs solution. Adrenaline (10(-7) g/ml) caused rhythmical electrical and mechanical activity of arterial strips in isotonic Krebs solution. By addition of adrenaline (10(-5) g/ml), the membrane was depolarized by about 10 mv and the amplitude of the electrotonic potential was decreased by 40-50% of the control in hypertonic Krebs solution. Present experimental results suggest that the depolarization of the membrane and the decrease of the amplitude of the electrotonic potential in the artery are due to the increase of Na and Cl conductance. Contraction appeared in all preparations exposed to 10(-8) g/ml adrenaline; at that concentration membrane potential and membrane resistance showed little or no change.
Collapse
|
research-article |
53 |
48 |
13
|
Chen J, Niu H, He W, Ba D. Antitumor activity of expanded human tumor-infiltrating gammadelta T lymphocytes. Int Arch Allergy Immunol 2001; 125:256-63. [PMID: 11490159 DOI: 10.1159/000053824] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The objective of this study was to investigate the antitumor activity of selectively expanded gammadelta T cells in tumor-infiltrating lymphocytes (gammadeltaTILs) or tumor ascites lymphocytes (gammadeltaTALs) from patients with colorectal and ovarian epithelial carcinoma (OEC) in vitro and in vivo. METHODS gammadeltaTILs/TALs were expanded by the solid-phase antibody method; their cytolytic and proliferative activities in vitro were detected by the MTT method and 3H-TdR incorporation and their effect in vivo was evaluated by the nude mice model. RESULTS Expanded gammadeltaTILs from colorectal tumors demonstrated marked cytotoxicities to allogeneic human colon adenocarcinoma HR8348 and lymphoma Daudi cells, as well as xenogeneic murine thymoma EL-4 cell lines. Cytokines, including IL-2, IL-4, IL-12, IL-15, TNF-alpha and INF-gamma, could promote the cytotoxicities of gammadeltaTILs to tumor cells, whereas IL-10, GM-CSF and TFG-beta had no effect on such killing activities. Rested gammadeltaTILs could proliferate strongly in response to mitomycin C-treated Daudi and EL-4 tumor cells, but not to HR8348 tumor cells, suggesting that the latter might possess only cytotoxicity-related antigen recognized by gammadeltaTILs. Either alphabetaTILs or gammadeltaTILs from patients with OEC displayed cytotoxicities to allogeneic or autologous OEC cell lines at a similar strength in vitro. Transferring gammadeltaTILs into Daudi cell-bearing BALB/c nude mice with an injection of IL-2 was able to maintain a high survival rate of the mice for 30 days, when compared with mice treated with alphabetaTILs or without any treatment (p < 0.05). Without coinjection of IL-2, after 3 months of Daudi tumor inoculation, a high survival rate was observed in gammadeltaTIL-treated mice. Similarly, adoptive gammadeltaTALs from the ascites of patients with OEC transferred into nude mice displayed a stronger antitumor response to OEC SKOV3 cells than alphabetaTALs in vivo. Tumor volumes in gammadeltaTAL-treated mice were smaller than in alphabetaTAL-treated or non-TAL-treated mice within the period from day 23 to day 50 after tumor inoculation (p < 0.05). Fifty days after SKOV3 tumor inoculation, a decreasing trend of carcinogenic rate was observed in gammadeltaTAL-treated nude mice. CONCLUSION Taken together, our results suggest that gammadeltaT cells could be a new candidate for adoptive immunotherapy in the future treatment of patients with cancer.
