1
|
Cui Y, Wei Q, Park H, Lieber CM. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 2001; 293:1289-92. [PMID: 11509722 DOI: 10.1126/science.1062711] [Citation(s) in RCA: 2295] [Impact Index Per Article: 95.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Boron-doped silicon nanowires (SiNWs) were used to create highly sensitive, real-time electrically based sensors for biological and chemical species. Amine- and oxide-functionalized SiNWs exhibit pH-dependent conductance that was linear over a large dynamic range and could be understood in terms of the change in surface charge during protonation and deprotonation. Biotin-modified SiNWs were used to detect streptavidin down to at least a picomolar concentration range. In addition, antigen-functionalized SiNWs show reversible antibody binding and concentration-dependent detection in real time. Lastly, detection of the reversible binding of the metabolic indicator Ca2+ was demonstrated. The small size and capability of these semiconductor nanowires for sensitive, label-free, real-time detection of a wide range of chemical and biological species could be exploited in array-based screening and in vivo diagnostics.
Collapse
|
|
24 |
2295 |
2
|
Liang W, Bockrath M, Bozovic D, Hafner JH, Tinkham M, Park H. Fabry - Perot interference in a nanotube electron waveguide. Nature 2001; 411:665-9. [PMID: 11395762 DOI: 10.1038/35079517] [Citation(s) in RCA: 775] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The behaviour of traditional electronic devices can be understood in terms of the classical diffusive motion of electrons. As the size of a device becomes comparable to the electron coherence length, however, quantum interference between electron waves becomes increasingly important, leading to dramatic changes in device properties. This classical-to-quantum transition in device behaviour suggests the possibility for nanometer-sized electronic elements that make use of quantum coherence. Molecular electronic devices are promising candidates for realizing such device elements because the electronic motion in molecules is inherently quantum mechanical and it can be modified by well defined chemistry. Here we describe an example of a coherent molecular electronic device whose behaviour is explicitly dependent on quantum interference between propagating electron waves-a Fabry-Perot electron resonator based on individual single-walled carbon nanotubes with near-perfect ohmic contacts to electrodes. In these devices, the nanotubes act as coherent electron waveguides, with the resonant cavity formed between the two nanotube-electrode interfaces. We use a theoretical model based on the multichannel Landauer-Büttiker formalism to analyse the device characteristics and find that coupling between the two propagating modes of the nanotubes caused by electron scattering at the nanotube-electrode interfaces is important.
Collapse
|
|
24 |
775 |
3
|
Kucsko G, Maurer PC, Yao NY, Kubo M, Noh HJ, Lo PK, Park H, Lukin MD. Nanometre-scale thermometry in a living cell. Nature 2013; 500:54-8. [PMID: 23903748 DOI: 10.1038/nature12373] [Citation(s) in RCA: 702] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 06/10/2013] [Indexed: 01/20/2023]
Abstract
Sensitive probing of temperature variations on nanometre scales is an outstanding challenge in many areas of modern science and technology. In particular, a thermometer capable of subdegree temperature resolution over a large range of temperatures as well as integration within a living system could provide a powerful new tool in many areas of biological, physical and chemical research. Possibilities range from the temperature-induced control of gene expression and tumour metabolism to the cell-selective treatment of disease and the study of heat dissipation in integrated circuits. By combining local light-induced heat sources with sensitive nanoscale thermometry, it may also be possible to engineer biological processes at the subcellular level. Here we demonstrate a new approach to nanoscale thermometry that uses coherent manipulation of the electronic spin associated with nitrogen-vacancy colour centres in diamond. Our technique makes it possible to detect temperature variations as small as 1.8 mK (a sensitivity of 9 mK Hz(-1/2)) in an ultrapure bulk diamond sample. Using nitrogen-vacancy centres in diamond nanocrystals (nanodiamonds), we directly measure the local thermal environment on length scales as short as 200 nanometres. Finally, by introducing both nanodiamonds and gold nanoparticles into a single human embryonic fibroblast, we demonstrate temperature-gradient control and mapping at the subcellular level, enabling unique potential applications in life sciences.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
12 |
702 |
4
|
Akimov AV, Mukherjee A, Yu CL, Chang DE, Zibrov AS, Hemmer PR, Park H, Lukin MD. Generation of single optical plasmons in metallic nanowires coupled to quantum dots. Nature 2007; 450:402-6. [PMID: 18004381 DOI: 10.1038/nature06230] [Citation(s) in RCA: 509] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Accepted: 09/04/2007] [Indexed: 11/09/2022]
|
|
18 |
509 |
5
|
Sipahigil A, Evans RE, Sukachev DD, Burek MJ, Borregaard J, Bhaskar MK, Nguyen CT, Pacheco JL, Atikian HA, Meuwly C, Camacho RM, Jelezko F, Bielejec E, Park H, Lončar M, Lukin MD. An integrated diamond nanophotonics platform for quantum-optical networks. Science 2016; 354:847-850. [DOI: 10.1126/science.aah6875] [Citation(s) in RCA: 451] [Impact Index Per Article: 50.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 09/29/2016] [Indexed: 11/02/2022]
|
|
9 |
451 |
6
|
Lee S, Yoon BE, Berglund K, Oh SJ, Park H, Shin HS, Augustine GJ, Lee CJ. Channel-Mediated Tonic GABA Release from Glia. Science 2010; 330:790-6. [DOI: 10.1126/science.1184334] [Citation(s) in RCA: 383] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
|
15 |
383 |
7
|
Rawlings DJ, Scharenberg AM, Park H, Wahl MI, Lin S, Kato RM, Fluckiger AC, Witte ON, Kinet JP. Activation of BTK by a phosphorylation mechanism initiated by SRC family kinases. Science 1996; 271:822-5. [PMID: 8629002 DOI: 10.1126/science.271.5250.822] [Citation(s) in RCA: 349] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Bruton's tyrosine kinase (BTK) is pivotal in B cell activation and development through its participation in the signaling pathways of multiple hematopoietic receptors. The mechanisms controlling BTK activation were studied here by examination of the biochemical consequences of an interaction between BTK and SRC family kinases. This interaction of BTK with SRC kinases transphosphorylated BTK on tyrosine at residue 551, which led to BTK activation. BTK then autophosphorylated at a second site. The same two sites were phosphorylated upon B cell antigen receptor cross-linking. The activated BTK was predominantly membrane-associated, which suggests that BTK integrates distinct receptor signals resulting in SRC kinase activation and BTK membrane targeting.
Collapse
|
|
29 |
349 |
8
|
Kubicki M, Park H, Westin CF, Nestor PG, Mulkern RV, Maier SE, Niznikiewicz M, Connor EE, Levitt JJ, Frumin M, Kikinis R, Jolesz FA, McCarley RW, Shenton ME. DTI and MTR abnormalities in schizophrenia: analysis of white matter integrity. Neuroimage 2005; 26:1109-18. [PMID: 15878290 PMCID: PMC2768051 DOI: 10.1016/j.neuroimage.2005.03.026] [Citation(s) in RCA: 336] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2004] [Revised: 03/09/2005] [Accepted: 03/15/2005] [Indexed: 11/16/2022] Open
Abstract
Diffusion tensor imaging (DTI) studies in schizophrenia demonstrate lower anisotropic diffusion within white matter due either to loss of coherence of white matter fiber tracts, to changes in the number and/or density of interconnecting fiber tracts, or to changes in myelination, although methodology as well as localization of such changes differ between studies. The aim of this study is to localize and to specify further DTI abnormalities in schizophrenia by combining DTI with magnetization transfer imaging (MTI), a technique sensitive to myelin and axonal alterations in order to increase specificity of DTI findings. 21 chronic schizophrenics and 26 controls were scanned using Line-Scan-Diffusion-Imaging and T1-weighted techniques with and without a saturation pulse (MT). Diffusion information was used to normalize co-registered maps of fractional anisotropy (FA) and magnetization transfer ratio (MTR) to a study-specific template, using the multi-channel daemon algorithm, designed specifically to deal with multidirectional tensor information. Diffusion anisotropy was decreased in schizophrenia in the following brain regions: the fornix, the corpus callosum, bilaterally in the cingulum bundle, bilaterally in the superior occipito-frontal fasciculus, bilaterally in the internal capsule, in the right inferior occipito-frontal fasciculus and the left arcuate fasciculus. MTR maps demonstrated changes in the corpus callosum, fornix, right internal capsule, and the superior occipito-frontal fasciculus bilaterally; however, no changes were noted in the anterior cingulum bundle, the left internal capsule, the arcuate fasciculus, or inferior occipito-frontal fasciculus. In addition, the right posterior cingulum bundle showed MTR but not FA changes in schizophrenia. These findings suggest that, while some of the diffusion abnormalities in schizophrenia are likely due to abnormal coherence, or organization of the fiber tracts, some of these abnormalities may, in fact, be attributed to or coincide with myelin/axonal disruption.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
20 |
336 |
9
|
Lovchinsky I, Sushkov AO, Urbach E, de Leon NP, Choi S, De Greve K, Evans R, Gertner R, Bersin E, Müller C, McGuinness L, Jelezko F, Walsworth RL, Park H, Lukin MD. Nuclear magnetic resonance detection and spectroscopy of single proteins using quantum logic. Science 2016; 351:836-41. [DOI: 10.1126/science.aad8022] [Citation(s) in RCA: 301] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 01/21/2016] [Indexed: 02/05/2023]
|
|
9 |
301 |
10
|
Chen J, Park H, Park K. Synthesis of superporous hydrogels: hydrogels with fast swelling and superabsorbent properties. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH 1999; 44:53-62. [PMID: 10397904 DOI: 10.1002/(sici)1097-4636(199901)44:1<53::aid-jbm6>3.0.co;2-w] [Citation(s) in RCA: 294] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We have been interested in the synthesis of hydrogels with fast swelling kinetics and superabsorbent properties. To increase the water absorption rate, interconnected pores were introduced to the hydrogels. Since the pore size in the dried hydrogels is in the order of hundreds of micrometers, these hydrogels are called "superporous" hydrogels. Superporous hydrogels were synthesized by crosslinking polymerization of various vinyl monomers in the presence of gas bubbles formed by the chemical reaction of acid and NaHCO3. The polymerization process was optimized to capture the gas bubbles inside the synthesized hydrogels. The use of the NaHCO3/acid system allowed easy control of timing for gelation and foam formation. We found that PF127 was the best foam stabilizer for most of the monomer systems used in our study. Scanning electron microscope (SEM) pictures showed interconnected pores forming capillary channels. The capillary channels, which were critical for fast swelling, were preserved during drying by dehydrating water-swollen hydrogels with ethanol before drying. The ethanol-dehydrated superporous hydrogels reached equilibrium swelling within minutes. The equilibrium swelling time could be reduced to less than a minute with the use of a wetting agent. In our study, water moisture was used as a wetting agent since the amount of moisture content in the dried hydrogels easily could be controlled. Preparation of superporous hydrogels using the right blowing system, foam stabilizer, drying method, and wetting agent makes it possible to reduce the swelling time to less than a minute regardless of the size of the dried gels. The superporous hydrogels can be used where fast swelling and superabsorbent properties are critical.
Collapse
|
|
26 |
294 |
11
|
Ch'ng HS, Park H, Kelly P, Robinson JR. Bioadhesive polymers as platforms for oral controlled drug delivery II: synthesis and evaluation of some swelling, water-insoluble bioadhesive polymers. J Pharm Sci 1985; 74:399-405. [PMID: 3998999 DOI: 10.1002/jps.2600740407] [Citation(s) in RCA: 264] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A series of cross-linked, swellable polymers was sythesized from monomers such as acrylic acid, methacrylic acid, and others with various cross-linking agents to produce a range of polymers differing in charge densities and hydrophobicity. The densities, rate, and extent of hydration of the polymers were determined. An increase in the number of hydrophobic groups in the polymer structure reduced hydration whereas the density of the polymer was unaffected. A sensitive in vitro method for measuring adhesion of polymer to tissue from the rabbit stomach was developed. Polymers of acrylic acid loosely cross-linked (0.3%, w/w) with three different agents, divinyl glycol, 2,5-dimethyl-1,5-hexadiene, and divinylbenzene, showed the same degree of bioadhesion while poly(methacrylic acid-divinylbenzene) showed reduced bioadhesion. The small percent of cross-linking agent, irrespective of physicochemical properties, did not contribute substantially to bioadhesion, whereas the starting monomer had a large effect. The effect of pH on the bioadhesion of poly(acrylic acid-divinyl glycol) was studied at constant temperature, ionic strength, and osmolality. The polymer showed maximum adhesion at pH 5 and 6 and a minimum at pH 7. Gastrointestinal transit studies of cross-linked polymers in rats were studied. Poly(acrylic acid-divinyl glycol) and poly(methacrylic acid-divinylbenzene) were shown to have substantially longer GI transit times than the control, Amberlite 200 resin beads. The delay in transit time was due to bioadhesion of the polymer to the mucin-epithelial cell surface which was clearly observable on animal autopsy. The acrylic acid polymer showed a longer GI transit time than the methacrylic acid polymer, and this in vivo GI transit result is consistent with in vitro bioadhesion test results.
Collapse
|
|
40 |
264 |
12
|
Abstract
It has been proposed that mucoadhesives which adhere to the gastric mucus layer may be used to prolong gastric retention time of oral dosage forms. Preliminary studies, using acrylic hydrogels, have established that the density of carboxyl groups on the polymer chain is important for mucoadhesion. To understand the role(s) of the carboxyl groups in mucoadhesion, acrylic acid-acrylamide random copolymers [P(AA-co-AM)] were synthesized, and the adhesion strength of the cross-linked polymers to the gastric mucus layer was examined as a function of the pH, initial concentration of the cross-linking agent, degree of swelling, and carboxyl-group density. From the study on mucoadhesion of various P(AA-co-AM), it was found that at least 80% of the vinyl groups of the polymer must possess carboxyl groups in the protonated form. The dependence of mucoadhesion on pH and carboxyl-group density suggests that mucoadhesion occurs through hydrogen bonding. In addition, the density of the cross-linking agent significantly affects mucoadhesion. As the density of the cross-linking agent is lowered, the mucoadhesive strength increases, although the density of carboxyl groups in the test surface area is reduced. It is concluded that for mucoadhesion to occur, polymers must have functional groups that are able to form hydrogen bonds above the critical concentration (80% for vinyl polymers), and the polymer chains should be flexible enough to form as many hydrogen bonds as possible.
Collapse
|
|
38 |
263 |
13
|
Park H, Wahl MI, Afar DE, Turck CW, Rawlings DJ, Tam C, Scharenberg AM, Kinet JP, Witte ON. Regulation of Btk function by a major autophosphorylation site within the SH3 domain. Immunity 1996; 4:515-25. [PMID: 8630736 DOI: 10.1016/s1074-7613(00)80417-3] [Citation(s) in RCA: 239] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Bruton's tyrosine kinase (Btk) plays a crucial role in B cell development. Overexpression of Btk with a Src family kinase increases tyrosine phosphorylation and catalytic activity of Btk. This occurs by transphosphorylation at Y551 in the Btk catalytic domain and the enhancement of Btk autophosphorylation at a second site. A gain-of-function mutant called Btk* containing E41 to K change within the pleckstrin homology domain induces fibroblast transformation. Btk* enhances the transphosphorylation of Y551 by endogenous Src family tyrosine kinases and autophosphorylation at the second site. We mapped the major Btk autophosphorylation site to Y223 within the SH3 domain. Mutation of Y223 to F blocks Btk autophosphorylation and dramatically potentiates the transforming activity of Btk* in fibroblasts. The location of Y223 in a potential ligand-binding pocket suggests that autophosphorylation regulates SH3-mediated signaling by Btk.
Collapse
|
|
29 |
239 |
14
|
Tanaka T, Saha SK, Tomomori C, Ishima R, Liu D, Tong KI, Park H, Dutta R, Qin L, Swindells MB, Yamazaki T, Ono AM, Kainosho M, Inouye M, Ikura M. NMR structure of the histidine kinase domain of the E. coli osmosensor EnvZ. Nature 1998; 396:88-92. [PMID: 9817206 DOI: 10.1038/23968] [Citation(s) in RCA: 212] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bacteria live in capricious environments, in which they must continuously sense external conditions in order to adjust their shape, motility and physiology. The histidine-aspartate phosphorelay signal-transduction system (also known as the two-component system) is important in cellular adaptation to environmental changes in both prokaryotes and lower eukaryotes. In this system, protein histidine kinases function as sensors and signal transducers. The Escherichia coli osmosensor, EnvZ, is a transmembrane protein with histidine kinase activity in its cytoplasmic region. The cytoplasmic region contains two functional domains: domain A (residues 223-289) contains the conserved histidine residue (H243), a site of autophosphorylation as well as transphosphorylation to the conserved D55 residue of response regulator OmpR, whereas domain B (residues 290-450) encloses several highly conserved regions (G1, G2, F and N boxes) and is able to phosphorylate H243. Here we present the solution structure of domain B, the catalytic core of EnvZ. This core has a novel protein kinase structure, distinct from the serine/threonine/tyrosine kinase fold, with unanticipated similarities to both heatshock protein 90 and DNA gyrase B.
Collapse
|
|
27 |
212 |
15
|
Tomomori C, Tanaka T, Dutta R, Park H, Saha SK, Zhu Y, Ishima R, Liu D, Tong KI, Kurokawa H, Qian H, Inouye M, Ikura M. Solution structure of the homodimeric core domain of Escherichia coli histidine kinase EnvZ. NATURE STRUCTURAL BIOLOGY 1999; 6:729-34. [PMID: 10426948 DOI: 10.1038/11495] [Citation(s) in RCA: 208] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Escherichia coli osmosensor EnvZ is a protein histidine kinase that plays a central role in osmoregulation, a cellular adaptation process involving the His-Asp phosphorelay signal transduction system. Dimerization of the transmembrane protein is essential for its autophosphorylation and phosphorelay signal transduction functions. Here we present the NMR-derived structure of the homodimeric core domain (residues 223-289) of EnvZ that includes His 243, the site of autophosphorylation and phosphate transfer reactions. The structure comprises a four-helix bundle formed by two identical helix-turn-helix subunits, revealing the molecular assembly of two active sites within the dimeric kinase.
Collapse
|
|
26 |
208 |
16
|
Choi SK, Olsen SL, Abe K, Abe T, Adachi I, Ahn BS, Aihara H, Akai K, Akatsu M, Akemoto M, Asano Y, Aso T, Aulchenko V, Aushev T, Bakich AM, Ban Y, Banerjee S, Bondar A, Bozek A, Bracko M, Brodzicka J, Browder TE, Chang P, Chao Y, Chen KF, Cheon BG, Chistov R, Choi Y, Choi YK, Danilov M, Dong LY, Drutskoy A, Eidelman S, Eiges V, Flanagan J, Fukunaga C, Furukawa K, Gabyshev N, Gershon T, Golob B, Guler H, Guo R, Hagner C, Handa F, Hara T, Hastings NC, Hayashii H, Hazumi M, Hinz L, Hoshi Y, Hou WS, Hsiung YB, Huang HC, Iijima T, Inami K, Ishikawa A, Itoh R, Iwasaki M, Iwasaki Y, Kang JH, Kataoka SU, Katayama N, Kawai H, Kawasaki T, Kichimi H, Kikutani E, Kim HJ, Kim H, Kim JH, Kim SK, Kinoshita K, Koiso H, Koppenburg P, Korpar S, Krizan P, Krokovny P, Kumar S, Kuzmin A, Lange JS, