1
|
Willis TG, Jadayel DM, Du MQ, Peng H, Perry AR, Abdul-Rauf M, Price H, Karran L, Majekodunmi O, Wlodarska I, Pan L, Crook T, Hamoudi R, Isaacson PG, Dyer MJ. Bcl10 is involved in t(1;14)(p22;q32) of MALT B cell lymphoma and mutated in multiple tumor types. Cell 1999; 96:35-45. [PMID: 9989495 DOI: 10.1016/s0092-8674(00)80957-5] [Citation(s) in RCA: 490] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
MALT B cell lymphomas with t(1;14)(p22;q32) showed a recurrent breakpoint upstream of the promoter of a novel gene, Bcl10. Bcl10 is a cellular homolog of the equine herpesvirus-2 E10 gene: both contain an amino-terminal caspase recruitment domain (CARD) homologous to that found in several apoptotic molecules. Bcl10 and E10 activated NF-kappaB but caused apoptosis of 293 cells. Bcl10 expressed in a MALT lymphoma exhibited a frameshift mutation resulting in truncation distal to the CARD. Truncated Bcl10 activated NF-kappaB but did not induce apoptosis. Wild-type Bcl10 suppressed transformation, whereas mutant forms had lost this activity and displayed gain-of-function transforming activity. Similar mutations were detected in other tumor types, indicating that Bcl10 may be commonly involved in the pathogenesis of human malignancy.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Amino Acid Sequence
- Animals
- Apoptosis
- B-Cell CLL-Lymphoma 10 Protein
- Base Sequence
- COS Cells
- Cell Line, Transformed
- Cell Transformation, Neoplastic
- Chromosomes, Human, Pair 1
- Chromosomes, Human, Pair 14
- Cloning, Molecular
- Gene Expression
- HeLa Cells
- Humans
- Lymphoma, B-Cell, Marginal Zone/genetics
- Mice
- Molecular Sequence Data
- Mutation
- NF-kappa B/metabolism
- Neoplasm Proteins/genetics
- Neoplasm Proteins/physiology
- Neoplasms/genetics
- Sequence Homology, Amino Acid
- Translocation, Genetic
Collapse
|
|
26 |
490 |
2
|
Pauletti G, Dandekar S, Rong H, Ramos L, Peng H, Seshadri R, Slamon DJ. Assessment of methods for tissue-based detection of the HER-2/neu alteration in human breast cancer: a direct comparison of fluorescence in situ hybridization and immunohistochemistry. J Clin Oncol 2000; 18:3651-64. [PMID: 11054438 DOI: 10.1200/jco.2000.18.21.3651] [Citation(s) in RCA: 465] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE To compare the efficacy of fluorescence in situ hybridization (FISH) and immunohistochemistry (IHC) in detecting the HER-2/neu alteration in human breast cancer. PATIENTS AND METHODS Unselected stage I, II, and III breast cancer patients (N = 900) were tested for HER-2/neu gene amplification by FISH in paraffin-embedded, formalin-fixed archival material. Of these samples, 856 were tested for HER-2/neu overexpression by non-antigen-retrieval IHC with the polyclonal antibody R60, the sensitivity and specificity of which was preliminarily compared with the United States Food and Drug Administration-approved HercepTest (Dako Corp, Carpinteria, CA). Patient survival was analyzed in relation to the presence of the HER-2/neu alteration as determined by these two methodologies. RESULTS A total of 189 (21%) of 900 patients were positive by FISH and 147 (17.2%) of 856 were positive by IHC. This discrepancy is consistent with expected loss of IHC sensitivity associated with tissue fixation/embedding. The HercepTest did not improve sensitivity and introduced false positives. Comparison of R60-based IHC with FISH demonstrates that patient survival is associated progressively to gene amplification level as determined by FISH, whereas for IHC an association is found only in the highest (3+) immunostaining group. Among FISH-negative tumors, 45 (6.6%) of 678 were IHC-positive, with a survival probability similar to that of FISH-negative/IHC-negative cases; FISH-positive/IHC-negative patients have a survival probability similar to that of FISH-positive/IHC-positive cases. CONCLUSION IHC does not consistently discriminate patients likely to have a poor prognosis, whereas FISH provides superior prognostic information in segregating high-risk from lower-risk beast cancers. HER-2/neu protein overexpression in the absence of gene amplification occurs infrequently in breast cancer, in which case, patient outcome is similar to that of patients without the alteration.
Collapse
|
Comparative Study |
25 |
465 |
3
|
Liu ZK, Jiang J, Zhou B, Wang ZJ, Zhang Y, Weng HM, Prabhakaran D, Mo SK, Peng H, Dudin P, Kim T, Hoesch M, Fang Z, Dai X, Shen ZX, Feng DL, Hussain Z, Chen YL. A stable three-dimensional topological Dirac semimetal Cd3As2. NATURE MATERIALS 2014; 13:677-81. [PMID: 24859642 DOI: 10.1038/nmat3990] [Citation(s) in RCA: 344] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 04/24/2013] [Indexed: 05/26/2023]
Abstract
Three-dimensional (3D) topological Dirac semimetals (TDSs) are a recently proposed state of quantum matter that have attracted increasing attention in physics and materials science. A 3D TDS is not only a bulk analogue of graphene; it also exhibits non-trivial topology in its electronic structure that shares similarities with topological insulators. Moreover, a TDS can potentially be driven into other exotic phases (such as Weyl semimetals, axion insulators and topological superconductors), making it a unique parent compound for the study of these states and the phase transitions between them. Here, by performing angle-resolved photoemission spectroscopy, we directly observe a pair of 3D Dirac fermions in Cd3As2, proving that it is a model 3D TDS. Compared with other 3D TDSs, for example, β-cristobalite BiO2 (ref. 3) and Na3Bi (refs 4, 5), Cd3As2 is stable and has much higher Fermi velocities. Furthermore, by in situ doping we have been able to tune its Fermi energy, making it a flexible platform for exploring exotic physical phenomena.