Collapse
MESH Headings
- Adenocarcinoma/immunology
- Adult
- Aged
- Animals
- Cytokines/pharmacology
- Cytotoxicity Tests, Immunologic
- Female
- Humans
- Immunotherapy, Adoptive
- Lymphocyte Activation/drug effects
- Lymphocytes, Tumor-Infiltrating/drug effects
- Lymphocytes, Tumor-Infiltrating/immunology
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Middle Aged
- Mitomycin/pharmacology
- Ovarian Neoplasms/immunology
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Rectal Neoplasms/immunology
- T-Lymphocyte Subsets/drug effects
- T-Lymphocyte Subsets/immunology
- T-Lymphocytes, Cytotoxic/drug effects
- T-Lymphocytes, Cytotoxic/immunology
- Tumor Cells, Cultured
Collapse
|
Comparative Study |
24 |
37 |
14
|
Chen X, Zheng Y, Lei A, Zhang H, Niu H, Li X, Zhang P, Liao M, Lv Y, Zhu Z, Pan C, Dong W, Chen H, Wu D, Liu W, Hamer G, Zeng S, Zeng W. Early cleavage of preimplantation embryos is regulated by tRNA Gln-TTG-derived small RNAs present in mature spermatozoa. J Biol Chem 2020; 295:10885-10900. [PMID: 32487749 DOI: 10.1074/jbc.ra120.013003] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/27/2020] [Indexed: 12/12/2022] Open
Abstract
tRNA-derived small RNAs (tsRNAs) from spermatozoa could act as acquired epigenetic factors and contribute to offspring phenotypes. However, the roles of specific tsRNAs in early embryo development remain to be elucidated. Here, using pigs as a research model, we probed the tsRNA dynamics during spermatogenesis and sperm maturation and demonstrated the delivery of tsRNAs from semen-derived exosomes to spermatozoa. By microinjection of antisense sequences into in vitro fertilized oocytes and subsequent single-cell RNA-seq of embryos, we identified a specific functional tsRNA group (termed here Gln-TTGs) that participate in the early cleavage of porcine preimplantation embryos, probably by regulating cell cycle-associated genes and retrotransposons. We conclude that specific tsRNAs present in mature spermatozoa play significant roles in preimplantation embryo development.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
37 |
15
|
Guo Y, Zhang H, Liu Q, Wei F, Tang J, Li P, Han X, Zou X, Xu G, Xu Z, Zong W, Ran Q, Xiao F, Mu Z, Mao X, Ran N, Cheng R, Li M, Li C, Luo Y, Meng C, Zhang X, Xu H, Li J, Tang P, Xiang J, Shen C, Niu H, Li H, Shen J, Ni C, Zhang J, Wang H, Ma L, Bieber T, Yao Z. Phenotypic analysis of atopic dermatitis in children aged 1-12 months: elaboration of novel diagnostic criteria for infants in China and estimation of prevalence. J Eur Acad Dermatol Venereol 2019; 33:1569-1576. [PMID: 30989708 DOI: 10.1111/jdv.15618] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 03/01/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Atopic dermatitis (AD) is the most common skin disorder in infancy. However, the diagnosis and definite significance of infantile AD remains a debated issue. OBJECTIVE To analyse the phenotypes of AD in infancy, to establish diagnostic criteria and to estimate the prevalence of this condition in China. METHODS This is a multicentric study, in which 12 locations were chosen from different metropolitan areas of China. Following careful and complete history-taking and skin examination, the definite diagnosis of AD was made and the severity based on the SCORAD index was determined by local experienced dermatologists. Based on the detailed phenotyping, the major and representative clinical features of infantile AD were selected to establish the diagnostic criteria and evaluate their diagnostic efficacy. RESULTS A total of 5967 infants were included in this study. The overall point prevalence of AD was 30.48%. The infantile AD developed as early as at the second month of life, and its incidence peaked in the third month of life at 40.81%. The proportion of mild, moderate and severe AD was 67.40%, 30.57% and 2.03%, respectively. The most commonly seen manifestations in the infantile AD were facial dermatitis (72.07%), xerosis (42.72%) and scalp dermatitis (27.93%). We established the novel diagnostic criteria of infants, which included: (i) onset after 2 weeks of birth; (ii) pruritus and/or irritability and sleeplessness comparable with lesions; and (iii) all two items above with one of the following items can reach a diagnosis of AD: (i) eczematous lesions distributed on cheeks and/or scalp and/or extensor limbs, and (ii) eczematous lesions on any other parts of body accompanied by xerosis. CONCLUSIONS In China, the prevalence of AD in infancy is 30.48% according to clinical diagnosis of dermatologists. The novel Chinese diagnostic criteria for AD in infants show a higher sensitivity and comparable specificity.
Collapse
|
Journal Article |
6 |
37 |
16
|
Rahman ZSM, Niu H, Perry D, Wakeland E, Manser T, Morel L. Expression of the autoimmune Fcgr2b NZW allele fails to be upregulated in germinal center B cells and is associated with increased IgG production. Genes Immun 2007; 8:604-12. [PMID: 17713556 DOI: 10.1038/sj.gene.6364423] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The inhibitory receptor FcgammaRIIb regulates B-cell functions. Genetic studies have associated Fcgr2b polymorphisms and lupus susceptibility in both humans and murine models, in which B cells express reduced FcgammaRIIb levels. Furthermore, FcgammaRIIb absence results in lupus on the appropriate genetic background, and lentiviral-mediated FcgammaRIIb overexpression prevents disease in the NZM2410 lupus mouse. The NZM2410/NZW allele Fcgr2b is, however, located in-between Sle1a and Sle1b, two potent susceptibility loci, making it difficult to evaluate Fcr2b(NZW) independent contribution. By using two congenic strains that each carries only Sle1a (B6.Sle1a(15-353)), or Fcr2b(NZW) in the absence of Sle1a or Sle1b (B6.Sle1(111-148)), we show that the Fcr2b(NZW) allele does not upregulate its expression on germinal center B cells and plasma cells, as does the C57BL/6 allele on B6.Sle1a(15-353) B cells. Furthermore, in the absence of the flanking Sle1a and Sle1b, Fcr2b(NZW) does not produce an autoimmune phenotype, but is associated with an increased number of class-switched plasma cells. These results show that while a lower level of FcgammaRIIb does not by itself induce the development of autoreactive B cells, it has the potential to amplify the contribution of autoreactive B cells induced by other lupus-susceptibility loci by enhancing the production of class-switched plasma cells.
Collapse
MESH Headings
- Alleles
- Animals
- B-Lymphocytes/cytology
- B-Lymphocytes/immunology
- Dendritic Cells, Follicular/cytology
- Dendritic Cells, Follicular/immunology
- Gene Expression Regulation
- Genetic Predisposition to Disease
- Germinal Center/cytology
- Germinal Center/immunology
- Germinal Center/metabolism
- Immunoglobulin Class Switching
- Immunoglobulin G/biosynthesis
- Lupus Erythematosus, Systemic/genetics
- Lupus Erythematosus, Systemic/immunology
- Lupus Erythematosus, Systemic/metabolism
- Mice
- Mice, Congenic
- Mice, Inbred C57BL
- Mice, Inbred Strains
- Plasma Cells/immunology
- Receptors, IgG/genetics
- Receptors, IgG/immunology
- Receptors, IgG/metabolism
- Up-Regulation
Collapse
|
|
18 |
34 |
17
|
Niu H, Hinkle DA, Wise PM. Dexamethasone regulates basic fibroblast growth factor, nerve growth factor and S100beta expression in cultured hippocampal astrocytes. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1997; 51:97-105. [PMID: 9427511 DOI: 10.1016/s0169-328x(97)00221-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Glucocorticoids regulate hippocampal neuron survival during fetal development, in the adult, and during aging; however, the mechanisms underlying the effects are unclear. Since astrocytes contain adrenocortical receptors and synthesize and release a wide variety of growth factors, we hypothesized that glucocorticoids may alter neuron-astrocyte interactions by regulating the expression of growth factors in hippocampal astrocytes. In this study, three growth factors, which are important for hippocampal neuron development and survival, were investigated: basic fibroblast growth factor (bFGF), nerve growth factor (NGF), and S100beta. Enriched type I astrocyte cultures were treated with 1 microM dexamethasone (DEX), a synthetic glucocorticoid, for up to 120 h. Cells and culture medium were collected and total RNA and protein were measured at 6, 12, 24, 48, 72, 96 and 120 h after the initiation of hormone treatment. Growth factor mRNA levels were measured and quantified using solution hybridization-RNase protection assays and protein levels were quantified using ELISA methods. We report that DEX stimulates the bFGF mRNA levels over the 120-h treatment. In contrast, DEX suppresses NGF mRNA continuously over the same period of treatment. DEX induces a biphasic response in S100beta mRNA levels. In addition, some of the changes in gene expression are translated into parallel changes in protein levels of these growth factors. Our results demonstrate that dexamethasone can differentially regulate the expression of growth factors in hippocampal astrocytes in vitro. This suggests that one of the mechanisms through which glucocorticoids affect hippocampal functions may be by regulating the expression of astrocyte-derived growth factors.
Collapse
|
|
28 |
34 |
18
|
Dalla-Favera R, Migliazza A, Chang CC, Niu H, Pasqualucci L, Butler M, Shen Q, Cattoretti G. Molecular pathogenesis of B cell malignancy: the role of BCL-6. Curr Top Microbiol Immunol 1999; 246:257-63; discussion 263-5. [PMID: 10396064 DOI: 10.1007/978-3-642-60162-0_32] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
|
26 |
33 |
19
|
Yang Z, Zhang S, Zhao H, Niu H, Wu ZS, Chang HT. Branched DNA Junction-Enhanced Isothermal Circular Strand Displacement Polymerization for Intracellular Imaging of MicroRNAs. Anal Chem 2018; 90:13891-13899. [DOI: 10.1021/acs.analchem.8b03063] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
|
7 |
30 |
20
|
Niu H, Xia J, Lue NF. Characterization of the interaction between the nuclease and reverse transcriptase activity of the yeast telomerase complex. Mol Cell Biol 2000; 20:6806-15. [PMID: 10958677 PMCID: PMC86210 DOI: 10.1128/mcb.20.18.6806-6815.2000] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Telomerase is a ribonucleoprotein that mediates extension of the dG-rich strand of telomeres in most eukaryotes. Like telomerase derived from ciliated protozoa, yeast telomerase is found to possess a tightly associated endonuclease activity that copurifies with the polymerization activity over different affinity-chromatographic steps. As is the case for ciliate telomerase, primers containing sequences that are not complementary to the RNA template can be efficiently cleaved by the yeast enzyme. More interestingly, we found that for the yeast enzyme, cleavage site selection is not stringent, since blocking cleavage at one site by the introduction of a nonhydrolyzable linkage can lead to the utilization of other sites. In addition, the reverse transcriptase activity of yeast telomerase can extend either the 5'- or 3'-end fragment following cleavage. Two general models that are consistent with the biochemical properties of the enzyme are presented: one model postulates two distinct active sites for the nuclease and reverse transcriptase, and the other invokes a multimeric enzyme with each protomer containing a single active site capable of mediating both cleavage and extension.
Collapse
|
research-article |
25 |
27 |
21
|
Dalla-Favera R, Ye BH, Lo Coco F, Chang CC, Cechova K, Zhang J, Migliazza A, Mellado W, Niu H, Chaganti S. BCL-6 and the molecular pathogenesis of B-cell lymphoma. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 1994; 59:117-23. [PMID: 7587061 DOI: 10.1101/sqb.1994.059.01.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The results presented identify the first genetic lesion associated with DLCL, the most clinically relevant form of NHL. Although no proof yet exists of a role for these lesions in DLCL pathogenesis, the feature of the BCL-6 gene product, its specific pattern of expression in B cells, and the clustering of lesions disrupting its regulatory domain strongly suggest that deregulation of BCL-6 expression may contribute to DLCL development. A more precise definition of the role of BCL-6 in normal and neoplastic B-cell development is the goal of ongoing study of transgenic mice engineered either to express BCL-6 under heterologous promoters or lacking BCL-6 function due to targeted deletions. In addition to contributing to the understanding of DLCL pathogenesis, the identification of BCL-6 lesions may have relevant clinical implications. DLCL represent a heterogeneous group of neoplasms which are treated homogeneously despite the fact that only 50% of patients experience long-term disease-free survival (Schneider et al. 1990). The fact that BCL-6 rearrangements identify biologically and clinically distinct subsets of DLCL suggests that these lesions may be useful as markers in selection of differential therapeutic strategies based on different risk groups. Furthermore, the BCL-6 rearrangements can be used to identify and monitor the malignant clone with sensitive PCR-based techniques. Since clinical remission has been observed in a significant fraction of DLCL cases, these markers may serve as critical tools for sensitive monitoring of minimal residual disease and early diagnosis of relapse (Gribben et al. 1993).
Collapse
MESH Headings
- Animals
- B-Lymphocytes/metabolism
- Cell Differentiation/genetics
- Chromosomes, Human, Pair 3
- Cloning, Molecular
- DNA-Binding Proteins/genetics
- Gene Rearrangement
- Humans
- Lymphoma, B-Cell/etiology
- Lymphoma, B-Cell/genetics
- Lymphoma, Large B-Cell, Diffuse/classification
- Lymphoma, Large B-Cell, Diffuse/etiology
- Lymphoma, Large B-Cell, Diffuse/genetics
- Mice
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins c-bcl-6
- Proto-Oncogenes
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Transcription Factors/genetics
- Translocation, Genetic
Collapse
|
Review |
31 |
27 |
22
|
Niu H, Jacob ST. Enhancer 1 binding factor (E1BF), a Ku-related protein, is a growth-regulated RNA polymerase I transcription factor: association of a repressor activity with purified E1BF from serum-deprived cells. Proc Natl Acad Sci U S A 1994; 91:9101-5. [PMID: 8090777 PMCID: PMC44755 DOI: 10.1073/pnas.91.19.9101] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Previous studies from this laboratory have demonstrated that the enhancer 1 binding factor (E1BF), a Ku-related protein, purified from the serum-enriched cells functions as a positive factor in an RNA polymerase (pol I) transcription system. We have now shown that E1BF purified from the serum-deprived cells (E1BFs) can inhibit rDNA transcription completely in a fractionated extract from the cells grown in serum-enriched medium. The suppression of transcription was overcome by the addition of control E1BF (E1BFc). Immunoprecipitation of purified E1BFs by the anti-Ku monoclonal antibody and addition of the supernatant to the transcription reaction mixture prevented the inhibition significantly, whereas immunoprecipitation with the control mouse IgG did not restore the transcription. The transcriptional repressor activity associated with the final DNA affinity column fractions copurified with E1BF. Neither the amount of E1BF nor its promoter binding activity was altered following serum depletion. E1BFs selectively inhibited the initiation of rDNA transcription. The inhibitory activity of E1BFs was not due to a nonspecific RNase activity. These data suggest that E1BF is post-translationally modified following serum starvation of cells, and that the repressor activity of E1BFs is largely responsible for the down-regulation of pol I transcription in serum-deprived cells.
Collapse
|
research-article |
31 |
26 |
23
|
Gibbs E, Pan ZQ, Niu H, Hurwitz J. Studies on the in vitro phosphorylation of HSSB-p34 and -p107 by cyclin-dependent kinases. Cyclin-substrate interactions dictate the efficiency of phosphorylation. J Biol Chem 1996; 271:22847-54. [PMID: 8798463 DOI: 10.1074/jbc.271.37.22847] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Cyclin-dependent kinases (Cdks) are required for cell cycle progression. Two potentially significant Cdk substrates in human cells are the human single-stranded binding protein (HSSB or RPA), which plays an essential role in DNA replication, repair, and recombination, and the tumor suppressor p107 which acts to negatively regulate cell growth. In this report we describe the in vitro phosphorylation of these two proteins by Cdks in an attempt to understand how cyclin-substrate interactions direct phosphorylation efficiencies. We show that cyclin A-Cdk2 efficiently phosphorylates the p34 subunit of HSSB (HSSB-p34) alone or as a part of the heterotrimeric complex. In contrast, cyclin E-Cdk2 that is active in phosphorylating histone H1, does not support the phosphorylation of the p34 subunit of HSSB. We provide evidence that this differential phosphorylation results from a specific interaction between HSSB-p34 and cyclin A, but not cyclin E. Thus the observed cell cycle-dependent phosphorylation of HSSB-p34 at the G1 to S transition is most likely catalyzed by cyclin A-Cdk2 initiated by the direct interaction between cyclin A and the HSSB-p34 subunit. These studies are consistent with our previous observation that p107, which directly binds cyclin A, is efficiently phosphorylated by cyclin A-Cdk2 but not cyclin B-associated kinases. Here we further demonstrate that cyclin A only complexes with p107 in its unphosphorylated form. These data suggest a catalytic mechanism by which Cdk acts: substrate targeting by a cyclin-substrate interaction followed by dissociation of the Cdk upon phosphate incorporation allowing the Cdk to become available for the next cycle of phosphorylation.
Collapse
|
|
29 |
23 |
24
|
Li C, Luo M, Wang J, Niu H, Shen Z, Wu ZS. Rigidified DNA Triangle-Protected Molecular Beacon from Endogenous Nuclease Digestion for Monitoring microRNA Expression in Living Cells. ACS Sens 2020; 5:2378-2387. [PMID: 32786386 DOI: 10.1021/acssensors.0c00212] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Utilizing the nucleic acid-based self-assembly technology, Y-shaped backbone-rigidified DNA triangles with substantially enhanced nuclease resistance are built by designing a Y-shaped backbone in the center of a planar DNA triangle. Along this line, we developed aptamer-targeted DNA triangle-based molecular beacon (Apt-Tri-MB) probes for monitoring the microRNA expression in living cells with high sensitivity and specificity. For the Apt-Tri-MB probe, the MB is protected by the DNA triangle from unwanted enzymatic digestion, and a targeting ligand aptamer is introduced to endow the MB with active tumor cell-targeting capability. Thus, the digestion-induced false-positive signal is avoided, and the background fluorescence, which originates from the passive cell uptake (e.g., transfection) of reporting probes, is substantially suppressed. The imaging capability of the Apt-Tri-MB is superior to the commercial transfection agent-based counterpart and exhibits good universality suitable for imaging different miRNAs by changing the recognition fragment of the MB. Meanwhile, the disadvantages are efficiently circumvented, including the susceptibility of nucleic acids to nuclease-mediated degradation, inability of MB probes to enter cells, lipofectamine-determined cellular cytotoxicity, and nontargeting cell uptake. Inspired by the Y-shaped backbone-rigidified Apt-Tri-MB, we also constructed X-shaped backbone-rigidified quadrangle-based probes (Apt-Qua-MB). The experimental results show that cell imaging and antidegradation capability of Apt-Qua-MB are comparable with Apt-Tri-MB. As a proof-of-concept study, the Apt-Tri-MB is expected to open an exciting avenue for the further application of nucleic acid probes in the cellular level research and clinical disease diagnosis.
Collapse
|
|
5 |
21 |
25
|
Carly F, Niu H, Delvigne F, Fickers P. Influence of methanol/sorbitol co-feeding rate on pAOX1 induction in a Pichia pastoris Mut+ strain in bioreactor with limited oxygen transfer rate. ACTA ACUST UNITED AC 2016; 43:517-23. [DOI: 10.1007/s10295-015-1722-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 12/11/2015] [Indexed: 11/28/2022]
Abstract
Abstract
High Pichia pastoris biomass density could be obtained using high co-feeding rate of methanol and sorbitol in a fed-batch or continuous culture, while further higher feeding rate finally leads to oxygen limitation in bioreactor. In the literature, there is lack of report about AOX1 promoter regulation with regard to dissolved oxygen level (DO). Therefore, in this work, chemostat cultures were performed to investigate the cell growth, metabolism and regulation of the AOX1 promoter (pAOX1) regarding co-feeding rate of optimized methanol/sorbitol mixture (methanol fraction 0.60 C-mol/C-mol) using a P. pastoris Mut+/pAOX1-lacZ strain. The oxygen transfer rates (OTR) in bioreactor were kept in the range of typical values of large bioreactor, i.e., 4–8 g/(L h) if DO equals 30 % saturation or 5–10 g/(L h) if DO nears zero. For DO >0, an increase of the carbon fed led to an increase of pAOX1 induction. By contrast, when dissolved oxygen was completely depleted, methanol accumulated, causing a 30 % decrease of pAOX1 induction. However, this decrease is more likely to be lined to methanol accumulation than to low level of dissolved oxygen (<4 % DO). Methanol/sorbitol co-feeding allowed cells to adapt to oxygen transient limitations that often occur at industrial scale with reduced effect on pAOX1 induction. The optimal feeding rate tested here was 6.6 mmol C (DCW h)−1 at an OTR of 8.28 g O2(L h)−1 with over fivefold pAOX1 induction (probably directly associated with target protein productivity) compared with previous work.
Collapse
|
|
9 |
20 |