1
|
Andersen TG, Nour-Eldin HH, Fuller VL, Olsen CE, Burow M, Halkier BA. Integration of biosynthesis and long-distance transport establish organ-specific glucosinolate profiles in vegetative Arabidopsis. THE PLANT CELL 2013; 25:3133-45. [PMID: 23995084 PMCID: PMC3784604 DOI: 10.1105/tpc.113.110890] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 07/26/2013] [Accepted: 08/09/2013] [Indexed: 05/17/2023]
Abstract
Although it is essential for plant survival to synthesize and transport defense compounds, little is known about the coordination of these processes. Here, we investigate the above- and belowground source-sink relationship of the defense compounds glucosinolates in vegetative Arabidopsis thaliana. In vivo feeding experiments demonstrate that the glucosinolate transporters1 and 2 (GTR1 and GTR2), which are essential for accumulation of glucosinolates in seeds, are likely to also be involved in bidirectional distribution of glucosinolates between the roots and rosettes, indicating phloem and xylem as their transport pathways. Grafting of wild-type, biosynthetic, and transport mutants show that both the rosette and roots are able to synthesize aliphatic and indole glucosinolates. While rosettes constitute the major source and storage site for short-chained aliphatic glucosinolates, long-chained aliphatic glucosinolates are synthesized both in roots and rosettes with roots as the major storage site. Our grafting experiments thus indicate that in vegetative Arabidopsis, GTR1 and GTR2 are involved in bidirectional long-distance transport of aliphatic but not indole glucosinolates. Our data further suggest that the distinct rosette and root glucosinolate profiles in Arabidopsis are shaped by long-distance transport and spatially separated biosynthesis, suggesting that integration of these processes is critical for plant fitness in complex natural environments.
Collapse
|
research-article |
12 |
115 |
2
|
Payne RME, Xu D, Foureau E, Teto Carqueijeiro MIS, Oudin A, de Bernonville TD, Novak V, Burow M, Olsen CE, Jones DM, Tatsis EC, Pendle A, Halkier BA, Geu-Flores F, Courdavault V, Nour-Eldin HH, O’Connor SE. An NPF transporter exports a central monoterpene indole alkaloid intermediate from the vacuole. NATURE PLANTS 2017; 3:16208. [PMID: 28085153 PMCID: PMC5238941 DOI: 10.1038/nplants.2016.208] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 11/29/2016] [Indexed: 05/17/2023]
Abstract
Plants sequester intermediates of metabolic pathways into different cellular compartments, but the mechanisms by which these molecules are transported remain poorly understood. Monoterpene indole alkaloids, a class of specialized metabolites that includes the anticancer agent vincristine, antimalarial quinine and neurotoxin strychnine, are synthesized in several different cellular locations. However, the transporters that control the movement of these biosynthetic intermediates within cellular compartments have not been discovered. Here we present the discovery of a tonoplast localized nitrate/peptide family (NPF) transporter from Catharanthus roseus, CrNPF2.9, that exports strictosidine, the central intermediate of this pathway, into the cytosol from the vacuole. This discovery highlights the role that intracellular localization plays in specialized metabolism, and sets the stage for understanding and controlling the central branch point of this pharmacologically important group of compounds.
Collapse
|
research-article |
8 |
100 |
3
|
Jørgensen ME, Xu D, Crocoll C, Ernst HA, Ramírez D, Motawia MS, Olsen CE, Mirza O, Nour-Eldin HH, Halkier BA. Origin and evolution of transporter substrate specificity within the NPF family. eLife 2017; 6:e19466. [PMID: 28257001 PMCID: PMC5336358 DOI: 10.7554/elife.19466] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 02/06/2017] [Indexed: 02/06/2023] Open
Abstract
Despite vast diversity in metabolites and the matching substrate specificity of their transporters, little is known about how evolution of transporter substrate specificities is linked to emergence of substrates via evolution of biosynthetic pathways. Transporter specificity towards the recently evolved glucosinolates characteristic of Brassicales is shown to evolve prior to emergence of glucosinolate biosynthesis. Furthermore, we show that glucosinolate transporters belonging to the ubiquitous NRT1/PTR FAMILY (NPF) likely evolved from transporters of the ancestral cyanogenic glucosides found across more than 2500 species outside of the Brassicales. Biochemical characterization of orthologs along the phylogenetic lineage from cassava to A. thaliana, suggests that alterations in the electrogenicity of the transporters accompanied changes in substrate specificity. Linking the evolutionary path of transporter substrate specificities to that of the biosynthetic pathways, exemplify how transporter substrate specificities originate and evolve as new biosynthesis pathways emerge.
Collapse
|
research-article |
8 |
74 |
4
|
Jørgensen ME, Nour-Eldin HH, Halkier BA. Transport of defense compounds from source to sink: lessons learned from glucosinolates. TRENDS IN PLANT SCIENCE 2015; 20:508-14. [PMID: 25979806 DOI: 10.1016/j.tplants.2015.04.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 04/13/2015] [Accepted: 04/15/2015] [Indexed: 05/20/2023]
Abstract
Plants synthesize a plethora of defense compounds crucial for their survival in a challenging and changing environment. Transport processes are important for shaping the distribution pattern of defense compounds, albeit focus hitherto has been mostly on their biosynthetic pathways. A recent identification of two glucosinolate transporters represents a breakthrough in our understanding of glucosinolate transport in Arabidopsis and has advanced knowledge in transport of defense compounds. In this review, we discuss the role of the glucosinolate transporters in establishing dynamic glucosinolate distribution patterns and source-sink relations. We focus on lessons learned from glucosinolate transport that may apply to transport of other defense compounds and discuss future avenues in the emerging field of defense compound transport.
Collapse
|
Review |
10 |
73 |
5
|
Kazachkova Y, Zemach I, Panda S, Bocobza S, Vainer A, Rogachev I, Dong Y, Ben-Dor S, Veres D, Kanstrup C, Lambertz SK, Crocoll C, Hu Y, Shani E, Michaeli S, Nour-Eldin HH, Zamir D, Aharoni A. The GORKY glycoalkaloid transporter is indispensable for preventing tomato bitterness. NATURE PLANTS 2021; 7:468-480. [PMID: 33707737 DOI: 10.1038/s41477-021-00865-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
Fruit taste is determined by sugars, acids and in some species, bitter chemicals. Attraction of seed-dispersing organisms in nature and breeding for consumer preferences requires reduced fruit bitterness. A key metabolic shift during ripening prevents tomato fruit bitterness by eliminating α-tomatine, a renowned defence-associated Solanum alkaloid. Here, we combined fine mapping with information from 150 resequenced genomes and genotyping a 650-tomato core collection to identify nine bitter-tasting accessions including the 'high tomatine' Peruvian landraces reported in the literature. These 'bitter' accessions contain a deletion in GORKY, a nitrate/peptide family transporter mediating α-tomatine subcellular localization during fruit ripening. GORKY exports α-tomatine and its derivatives from the vacuole to the cytosol and this facilitates the conversion of the entire α-tomatine pool to non-bitter forms, rendering the fruit palatable. Hence, GORKY activity was a notable innovation in the process of tomato fruit domestication and breeding.
Collapse
|
|
4 |
56 |
6
|
Zhang Y, Kilambi HV, Liu J, Bar H, Lazary S, Egbaria A, Ripper D, Charrier L, Belew ZM, Wulff N, Damodaran S, Nour-Eldin HH, Aharoni A, Ragni L, Strader L, Sade N, Weinstain R, Geisler M, Shani E. ABA homeostasis and long-distance translocation are redundantly regulated by ABCG ABA importers. SCIENCE ADVANCES 2021; 7:eabf6069. [PMID: 34669479 PMCID: PMC8528425 DOI: 10.1126/sciadv.abf6069] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The effects of abscisic acid (ABA) on plant growth, development, and response to the environment depend on local ABA concentrations. Here, we show that in Arabidopsis, ABA homeostasis is regulated by two previously unknown ABA transporters. Adenosine triphosphate–binding cassette subfamily G member 17 (ABCG17) and ABCG18 are localized to the plasma membranes of leaf mesophyll and cortex cells to redundantly promote ABA import, leading to conjugated inactive ABA sinks, thus restricting stomatal closure. ABCG17 and ABCG18 double knockdown revealed that the transporters encoded by these genes not only limit stomatal aperture size, conductance, and transpiration while increasing water use efficiency but also control ABA translocation from the shoot to the root to regulate lateral root emergence. Under abiotic stress conditions, ABCG17 and ABCG18 are transcriptionally repressed, promoting active ABA movement and response. The transport mechanism mediated by ABCG17 and ABCG18 allows plants to maintain ABA homeostasis under normal growth conditions.
Collapse
|
research-article |
4 |
32 |
7
|
Xu D, Sanden NCH, Hansen LL, Belew ZM, Madsen SR, Meyer L, Jørgensen ME, Hunziker P, Veres D, Crocoll C, Schulz A, Nour-Eldin HH, Halkier BA. Export of defensive glucosinolates is key for their accumulation in seeds. Nature 2023; 617:132-138. [PMID: 37076627 DOI: 10.1038/s41586-023-05969-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 03/17/2023] [Indexed: 04/21/2023]
Abstract
Plant membrane transporters controlling metabolite distribution contribute key agronomic traits1-6. To eliminate anti-nutritional factors in edible parts of crops, the mutation of importers can block the accumulation of these factors in sink tissues7. However, this often results in a substantially altered distribution pattern within the plant8-12, whereas engineering of exporters may prevent such changes in distribution. In brassicaceous oilseed crops, anti-nutritional glucosinolate defence compounds are translocated to the seeds. However, the molecular targets for export engineering of glucosinolates remain unclear. Here we identify and characterize members of the USUALLY MULTIPLE AMINO ACIDS MOVE IN AND OUT TRANSPORTER (UMAMIT) family-UMAMIT29, UMAMIT30 and UMAMIT31-in Arabidopsis thaliana as glucosinolate exporters with a uniport mechanism. Loss-of-function umamit29 umamit30 umamit31 triple mutants have a very low level of seed glucosinolates, demonstrating a key role for these transporters in translocating glucosinolates into seeds. We propose a model in which the UMAMIT uniporters facilitate glucosinolate efflux from biosynthetic cells along the electrochemical gradient into the apoplast, where the high-affinity H+-coupled glucosinolate importers GLUCOSINOLATE TRANSPORTERS (GTRs) load them into the phloem for translocation to the seeds. Our findings validate the theory that two differently energized transporter types are required for cellular nutrient homeostasis13. The UMAMIT exporters are new molecular targets to improve nutritional value of seeds of brassicaceous oilseed crops without altering the distribution of the defence compounds in the whole plant.
Collapse
|
|
2 |
30 |
8
|
Larsen B, Xu D, Halkier BA, Nour-Eldin HH. Advances in methods for identification and characterization of plant transporter function. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4045-4056. [PMID: 28472492 DOI: 10.1093/jxb/erx140] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Transport proteins are crucial for cellular function at all levels. Numerous importers and exporters facilitate transport of a diverse array of metabolites and ions intra- and intercellularly. Identification of transporter function is essential for understanding biological processes at both the cellular and organismal level. Assignment of a functional role to individual transporter proteins or to identify a transporter with a given substrate specificity has notoriously been challenging. Recently, major advances have been achieved in function-driven screens, phenotype-driven screens, and in silico-based approaches. In this review, we highlight examples that illustrate how new technology and tools have advanced identification and characterization of plant transporter functions.
Collapse
|
Review |
8 |
24 |
9
|
Kanstrup C, Nour-Eldin HH. The emerging role of the nitrate and peptide transporter family: NPF in plant specialized metabolism. CURRENT OPINION IN PLANT BIOLOGY 2022; 68:102243. [PMID: 35709542 DOI: 10.1016/j.pbi.2022.102243] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/14/2022] [Accepted: 05/07/2022] [Indexed: 05/02/2023]
Abstract
The nitrate and peptide transporter family (NPF) is one of the largest transporter families in the plant kingdom. The name of the family reflects the substrates (nitrate and peptides) identified for the two founding members CHL1 and PTR2 from Arabidopsis thaliana almost 30 years ago. However, since then, the NPF has emerged as a hotspot for transporters with a wide range of crucial roles in plant specialized metabolism. Recent prominent examples include 1) controlling accumulation of antinutritional glucosinolates in Brassica seeds, 2) deposition of heat-stress tolerance flavonol diglucosides to pollen coats 3) production of anti-cancerous monoterpene indole alkaloid precursors in Catharanthus roseus and 4) detoxification of steroid glycoalkaloids in ripening tomatoes. In this review, we turn the spotlight on the emerging role of the NPF in plant specialized metabolism and its potential for improving crop traits through transport engineering.
Collapse
|
Review |
3 |
21 |
10
|
Hu Y, Patra P, Pisanty O, Shafir A, Belew ZM, Binenbaum J, Ben Yaakov S, Shi B, Charrier L, Hyams G, Zhang Y, Trabulsky M, Caldararu O, Weiss D, Crocoll C, Avni A, Vernoux T, Geisler M, Nour-Eldin HH, Mayrose I, Shani E. Multi-Knock-a multi-targeted genome-scale CRISPR toolbox to overcome functional redundancy in plants. NATURE PLANTS 2023; 9:572-587. [PMID: 36973414 PMCID: PMC7615256 DOI: 10.1038/s41477-023-01374-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Plant genomes are characterized by large and complex gene families that often result in similar and partially overlapping functions. This genetic redundancy severely hampers current efforts to uncover novel phenotypes, delaying basic genetic research and breeding programmes. Here we describe the development and validation of Multi-Knock, a genome-scale clustered regularly interspaced short palindromic repeat toolbox that overcomes functional redundancy in Arabidopsis by simultaneously targeting multiple gene-family members, thus identifying genetically hidden components. We computationally designed 59,129 optimal single-guide RNAs that each target two to ten genes within a family at once. Furthermore, partitioning the library into ten sublibraries directed towards a different functional group allows flexible and targeted genetic screens. From the 5,635 single-guide RNAs targeting the plant transportome, we generated over 3,500 independent Arabidopsis lines that allowed us to identify and characterize the first known cytokinin tonoplast-localized transporters in plants. With the ability to overcome functional redundancy in plants at the genome-scale level, the developed strategy can be readily deployed by scientists and breeders for basic research and to expedite breeding efforts.
Collapse
|
research-article |
2 |
21 |
11
|
Slaten ML, Yobi A, Bagaza C, Chan YO, Shrestha V, Holden S, Katz E, Kanstrup C, Lipka AE, Kliebenstein DJ, Nour-Eldin HH, Angelovici R. mGWAS Uncovers Gln-Glucosinolate Seed-Specific Interaction and its Role in Metabolic Homeostasis. PLANT PHYSIOLOGY 2020; 183:483-500. [PMID: 32317360 PMCID: PMC7271782 DOI: 10.1104/pp.20.00039] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/26/2020] [Indexed: 05/04/2023]
Abstract
Gln is a key player in plant metabolism. It is one of the major free amino acids that is transported into the developing seed and is central for nitrogen metabolism. However, Gln natural variation and its regulation and interaction with other metabolic processes in seeds remain poorly understood. To investigate the latter, we performed a metabolic genome-wide association study (mGWAS) of Gln-related traits measured from the dry seeds of the Arabidopsis (Arabidopsis thaliana) diversity panel using all potential ratios between Gln and the other members of the Glu family as traits. This semicombinatorial approach yielded multiple candidate genes that, upon further analysis, revealed an unexpected association between the aliphatic glucosinolates (GLS) and the Gln-related traits. This finding was confirmed by an independent quantitative trait loci mapping and statistical analysis of the relationships between the Gln-related traits and the presence of specific GLS in seeds. Moreover, an analysis of Arabidopsis mutants lacking GLS showed an extensive seed-specific impact on Gln levels and composition that manifested early in seed development. The elimination of GLS in seeds was associated with a large effect on seed nitrogen and sulfur homeostasis, which conceivably led to the Gln response. This finding indicates that both Gln and GLS play key roles in shaping the seed metabolic homeostasis. It also implies that select secondary metabolites might have key functions in primary seed metabolism. Finally, our study shows that an mGWAS performed on dry seeds can uncover key metabolic interactions that occur early in seed development.
Collapse
|
research-article |
5 |
18 |
12
|
Specht EA, Nour-Eldin HH, Hoang KTD, Mayfield SP. An improved ARS2-derived nuclear reporter enhances the efficiency and ease of genetic engineering inChlamydomonas. Biotechnol J 2014; 10:473-9. [DOI: 10.1002/biot.201400172] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 08/11/2014] [Accepted: 09/15/2014] [Indexed: 01/11/2023]
|
|
11 |
18 |
13
|
Binenbaum J, Wulff N, Camut L, Kiradjiev K, Anfang M, Tal I, Vasuki H, Zhang Y, Sakvarelidze-Achard L, Davière JM, Ripper D, Carrera E, Manasherova E, Ben Yaakov S, Lazary S, Hua C, Novak V, Crocoll C, Weinstain R, Cohen H, Ragni L, Aharoni A, Band LR, Achard P, Nour-Eldin HH, Shani E. Gibberellin and abscisic acid transporters facilitate endodermal suberin formation in Arabidopsis. NATURE PLANTS 2023; 9:785-802. [PMID: 37024660 PMCID: PMC7615257 DOI: 10.1038/s41477-023-01391-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 03/09/2023] [Indexed: 05/04/2023]
Abstract
The plant hormone gibberellin (GA) regulates multiple developmental processes. It accumulates in the root elongating endodermis, but how it moves into this cell file and the significance of this accumulation are unclear. Here we identify three NITRATE TRANSPORTER1/PEPTIDE TRANSPORTER (NPF) transporters required for GA and abscisic acid (ABA) translocation. We demonstrate that NPF2.14 is a subcellular GA/ABA transporter, presumably the first to be identified in plants, facilitating GA and ABA accumulation in the root endodermis to regulate suberization. Further, NPF2.12 and NPF2.13, closely related proteins, are plasma membrane-localized GA and ABA importers that facilitate shoot-to-root GA12 translocation, regulating endodermal hormone accumulation. This work reveals that GA is required for root suberization and that GA and ABA can act non-antagonistically. We demonstrate how the clade of transporters mediates hormone flow with cell-file-specific vacuolar storage at the phloem unloading zone, and slow release of hormone to induce suberin formation in the maturation zone.
Collapse
|
research-article |
2 |
17 |
14
|
Madsen SR, Olsen CE, Nour-Eldin HH, Halkier BA. Elucidating the role of transport processes in leaf glucosinolate distribution. PLANT PHYSIOLOGY 2014; 166:1450-62. [PMID: 25209984 PMCID: PMC4226354 DOI: 10.1104/pp.114.246249] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 09/07/2014] [Indexed: 05/02/2023]
Abstract
In Arabidopsis (Arabidopsis thaliana), a strategy to defend its leaves against herbivores is to accumulate glucosinolates along the midrib and at the margin. Although it is generally assumed that glucosinolates are synthesized along the vasculature in an Arabidopsis leaf, thereby suggesting that the margin accumulation is established through transport, little is known about these transport processes. Here, we show through leaf apoplastic fluid analysis and glucosinolate feeding experiments that two glucosinolate transporters, GTR1 and GTR2, essential for long-distance transport of glucosinolates in Arabidopsis, also play key roles in glucosinolate allocation within a mature leaf by effectively importing apoplastically localized glucosinolates into appropriate cells. Detection of glucosinolates in root xylem sap unambiguously shows that this transport route is involved in root-to-shoot glucosinolate allocation. Detailed leaf dissections show that in the absence of GTR1 and GTR2 transport activity, glucosinolates accumulate predominantly in leaf margins and leaf tips. Furthermore, we show that glucosinolates accumulate in the leaf abaxial epidermis in a GTR-independent manner. Based on our results, we propose a model for how glucosinolates accumulate in the leaf margin and epidermis, which includes symplasmic movement through plasmodesmata, coupled with the activity of putative vacuolar glucosinolate importers in these peripheral cell layers.
Collapse
|
research-article |
11 |
16 |
15
|
Wulff N, Ernst HA, Jørgensen ME, Lambertz S, Maierhofer T, Belew ZM, Crocoll C, Motawia MS, Geiger D, Jørgensen FS, Mirza O, Nour-Eldin HH. An Optimized Screen Reduces the Number of GA Transporters and Provides Insights Into Nitrate Transporter 1/Peptide Transporter Family Substrate Determinants. FRONTIERS IN PLANT SCIENCE 2019; 10:1106. [PMID: 31632416 PMCID: PMC6785635 DOI: 10.3389/fpls.2019.01106] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/13/2019] [Indexed: 05/17/2023]
Abstract
Based on recent in vitro data, a relatively large number of the plant nitrate transporter 1/peptide transporter family (NPF) proteins have been suggested to function as gibberellic acid (GA) transporters. Most GA transporting NPF proteins also appear to transport other structurally unrelated phytohormones or metabolites. Several of the GAs used in previous in vitro assays are membrane permeable weak organic acids whose movement across membranes are influenced by the pH-sensitive ion-trap mechanism. Moreover, a large proportion of in vitro GA transport activities have been demonstrated indirectly via long-term yeast-based GA-dependent growth assays that are limited to detecting transport of bioactive GAs. Thus, there is a need for an optimized transport assay for identifying and characterizing GA transport. Here, we develop an improved transport assay in Xenopus laevis oocytes, wherein we directly measure movement of six different GAs across oocyte membranes over short time. We show that membrane permeability of GAs in oocytes can be predicted based on number of oxygen atoms and that several GAs do not diffuse over membranes regardless of changes in pH values. In addition, we show that small changes in internal cellular pH can result in strongly altered distribution of membrane permeable phytohormones. This prompts caution when interpreting heterologous transport activities. We use our transport assay to screen all Arabidopsis thaliana NPF proteins for transport activity towards six GAs (two membrane permeable and four non-permeable). The results presented here, significantly reduce the number of bona fide NPF GA transporters in Arabidopsis and narrow the activity to fewer subclades within the family. Furthermore, to gain first insight into the molecular determinants of substrate specificities toward organic molecules transported in the NPF, we charted all surface exposed amino acid residues in the substrate-binding cavity and correlated them to GA transport. This analysis suggests distinct residues within the substrate-binding cavity that are shared between GA transporting NPF proteins; the potential roles of these residues in determining substrate specificity are discussed.
Collapse
|
research-article |
6 |
14 |
16
|
Jørgensen ME, Olsen CE, Geiger D, Mirza O, Halkier BA, Nour-Eldin HH. A Functional EXXEK Motif is Essential for Proton Coupling and Active Glucosinolate Transport by NPF2.11. PLANT & CELL PHYSIOLOGY 2015; 56:2340-50. [PMID: 26443378 PMCID: PMC4675897 DOI: 10.1093/pcp/pcv145] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 09/24/2015] [Indexed: 05/02/2023]
Abstract
The proton-dependent oligopeptide transporter (POT/PTR) family shares a highly conserved E1X1X2E2RFXYY (E1X1X2E2R) motif across all kingdoms of life. This motif is suggested to have a role in proton coupling and active transport in bacterial homologs. For the plant POT/PTR family, also known as the NRT1/PTR family (NPF), little is known about the role of the E1X1X2E2R motif. Moreover, nothing is known about the role of the X1 and X2 residues within the E1X1X2E2R motif. We used NPF2.11-a proton-coupled glucosinolate (GLS) symporter from Arabidopsis thaliana-to investigate the role of the E1X1X2E2K motif variant in a plant NPF transporter. Using liquid chromatography-mass spectrometry (LC-MS)-based uptake assays and two-electrode voltage clamp (TEVC) electrophysiology, we demonstrate an essential role for the E1X1X2E2K motif for accumulation of substrate by NPF2.11. Our data suggest that the highly conserved E1, E2 and K residues are involved in translocation of protons, as has been proposed for the E1X1X2E2R motif in bacteria. Furthermore, we show that the two residues X1 and X2 in the E1X1X2E2[K/R] motif are conserved as uncharged amino acids in POT/PTRs from bacteria to mammals and that introducing a positive or negative charge in either position hampers the ability to overaccumulate substrate relative to the assay medium. We hypothesize that introducing a charge at X1 and X2 interferes with the function of the conserved glutamate and lysine residues of the E1X1X2E2K motif and affects the mechanism behind proton coupling.
Collapse
|
research-article |
10 |
11 |
17
|
Jørgensen ME, Crocoll C, Halkier BA, Nour-Eldin HH. Uptake Assays in Xenopus laevis Oocytes Using Liquid Chromatography-mass Spectrometry to Detect Transport Activity. Bio Protoc 2017; 7:e2581. [PMID: 34595263 DOI: 10.21769/bioprotoc.2581] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/10/2017] [Accepted: 09/25/2017] [Indexed: 11/02/2022] Open
Abstract
Xenopus laevis oocytes are a widely used model system for characterization of heterologously expressed secondary active transporters. Historically, researchers have relied on detecting transport activity by measuring accumulation of radiolabeled substrates by scintillation counting or of fluorescently labelled substrates by spectrofluorometric quantification. These techniques are, however, limited to substrates that are available as radiolabeled isotopes or to when the substrate is fluorescent. This prompted us to develop a transport assay where we could in principle detect transport activity for any organic metabolite regardless of its availability as radiolabeled isotope or fluorescence properties. In this protocol we describe the use of X. laevis oocytes as a heterologous host for expression of secondary active transporters and how to perform uptake assays followed by detection and quantification of transported metabolites by liquid chromatography-mass spectrometry (LC-MS). We have successfully used this method for identification and characterization of transporters of the plant defense metabolites called glucosinolates and cyanogenic glucosides ( Jørgensen et al., 2017 ), however the method is usable for the characterization of any transporter whose substrate can be detected by LC-MS.
Collapse
|
|
8 |
11 |
18
|
Madsen SR, Nour-Eldin HH, Halkier BA. Collection of Apoplastic Fluids from Arabidopsis thaliana Leaves. Methods Mol Biol 2016; 1405:35-42. [PMID: 26843163 DOI: 10.1007/978-1-4939-3393-8_4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The leaf apoplast comprises the extracellular continuum outside cell membranes. A broad range of processes take place in the apoplast, including intercellular signaling, metabolite transport, and plant-microbe interactions. To study these processes, it is essential to analyze the metabolite content in apoplastic fluids. Due to the fragile nature of leaf tissues, it is a challenge to obtain apoplastic fluids from leaves. Here, methods to collect apoplastic washing fluid and guttation fluid from Arabidopsis thaliana leaves are described.
Collapse
|
|
9 |
10 |
19
|
Jørgensen ME, Nour-Eldin HH, Halkier BA. A Western Blot Protocol for Detection of Proteins Heterologously Expressed in Xenopus laevis Oocytes. Methods Mol Biol 2016; 1405:99-107. [PMID: 26843169 DOI: 10.1007/978-1-4939-3393-8_10] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Oocytes of the African clawed frog, Xenopus laevis, are often used for expression and biochemical characterization of transporter proteins as the oocytes are particularly suitable for uptake assays and electrophysiological recordings. Assessment of the expression level of expressed transporters at the individual oocyte level is often desirable when comparing properties of wild type and mutant transporters. However, a large content of yolk platelets in the oocyte cytoplasm makes this a challenging task. Here we report a method for fast and easy, semiquantitative Western blot analysis of proteins heterologously expressed in Xenopus oocytes.
Collapse
|
|
9 |
8 |
20
|
Xu D, Hanschen FS, Witzel K, Nintemann SJ, Nour-Eldin HH, Schreiner M, Halkier BA. Rhizosecretion of stele-synthesized glucosinolates and their catabolites requires GTR-mediated import in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3205-3214. [PMID: 27702989 PMCID: PMC5853541 DOI: 10.1093/jxb/erw355] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 09/06/2016] [Indexed: 05/18/2023]
Abstract
Casparian strip-generated apoplastic barriers not only control the radial flow of both water and ions but may also constitute a hindrance for the rhizosecretion of stele-synthesized phytochemicals. Here, we establish root-synthesized glucosinolates (GLS) are in Arabidopsis as a model to study the transport routes of plant-derived metabolites from the site of synthesis to the rhizosphere. Analysing the expression of GLS synthetic genes in the root indicate that the stele is the major site for the synthesis of aliphatic GLS, whereas indole GLS can be synthesized in both the stele and the cortex. Sampling root exudates from the wild type and the double mutant of the GLS importers GTR1 and GTR2 show that GTR-mediated retention of stele-synthesized GLS is a prerequisite for the exudation of both intact GLS and their catabolites into the rhizosphere. The expression of the GTRs inside the stele, combined with the previous observation that GLS are exported from biosynthetic cells, suggest three possible routes of stele-synthesized aliphatic GLS after their synthesis: (i) GTR-dependent import to cells symplastically connected to the cortical cells and the rhizosphere; (ii) GTR-independent transport via the xylem to the shoot; and (iii) GTR-dependent import to GLS-degrading myrosin cells at the cortex. The study suggests a previously undiscovered role of the import process in the rhizosecretion of root-synthesized phytochemicals.
Collapse
|
research-article |
8 |
7 |
21
|
Xu D, Hunziker P, Koroleva O, Blennow A, Crocoll C, Schulz A, Nour-Eldin HH, Halkier BA. GTR-Mediated Radial Import Directs Accumulation of Defensive Glucosinolates to Sulfur-Rich Cells in the Phloem Cap of Arabidopsis Inflorescence Stem. MOLECULAR PLANT 2019; 12:1474-1484. [PMID: 31260813 DOI: 10.1016/j.molp.2019.06.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/06/2019] [Accepted: 06/14/2019] [Indexed: 05/02/2023]
Abstract
In the phloem cap region of Arabidopsis plants, sulfur-rich cells (S-cells) accumulate >100 mM glucosinolates (GLS), but are biosynthetically inactive. The source and route of S-cell-bound GLS remain elusive. In this study, using single-cell sampling and scanning electron microscopy with energy-dispersive X-ray analysis we show that two GLS importers, NPF2.10/GTR1 and NPF2.11/GTR2, are critical for GLS accumulation in S-cells, although they are not localized in the S-cells. Comparison of GLS levels in S-cells in multiple combinations of homo- and heterografts of gtr1 gtr2, biosynthetic null mutant and wild-type plants indicate that S-cells accumulate GLS via symplasmic connections either directly from neighboring biosynthetic cells or indirectly to non-neighboring cells expressing GTR1/2. Distinct sources and transport routes exist for different types of GLS, and vary depending on the position of S-cells in the inflorescence stem. Based on these findings, we propose a model illustrating the GLS transport routes either directly from biosynthetic cells or via GTR-mediated import from apoplastic space radially into a symplasmic domain, wherein the S-cells are the ultimate sink. Similarly, we observed accumulation of the cyanogenic glucoside defensive compounds in high-turgor cells in the phloem cap of Lotus japonicus, suggesting that storage of defensive compounds in high-turgor cells may be a general mechanism for chemical protection of the phloem cap.
Collapse
|
|
6 |
5 |
22
|
Jørgensen ME, Wulff N, Nafisi M, Xu D, Wang C, Lambertz SK, Belew ZM, Nour-Eldin HH. Design and Direct Assembly of Synthesized Uracil-containing Non-clonal DNA Fragments into Vectors by USER TM Cloning. Bio Protoc 2017; 7:e2615. [PMID: 34595288 DOI: 10.21769/bioprotoc.2615] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/20/2017] [Accepted: 10/09/2017] [Indexed: 11/02/2022] Open
Abstract
This protocol describes how to order and directly assemble uracil-containing non-clonal DNA fragments by uracil excision based cloning (USER cloning). The protocol was generated with the goal of making synthesized non-clonal DNA fragments directly compatible with USERTM cloning. The protocol is highly efficient and would be compatible with uracil-containing non-clonal DNA fragments obtained from any synthesizing company. The protocol drastically reduces time and handling between receiving the synthesized DNA fragments and transforming with vector and DNA fragment(s).
Collapse
|
|
8 |
4 |
23
|
Thiesen L, Belew ZM, Griem-Krey N, Pedersen SF, Crocoll C, Nour-Eldin HH, Wellendorph P. The γ-hydroxybutyric acid (GHB) analogue NCS-382 is a substrate for both monocarboxylate transporters subtypes 1 and 4. Eur J Pharm Sci 2020; 143:105203. [PMID: 31866563 DOI: 10.1016/j.ejps.2019.105203] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/11/2019] [Accepted: 12/19/2019] [Indexed: 11/20/2022]
Abstract
The small-molecule ligand (E)-2-(5-hydroxy-5,7,8,9-tetrahydro-6H-benzo[7]annulen-6-ylidene)acetic acid (NCS-382) is an analogue of γ-hydroxybutyric acid (GHB) and is widely used for probing the brain-specific GHB high-affinity binding sites. To reach these, brain uptake is imperative, and it is therefore important to understand the molecular mechanisms of NCS-382 transport in order to direct in vivo studies. In this study, we hypothesized that NCS-382 is a substrate for the monocarboxylate transporter subtype 1 (MCT1) which is known to mediate blood-brain barrier (BBB) permeation of GHB. For this purpose, we investigated NCS-382 uptake by MCT subtypes endogenously expressed in tsA201 and MDA-MB-231 cell lines in assays of radioligand-based competition and fluorescence-based intracellular pH measurements. To further verify the results, we measured NCS-382 uptake by means of mass spectrometry in Xenopus laevis oocytes heterologously expressing MCT subtypes. As expected, we found that NCS-382 is a substrate for MCT1 with half-maximal effective concentrations in the low millimolar range. Surprisingly, NCS-382 also showed substrate activity at MCT4 as well as uptake in water-injected oocytes, suggesting a component of passive diffusion. In conclusion, transport of NCS-382 across membranes differs from GHB as it also involves MCT4 and/or passive diffusion. This should be taken into consideration when designing pharmacological studies with this compound and its closely related analogues. The combination of MCT assays used here exemplifies a setup that may be suitable for a reliable characterization of MCT ligands in general.
Collapse
|
|
5 |
3 |
24
|
Nour-Eldin HH, Specht EA, Mayfield SP. An improved ARG7-based selection cassette with highly efficient transformation rates and a small size suitable for complex expression constructs. ALGAL RES 2016. [DOI: 10.1016/j.algal.2016.03.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
|
9 |
2 |
25
|
Sanden NCH, Kanstrup C, Crocoll C, Schulz A, Nour-Eldin HH, Halkier BA, Xu D. An UMAMIT-GTR transporter cascade controls glucosinolate seed loading in Arabidopsis. NATURE PLANTS 2024; 10:172-179. [PMID: 38177662 DOI: 10.1038/s41477-023-01598-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 11/24/2023] [Indexed: 01/06/2024]
Abstract
Many plant species translocate maternally synthesized specialized metabolites to the seed to protect the developing embryo and later the germinating seedling before it initiates its own de novo synthesis. While the transport route into the seed is well established for primary metabolites, no model exists for any class of specialized metabolites that move from maternal source tissue(s) to embryo. Glucosinolate seed loading in Arabidopsis depends on plasma membrane localized exporters (USUALLY MULTIPLE AMINO ACIDS MOVE IN AND OUT TRANSPORTERs, UMAMITs) and importers (GLUCOSINOLATE TRANSPORTERs, GTRs), but the critical barriers in the seed loading process remain unknown. Here we dissect the transport route of glucosinolates from their source in the reproductive organ to the embryo by re-introducing the transporters at specific apoplastic barriers in their respective mutant backgrounds. We find that UMAMIT exporters and GTR importers form a transporter cascade that is both essential and sufficient for moving glucosinolates across at least four plasma membrane barriers along the route. We propose a model in which UMAMITs export glucosinolates out of the biosynthetic cells to the apoplast, from where GTRs import them into the phloem stream, which moves them to the unloading zone in the chalazal seed coat. From here, the UMAMITs export them out of maternal tissue and ultimately, the GTRs import them into the embryo symplasm, where the seed-specific glucosinolate profile is established by enzymatic modifications. Moreover, we propose that methylsulfinylalkyl glucosinolates are the predominant mobile form in seed loading. Elucidation of the seed loading process of glucosinolates identifies barrier-specific targets for transport engineering strategies to eliminate or over-accumulate a specialized metabolite in seeds with minimal interruption of other cellular processes.
Collapse
|
|
1 |
1 |