Collapse
|
|
11 |
344 |
4
|
Mei Z, Liu Y, Liu C, Cui A, Liang Z, Wang G, Peng H, Cui L, Li C. Tumour-infiltrating inflammation and prognosis in colorectal cancer: systematic review and meta-analysis. Br J Cancer 2014; 110:1595-1605. [PMID: 24504370 PMCID: PMC3960618 DOI: 10.1038/bjc.2014.46] [Citation(s) in RCA: 243] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 01/02/2014] [Accepted: 01/08/2014] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The role of tumour-infiltrating inflammation in the prognosis of patients with colorectal cancer (CRC) has not been fully evaluated. The primary objective of our meta-analysis was to determine the impact of tumour-infiltrating inflammation on survival outcomes. METHODS Ovid MEDLINE and EMBASE were searched to identify studies reporting the prognostic significance of tumour-infiltrating inflammation for patients with CRC. The primary outcome measures were overall survival (OS), cancer-specific survival (CS) and disease-free survival (DFS). RESULTS A total of 30 studies involving 2988 patients were identified. Studies were subdivided into those considering the associations between CRC survival and generalised tumour inflammatory infiltrate (n=12) and T lymphocyte subsets (n=18). Pooled analyses revealed that high generalised tumour inflammatory infiltrate was associated with good OS (HR, 0.59; 95% CI, 0.48-0.72), CS (HR, 0.40; 95% CI, 0.27-0.61) and DFS (HR, 0.72; 95% CI, 0.57-0.91). Stratification by location and T lymphocyte subset indicated that in the tumour centre, CD3+, CD8+ and FoxP3+ infiltrates were not statistically significant prognostic markers for OS or CS. In the tumour stroma, high CD8+, but not CD3+ or FoxP3+ cell infiltrates indicated increased OS. Furthermore, high CD3+ cell infiltrate was detected at the invasive tumour margin in patients with good OS and DFS; and high CCR7+ infiltrate was also indicated increased OS. CONCLUSION Overall, high generalised tumour inflammatory infiltrate could be a good prognostic marker for CRC. However, significant heterogeneity and an insufficient number of studies underscore the need for further prospective studies on subsets of T lymphocytes to increase the robustness of the analyses.
Collapse
|
Meta-Analysis |
11 |
243 |
5
|
Yu Y, Xu F, Peng H, Fang X, Zhao S, Li Y, Cuevas B, Kuo WL, Gray JW, Siciliano M, Mills GB, Bast RC. NOEY2 (ARHI), an imprinted putative tumor suppressor gene in ovarian and breast carcinomas. Proc Natl Acad Sci U S A 1999; 96:214-9. [PMID: 9874798 PMCID: PMC15119 DOI: 10.1073/pnas.96.1.214] [Citation(s) in RCA: 221] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/1998] [Indexed: 11/18/2022] Open
Abstract
Using differential display PCR, we have identified a gene [NOEY2, ARHI (designation by the Human Gene Nomenclature Committee)] with high homology to ras and rap that is expressed consistently in normal ovarian and breast epithelial cells but not in ovarian and breast cancers. Reexpression of NOEY2 through transfection suppresses clonogenic growth of breast and ovarian cancer cells. Growth suppression was associated with down-regulation of the cyclin D1 promoter activity and induction of p21(WAF1/CIP1). In an effort to identify mechanisms leading to NOEY2 silencing in cancer, we found that the gene is expressed monoallelically and is imprinted maternally. Loss of heterozygosity of the gene was detected in 41% of ovarian and breast cancers. In most of cancer samples with loss of heterozygosity, the nonimprinted functional allele was deleted. Thus, NOEY2 appears to be a putative imprinted tumor suppressor gene whose function is abrogated in ovarian and breast cancers.
Collapse
|
Comparative Study |
26 |
221 |
6
|
Yi H, Peng R, Zhang LY, Sun Y, Peng HM, Liu HD, Yu LJ, Li AL, Zhang YJ, Jiang WH, Zhang Z. LincRNA-Gm4419 knockdown ameliorates NF-κB/NLRP3 inflammasome-mediated inflammation in diabetic nephropathy. Cell Death Dis 2017; 8:e2583. [PMID: 28151474 PMCID: PMC5386454 DOI: 10.1038/cddis.2016.451] [Citation(s) in RCA: 204] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 11/14/2016] [Accepted: 11/28/2016] [Indexed: 02/08/2023]
Abstract
Diabetic nephropathy (DN) as the primary cause of end-stage kidney disease is a common complication of diabetes. Recent researches have shown the activation of nuclear factor kappa light-chain enhancer of activated B cells (NF-κB) and NACHT, LRR and PYD domain-containing protein 3 (NLRP3) inflammasome are associated with inflammation in the progression of DN, but the exact mechanism is unclear. Long noncoding RNAs (lncRNAs) have roles in the development of many diseases including DN. However, the relationship between lncRNAs and inflammation in DN remains largely unknown. Our previous study has revealed that 14 lncRNAs are abnormally expressed in DN by RNA sequencing and real-time quantitative PCR (qRT-PCR) in the renal tissues of db/db DN mice. In this study, these lncRNAs were verified their expressions by qRT-PCR in mesangial cells (MCs) cultured under high- and low-glucose conditions. Twelve lncRNAs displayed the same expressional tendencies in both renal tissues and MCs. In particular, long intergenic noncoding RNA (lincRNA)-Gm4419 was the only one associating with NF-κB among these 12 lncRNAs by bioinformatics methods. Moreover, Gm4419 knockdown could obviously inhibit the expressions of pro-inflammatory cytokines and renal fibrosis biomarkers, and reduce cell proliferation in MCs under high-glucose condition, whereas overexpression of Gm4419 could increase the inflammation, fibrosis and cell proliferation in MCs under low-glucose condition. Interestingly, our results showed that Gm4419 could activate the NF-κB pathway by directly interacting with p50, the subunit of NF-κB. In addition, we found that p50 could interact with NLRP3 inflammasome in MCs. In conclusion, our findings suggest lincRNA-Gm4419 may participate in the inflammation, fibrosis and proliferation in MCs under high-glucose condition through NF-κB/NLRP3 inflammasome signaling pathway, and may provide new insights into the regulation of Gm4419 during the progression of DN.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
204 |
7
|
Diss TC, Peng H, Wotherspoon AC, Isaacson PG, Pan L. Detection of monoclonality in low-grade B-cell lymphomas using the polymerase chain reaction is dependent on primer selection and lymphoma type. J Pathol 1993; 169:291-5. [PMID: 8492220 DOI: 10.1002/path.1711690303] [Citation(s) in RCA: 196] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Detection of B-cell monoclonality using the polymerase chain reaction (PCR) promises the quick and cost-effective separation of monoclonal from polyclonal B-cell disease. However, the efficiency of the method has yet to be fully assessed, particularly with regard to disease type and selection of PCR primers. We have evaluated two approaches based on amplification of the immunoglobulin heavy chain gene using framework 2 (Fr2) and framework 3 (Fr3) region primers. Frozen tissue samples from 94 cases of low-grade B-cell lymphoma were investigated, all of which had previously been shown to be monoclonal by Southern blot analysis. Using a Fr2 primer, we were able to show monoclonality in 85 per cent of cases; with Fr3, 80 per cent of cases; and using both techniques in separate reactions, 90 per cent of cases. Thus, a significant false-negative rate exists with either primer which can be reduced by using both. We also found a difference in the efficiency of detection in different types of lymphoma; only 87 per cent of mucosa-associated lymphomas and centroblastic/centrocytic lymphomas were shown to be monoclonal, whereas all of the other lymphoma types tested were positive using one or both methods. We conclude that PCR detection of B-cell monoclonality allows rapid analysis of tissue samples, including paraffin-processed material. False-negative results which occur in some types of lymphoma can be reduced by the use of two or more primer combinations.
Collapse
|
|
32 |
196 |
8
|
Abstract
Vasomotion is the regular variation in tone of arteries. In our study, we suggest a model for the initiation of vasomotion. We suggest that intermittent release of Ca(2+) from the sarcoplasmic reticulum (SR, cytosolic oscillator), which is initially unsynchronized between the vascular smooth muscle cells, becomes synchronized to initiate vasomotion. The synchronization is achieved by an ion current over the cell membrane, which is activated by the oscillating Ca(2+) release. This current results in an oscillating membrane potential, which synchronizes the SR in the vessel wall and starts vasomotion. Therefore, the pacemaker of the vascular wall can be envisaged as a diffuse array of individual cytosolic oscillators that become entrained by a reciprocal interaction with the cell membrane. The model is supported by experimental data. Confocal [Ca(2+)](i) imaging and isometric force development in isolated rat resistance arteries showed that low norepinephrine concentrations induced SR-dependent unsynchronized waves of Ca(2+) in the vascular smooth muscle. In the presence of the endothelium, the waves converted to global synchronized oscillations of [Ca(2+)](i) after some time, and vasomotion appeared. Synchronization was also seen in the absence of endothelium if 8-bromo-cGMP was added to the bath. Using the patch-clamp technique and microelectrodes, we showed that Ca(2+) release can activate an inward current in isolated smooth muscle cells from the arteries and cause depolarization. These electrophysiological effects of Ca(2+) release were cGMP dependent, which is consistent with the possibility that they are important for the cGMP-dependent synchronization. Further support for the model is the observation that a short-lasting current pulse can initiate vasomotion in an unsynchronized artery as expected from the model.
Collapse
|
|
24 |
191 |
9
|
Chang LY, Lin YC, Mahalingam J, Huang CT, Chen TW, Kang CW, Peng HM, Chu YY, Chiang JM, Dutta A, Day YJ, Chen TC, Yeh CT, Lin CY. Tumor-derived chemokine CCL5 enhances TGF-β-mediated killing of CD8(+) T cells in colon cancer by T-regulatory cells. Cancer Res 2012; 72:1092-102. [PMID: 22282655 DOI: 10.1158/0008-5472.can-11-2493] [Citation(s) in RCA: 181] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Chemokine CCL5/RANTES is highly expressed in cancer where it contributes to inflammation and malignant progression. In this study, we show that CCL5 plays a critical role in immune escape in colorectal cancer. We found that higher levels of CCL5 expression in human and murine colon tumor cells correlated with higher levels of apoptosis of CD8+ T cells and infiltration of T-regulatory cells (T(reg)). In mouse cells, RNA interference (RNAi)-mediated knockdown of CCL5 delayed tumor growth in immunocompetent syngeneic hosts but had no effect on tumor growth in immunodeficient hosts. Reduced tumor growth was correlated with a reduction in T(reg) infiltration and CD8(+) T-cell apoptosis in tumors. Notably, we found that CCL5 enhanced the cytotoxicity of T(reg) against CD8(+) T cells. We also found tumor growth to be diminished in mice lacking CCR5, a CCL5 receptor, where a similar decrease in both T(reg) cell infiltration and CD8(+) T-cell apoptosis was noted. TGF-β signaling blockade diminished apoptosis of CD8(+) T cells, implicating TGF-β as an effector of CCL5 action. In support of this concept, CCL5 failed to enhance the production of TGF-β by CCR5-deficient T(reg) or to enhance their cytotoxic effects against CD8(+) T cells. CCR5 signaling blockade also diminished the in vivo suppressive capacity of T(reg) in inhibiting the antitumor responses of CD8(+) T cells, in the same way as CCL5 signaling blockade. Together, our findings establish that CCL5/CCR5 signaling recruits T(reg) to tumors and enhances their ability to kill antitumor CD8(+) T cells, thereby defining a novel mechanism of immune escape in colorectal cancer.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
181 |
10
|
Peng H, Begg GE, Schultz DC, Friedman JR, Jensen DE, Speicher DW, Rauscher FJ. Reconstitution of the KRAB-KAP-1 repressor complex: a model system for defining the molecular anatomy of RING-B box-coiled-coil domain-mediated protein-protein interactions. J Mol Biol 2000; 295:1139-62. [PMID: 10653693 DOI: 10.1006/jmbi.1999.3402] [Citation(s) in RCA: 162] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The KRAB domain is a 75 amino acid residue transcriptional repression module commonly found in eukaryotic zinc-finger proteins. KRAB-mediated gene silencing requires binding to the corepressor KAP-1. The KRAB:KAP-1 interaction requires the RING-B box-coiled coil (RBCC) domain of KAP-1, which is a widely distributed motif, hypothesized to be a protein-protein interface. Little is known about RBCC-mediated ligand binding and the role of the individual sub-domains in recognition and specificity. We have addressed these issues by reconstituting and characterizing the KRAB:KAP-1-RBCC interaction using purified components. Our results show that KRAB binding to KAP-1 is direct and specific, as the related RBCC domains from TIF1alpha and MID1 do not bind the KRAB domain. A combination of gel filtration, analytical ultracentrifugation, chemical cross-linking, non-denaturing gel electrophoresis, and site-directed mutagenesis techniques has revealed that the KAP-1-RBCC must oligomerize likely as a homo-trimer in order to bind the KRAB domain. The RING finger, B2 box, and coiled-coil region are required for oligomerization of KAP-1-RBCC and KRAB binding, as mutations in these domains concomitantly abolished these functions. KRAB domain binding stabilized the homo-oligomeric state of the KAP-1-RBCC as detected by chemical cross-linking and velocity sedimentation studies. Mutant KAP-1-RBCC molecules hetero-oligomerize with the wild-type KAP-1, but these complexes were inactive for KRAB binding, suggesting a potential dominant negative activity. Substitution of the coiled-coil region with heterologous dimerization, trimerization, or tetramerization domains failed to recapitulate KRAB domain binding. Chimeric KAP-1-RBCC proteins containing either the RING, RING-B box, or coiled-coil regions from MID1 also failed to bind the KRAB domain. The KAP-1-RBCC mediates a highly specific, direct interaction with the KRAB domain, and it appears to function as an integrated, possibly cooperative structural unit wherein each sub-domain contributes to oligomerization and/or ligand recognition. These observations provide the first principles for RBCC domain-mediated protein-protein interaction and have implications for identifying new ligands for RBCC domain proteins.
Collapse
|
|
25 |
162 |
11
|
Akinbowale OL, Peng H, Barton MD. Antimicrobial resistance in bacteria isolated from aquaculture sources in Australia. J Appl Microbiol 2006; 100:1103-13. [PMID: 16630011 DOI: 10.1111/j.1365-2672.2006.02812.x] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
AIMS To carry out a preliminary assessment of the occurrence of resistance to antimicrobials in bacteria that has been isolated from a variety of aquaculture species and environments in Australia. METHOD AND RESULTS A total of 100 Gram-negative (Vibrio spp. and Aeromonas spp. predominantly) and four Gram-positive bacteria isolated from farmed fish, crustaceans and water from crab larval rearing tanks were obtained from diagnostic laboratories from different parts of Australia. All the isolates were tested for sensitivity to 19 antibiotics and Minimal Inhibitory Concentrations were determined by the agar dilution method. Plasmid DNA was isolated by the alkali lysis method. Resistance to ampicillin, amoxycillin, cephalexin and erythromycin was widespread; resistance to oxytetracycline, tetracycline, nalidixic acid and sulfonamides was common but resistance to chloramphenicol, florfenicol, ceftiofur, cephalothin, cefoperazone, oxolinic acid, gentamicin, kanamycin and trimethoprim was less common. All strains were susceptible to ciprofloxacin. Multiple resistance was also observed and 74.4% of resistant isolates had between one and ten plasmids with sizes ranging 2-51 kbp. CONCLUSIONS No antibiotics are registered for use in aquaculture in Australia but these results suggest that there has been significant off-label use. SIGNIFICANCE AND IMPACT OF STUDY Transfer of antibiotic resistant bacteria to humans via the food chain is a significant health concern. In comparison with studies on terrestrial food producing animals, there are fewer studies on antibiotic resistance in bacteria from aquaculture enterprises and this study provides further support to the view that there is the risk of transfer of resistant bacteria to humans from consumption of aquaculture products. From the Australian perspective, although there are no products registered for use in aquaculture, antimicrobial resistance is present in isolates from aquaculture and aquaculture environments.
Collapse
|
Journal Article |
19 |
154 |
12
|
Lim JH, Wen TC, Matsuda S, Tanaka J, Maeda N, Peng H, Aburaya J, Ishihara K, Sakanaka M. Protection of ischemic hippocampal neurons by ginsenoside Rb1, a main ingredient of ginseng root. Neurosci Res 1997; 28:191-200. [PMID: 9237267 DOI: 10.1016/s0168-0102(97)00041-2] [Citation(s) in RCA: 152] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Our previous study showed that the oral administration of red ginseng powder before but not after transient forebrain ischemia prevented delayed neuronal death in gerbils, and that a neuroprotective molecule within red ginseng powder was ginsenoside Rb1. However, it remains to be clarified whether or not ginsenoside Rb1 acts directly on the ischemic brain, and the mechanism by which ginsenoside Rb1 protects the ischemic CA1 neurons is not determined. Without elucidation of the pharmacological property of ginsenoside Rb1, the drug would not be accepted as a neuroprotective agent. The present study demonstrated that the intracerebroventricular infusion of ginsenoside Rb1 after 3.5 min or 3 min forebrain ischemia, precluded significantly the ischemia-induced shortening of response latency in a step-down passive avoidance task and rescued a significant number of hippocampal CA1 neurons from lethal ischemic damage. The intracerebroventricular infusion of ginsenoside Rb1 did not affect hippocampal blood flow or hippocampal temperature except that it caused a slight increase in hippocampal blood flow at 5 min after transient forebrain ischemia. Furthermore, ginsenoside Rb1 at concentrations of 0.1-100 fg/ml (0.09-90 fM) rescued hippocampal neurons from lethal damage caused by the hydroxyl radical-promoting agent FeSO4 in vitro, and the Fenton reaction system containing p-nitrosodimethylaniline confirmed the hydroxyl radical-scavenging activity of ginsenoside Rb1. These findings suggest that the central infusion of ginsenoside Rb1 after forebrain ischemia protects hippocampal CA1 neurons against lethal ischemic damage possibly by scavenging free radicals which are overproduced in situ after brain ischemia and reperfusion. The present study may validate the empirical usage of ginseng root over thousands of years for the prevention of cerebrovascular diseases.
Collapse
|
|
28 |
152 |
13
|
Zhang Z, Peng H, Chen J, Chen X, Han F, Xu X, He X, Yan N. MicroRNA-21 protects from mesangial cell proliferation induced by diabetic nephropathy in db/db mice. FEBS Lett 2009; 583:2009-14. [DOI: 10.1016/j.febslet.2009.05.021] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 04/23/2009] [Accepted: 05/08/2009] [Indexed: 11/28/2022]
|
|
16 |
136 |
14
|
Shi W, Peng H, Wang N, Li CP, Xu L, Lee CS, Kalish R, Lee ST. Free-standing single crystal silicon nanoribbons. J Am Chem Soc 2001; 123:11095-6. [PMID: 11686728 DOI: 10.1021/ja0162966] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
|
24 |
130 |
15
|
Li A, Peng R, Sun Y, Liu H, Peng H, Zhang Z. LincRNA 1700020I14Rik alleviates cell proliferation and fibrosis in diabetic nephropathy via miR-34a-5p/Sirt1/HIF-1α signaling. Cell Death Dis 2018; 9:461. [PMID: 29700282 PMCID: PMC5919933 DOI: 10.1038/s41419-018-0527-8] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 02/11/2018] [Accepted: 03/09/2018] [Indexed: 02/07/2023]
Abstract
Long intergenic noncoding RNAs (lincRNAs) have been gradually identified to be functional in a variety of different mechanisms associating with development and epigenetic regulation of cellular homeostasis. However, the study of lincRNAs in diabetic nephropathy (DN) is still in its infancy. Here, we have found dysexpressed long noncoding RNAs (lncRNAs) in renal tissues of db/db DN mice compared with db/m mice by RNA sequencing. In this study, 5 lincRNAs were confirmed to express in a consistent trend among these DN-related lncRNAs both in vivo and in vitro. Particularly, 1700020I14Rik was the downregulated one. Moreover, our data showed overexpression or knockdown of 1700020I14Rik could regulate cell proliferation and fibrosis in mouse mesangial cells (MCs). Furthermore, 1700020I14Rik was found to interact with miR-34a-5p via both the directly targeting way by bioinformatic investigation and luciferase assay and the Ago2-dependent manner by RIP assay. Results also displayed that overexpression of 1700020I14Rik inhibited cell proliferation and expressions of renal fibrosis markers through miR-34a-5p/Sirt1/HIF-1α pathway in MCs under high glucose condition, while knockdown of 1700020I14Rik could increase cell proliferation and expressions of renal fibrosis markers. In conclusion, these results provide new insights into the regulation between 1700020I14Rik and miR-34a-5p/Sirt1/HIF-1α signaling pathway during the progression of DN.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
128 |
16
|
Poovaiah N, Davoudi Z, Peng H, Schlichtmann B, Mallapragada S, Narasimhan B, Wang Q. Treatment of neurodegenerative disorders through the blood-brain barrier using nanocarriers. NANOSCALE 2018; 10:16962-16983. [PMID: 30182106 DOI: 10.1039/c8nr04073g] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Neurodegenerative diseases refer to disorders of the central nervous system (CNS) that are caused by neuronal degradations, dysfunctions, or death. Alzheimer's disease, Parkinson's disease, and Huntington's disease (APHD) are regarded as the three major neurodegenerative diseases. There is a vast body of literature on the causes and treatments of these neurodegenerative diseases. However, the main obstacle in developing an effective treatment strategy is the permeability of the treatment components at the blood-brain barrier (BBB). Several strategies have been developed to improve this obstruction. For example, nanomaterials facilitate drug delivery to the BBB due to their size. They have been used widely in nanomedicine and as nanoprobes for diagnosis purposes among others in neuroscience. Nanomaterials in different forms, such as nanoparticles, nanoemulsions, solid lipid nanoparticles (SLN), and liposomes, have been used to treat neurodegenerative diseases. This review will cover the basic concepts and applications of nanomaterials in the therapy of APHD.
Collapse
|
Review |
7 |
127 |
17
|
Peng H, Marians KJ. Decatenation activity of topoisomerase IV during oriC and pBR322 DNA replication in vitro. Proc Natl Acad Sci U S A 1993; 90:8571-5. [PMID: 8104339 PMCID: PMC47399 DOI: 10.1073/pnas.90.18.8571] [Citation(s) in RCA: 117] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Topoisomerase IV (Topo IV), encoded by parC and parE, is required for partition of the daughter chromosomes in Escherichia coli. This enzyme is likely responsible for decatenating the linked daughter chromosomes after replication. In this report, we have examined the action of Topo IV in both pBR322 and oriC DNA replication reconstituted in vitro with purified proteins. Gyrase fails to decatenate the linked daughter molecules under any condition in the oriC system and at physiological salt concentrations in the pBR322 system, whereas Topo IV stimulates generation of monomer product DNA by 7- to 10-fold. Topo IV-catalyzed decatenation of isolated multiply linked DNA dimers was relatively insensitive to salt; it proceeded at 14% of the maximal rate even in the presence of 800 mM potassium glutamate. In contrast, decatenation in vitro by gyrase was inhibited completely under these conditions. Pulse-chase analysis indicated that Topo IV-catalyzed resolution of linked daughter DNA molecules occurred prior to completion of DNA replication, such that multiply linked daughter molecules did not arise. These results suggest that during DNA replication, gyrase acts primarily to relieve accumulated positive supercoiling and Topo IV acts to segregate the daughter chromosomes.
Collapse
|
research-article |
32 |
117 |
18
|
Diss TC, Pan L, Peng H, Wotherspoon AC, Isaacson PG. Sources of DNA for detecting B cell monoclonality using PCR. J Clin Pathol 1994; 47:493-6. [PMID: 8063927 PMCID: PMC494724 DOI: 10.1136/jcp.47.6.493] [Citation(s) in RCA: 107] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
AIMS To evaluate the polymerase chain reaction (PCR) demonstration of clonal immunoglobulin heavy chain gene rearrangements using routinely prepared, unstained, and stained formalin fixed, paraffin wax embedded tissue samples. METHODS Extracts from (a) fresh frozen tissue samples, (b) unstained, and (c) haematoxylin and eosin stained formalin fixed, paraffin wax embedded 5 microns tissue sections from 42 cases of low grade B cell lymphoma, all shown to be monoclonal by Southern blot analysis, were analysed using PCR. Two regions of the variable segment of the immunoglobulin heavy chain gene were amplified (framework 2 to joining region [Fr2/JH] and framework 3 to joining region [Fr3/JH]). Twelve samples of reactive lymphoid tissue were studied as controls. Products from each case were directly compared on polyacrylamide gels. RESULTS Using both primer combinations, monoclonality was detected in 38 of 42 (90%) cases using fresh material, 37 of 42 (88%) using unstained paraffin wax embedded samples, and in 35 of 42 (83%) cases using haematoxylin and eosin stained sections. No false positive results attributable to fixation, processing, or staining were identified, although the efficiency of amplification using the Fr2/JH primers was significantly reduced. CONCLUSIONS PCR determination of B cell clonality using paraffin wax embedded material is sufficiently sensitive and reliable for use as a routine diagnostic adjunct to conventional morphological and immunocytochemical assessment of lymphoproliferative disease.
Collapse
|
research-article |
31 |
107 |
19
|
Sun Y, Peng R, Peng H, Liu H, Wen L, Wu T, Yi H, Li A, Zhang Z. miR-451 suppresses the NF-kappaB-mediated proinflammatory molecules expression through inhibiting LMP7 in diabetic nephropathy. Mol Cell Endocrinol 2016; 433:75-86. [PMID: 27264074 DOI: 10.1016/j.mce.2016.06.004] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/31/2016] [Accepted: 06/02/2016] [Indexed: 10/21/2022]
Abstract
Activation of nuclear factor -kappa B (NF-κB) is associated with inflammation in the progression of diabetic nephropathy (DN). MiR-451 is closely linked to renal damage in DN. Large multifunctional protease 7 (LMP7), an immunoproteasome subunit, can activate NF-κB. However, it remained unclear whether miR-451 affected NF-κB-induced inflammation by regulating LMP7 in DN. In this study, deep sequencing, in situ hybridization, quantitative real-time PCR, dual-luciferase reporter gene assays, western blot and chromatin immunoprecipitation were respectively used. For the results, we found that miR-451 was markedly downregulated in the kidneys of db/db mice, PBMCs of DN patients and mesangial cells (MCs) cultured in high glucose conditions. Furthermore, miR-451 directly targeted LMP7 expression to inhibit NF-κB activity, and down-regulated transcription of proinflammatory molecules in MCs. More importantly, in the kidneys of db/db DN mice, increasing miR-451 level inhibited LMP7/NF-κB activity, and attenuated the urinary microalbumin excretion, blood glucose, and glomerular injury. In conclusion, these results provide new insights into the regulation of miR-451 via the LMP7/NF-κB central inflammatory pathway during progression of DN.
Collapse
|
|
9 |
100 |
20
|
Yang Y, Fu J, Peng H, Hou L, Liu M, Zhou JL. Occurrence and phase distribution of selected pharmaceuticals in the Yangtze Estuary and its coastal zone. JOURNAL OF HAZARDOUS MATERIALS 2011; 190:588-96. [PMID: 21497014 DOI: 10.1016/j.jhazmat.2011.03.092] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 03/23/2011] [Accepted: 03/23/2011] [Indexed: 05/07/2023]
Abstract
The occurrence and geochemical behavior of nine pharmaceutical compounds were investigated along the Yangtze River Estuary and its coastal area, by sampling and analysis of pharmaceuticals in sediment, suspended particulate matter (SPM), colloidal and soluble phases. In addition, the impact of sewage input was examined by sampling from sewage treatment plants (STP) effluent and its upstream and downstream in the Yangtze River. Although at relatively low concentrations in SPM and sediments, several pharmaceuticals were found at elevated concentration in filtered water samples from STP-affected sites. STP is therefore an important input of pharmaceuticals in the study area. Colloidal phase was further separated from bulk water samples using cross-flow ultrafiltration (CFUF), confirming it being an effective sorbent for pharmaceuticals with high sorption capacity which are 2-4 orders of magnitude higher than SPM. Moreover, mass balance calculations showed that significant percentages of selected pharmaceutical compounds were associated with aquatic colloids, indicating colloids as a reservoir for these contaminants in the Yangtze estuarine system.
Collapse
|
|
14 |
100 |
21
|
Peng H, Begg GE, Harper SL, Friedman JR, Speicher DW, Rauscher FJ. Biochemical analysis of the Kruppel-associated box (KRAB) transcriptional repression domain. J Biol Chem 2000; 275:18000-10. [PMID: 10748030 DOI: 10.1074/jbc.m001499200] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Kruppel-associated box (KRAB) domain is a 75-amino acid transcriptional repressor module commonly found in eukaryotic zinc finger proteins. KRAB-mediated gene silencing requires binding to the RING-B box-coiled-coil domain of the corepressor KAP-1. Little is known about the biochemical properties of the KRAB domain or the KRAB.KAP-1 complex. Using purified components, a combination of biochemical and biophysical analyses has revealed that the KRAB domain from the KOX1 protein is predominantly a monomer and that the KAP-1 protein is predominantly a trimer in solution. The analyses of electrophoretic mobility shift assays, GST association assays, and plasmon resonance interaction data have indicated that the KRAB binding to KAP-1 is direct, highly specific, and high affinity. The optical biosensor data for the complex was fitted to a model of a one-binding step interaction with fast association and slow dissociation rates, with a calculated K(d) of 142 nm. The fitted R(max) indicated three molecules of KAP-1 binding to one molecule of the KRAB domain, a stoichiometry that is consistent with quantitative SDS-polyacrylamide gel electrophoresis analysis of the complex. These structural and dynamic parameters of the KRAB/KAP-1 interaction have implications for identifying downstream effectors of KAP-1 silencing and the de novo design of new repression domains.
Collapse
|
|
25 |
91 |
22
|
Akinbowale OL, Peng H, Barton MD. Diversity of tetracycline resistance genes in bacteria from aquaculture sources in Australia. J Appl Microbiol 2008; 103:2016-25. [PMID: 17953612 DOI: 10.1111/j.1365-2672.2007.03445.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS To determine the genetic determinants responsible for tetracycline resistance in oxytetracycline resistant bacteria from aquaculture sources in Australia. METHODS AND RESULTS Twenty of 104 (19%) isolates tested were resistant to oxytetracycline (MIC > or = 16 microg ml(-1)). Using polymerase chain reaction (PCR) amplification, one or more tet genes were detected in 15/20 (75%) isolates tested, but none were found in 5/20 (25%). tetM (50%) was the most common determinant, followed by tetE (45%), tetA (35%) and tetD (15%). Five of 12 oxytetracycline resistant isolates studied were able to transfer their R-plasmid to Escherichia coli recipients of chicken, pig and human origin. tetA, tetD and tetM were found to be transferred while tetE was not transferred. Southern hybridization and PCR were used to confirm transfer of determinants. CONCLUSIONS Bacterial isolates from aquaculture sources in Australia harbour a variety of tetracycline resistance genes, which can be transferred to other bacteria of different origin. SIGNIFICANCE AND IMPACT OF THE STUDY Bacteria from aquaculture sources in Australia contribute to the resistance gene pool reservoir. The in vitro transfer of tetracycline R-plasmid from aquatic bacteria to E. coli isolates from various sources is an indication of the potential public health risk associated with these resistance determinants.
Collapse
|
Journal Article |
17 |
90 |
23
|
Lustig LR, Peng H, Hiel H, Yamamoto T, Fuchs PA. Molecular cloning and mapping of the human nicotinic acetylcholine receptor alpha10 (CHRNA10). Genomics 2001; 73:272-83. [PMID: 11350119 DOI: 10.1006/geno.2000.6503] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We report the isolation and initial characterization of a new member of the human nicotinic acetylcholine receptor (nAChR) subunit family, alpha10 (CHRNA10), from both inner-ear neuroepithelium and lymphoid tissue. The cDNA is 1959 nucleotides in length, with a coding region predicting a protein of 451 amino acids that is 90% identical to rat alpha10. The alpha10 gene was localized to chromosome 11p15.5. Human alpha10 was detected in human inner-ear tissue, tonsil, immortalized B-cells, cultured T-cells and peripheral blood lymphocytes using reverse transcriptase-polymerase chain reaction, Northern blot hybridization, and immunohistochemistry. We also detected the expression of the human nAChR alpha9 (CHRNA9) mRNA in these same tissues using RT-PCR and Northern blot hybridization.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Blotting, Western
- Cell Line
- Chromosomes, Human, Pair 11/genetics
- Cloning, Molecular
- Exons/genetics
- Humans
- Immunohistochemistry
- In Situ Hybridization, Fluorescence
- Introns/genetics
- Molecular Sequence Data
- Protein Subunits
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- Radiation Hybrid Mapping
- Rats
- Receptors, Nicotinic/analysis
- Receptors, Nicotinic/chemistry
- Receptors, Nicotinic/genetics
- Sequence Alignment
- Sequence Homology, Amino Acid
- Transfection
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
24 |
88 |
24
|
Zhang Z, Luo X, Ding S, Chen J, Chen T, Chen X, Zha H, Yao L, He X, Peng H. MicroRNA-451 regulates p38 MAPK signaling by targeting of Ywhaz and suppresses the mesangial hypertrophy in early diabetic nephropathy. FEBS Lett 2011; 586:20-6. [PMID: 21827757 DOI: 10.1016/j.febslet.2011.07.042] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 07/27/2011] [Accepted: 07/27/2011] [Indexed: 12/27/2022]
Abstract
Diabetic nephropathy (DN) is a major diabetic complication. However, the initiating molecular events triggering DN are unknown. In this study we focused on microRNA-451 (miR-451), which is downregulated during early DN. We found that miR-451 negatively regulated the expression of Ywhaz through Ywhaz 3'UTR and that Ywhaz was required for the miR-451-mediated downregulation of p38 MAPK signalling. Moreover, over-expression of miR-451 inhibits glomerular mesangial cell proliferation in vitro and in vivo. These findings suggest that the growth-inhibitory effect of miR-451 may be explained in part by miR-451-induced suppression of Ywhaz and p38 MAPK signalling, providing evidence for the potential role of miR-451 in early DN.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
88 |
25
|
Gysin R, Wergedal JE, Sheng MHC, Kasukawa Y, Miyakoshi N, Chen ST, Peng H, Lau KHW, Mohan S, Baylink DJ. Ex vivo gene therapy with stromal cells transduced with a retroviral vector containing the BMP4 gene completely heals critical size calvarial defect in rats. Gene Ther 2002; 9:991-9. [PMID: 12101429 DOI: 10.1038/sj.gt.3301772] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2001] [Accepted: 02/17/2002] [Indexed: 11/08/2022]
Abstract
In order to develop a successful gene therapy system for the healing of bone defects, we developed a murine leukemia virus (MLV)-based retroviral system expressing the human bone morphogenetic protein (BMP) 4 transgene with high transduction efficiency. The bone formation potential of BMP4 transduced cells was tested by embedding 2.5 x 10(6) transduced stromal cells in a gelatin matrix that was then placed in a critical size defect in calvariae of syngenic rats. Gelatin matrix without cells or with untransduced stromal cells were the two control groups. The defect area was completely filled with new bone in experimental rats after 4 weeks, while limited bone formation occurred in either control group. Bone mineral density (BMD) of the defect in the gene therapy group was 67.8 +/- 5.7 mg/cm(2) (mean +/- s.d., n = 4), which was 119 +/- 10% of the control BMD of bone surrounding the defect (57.2 +/- 1.5 mg/cm(2)). In contrast, BMD of rats implanted with untransduced stromal cells was five-fold lower (13.8 +/- 7.4 mg/cm(2), P < 0.001). Time course studies revealed that there was a linear increase in BMD between 2-4 weeks after inoculation of the critical size defect with 2.5 x 10(6) implanted BMP4 cells. In conclusion, the retroviral-based BMP4 gene therapy system that we have developed has the potential for regeneration of large skeletal defects.
Collapse
|
|
23 |
87 |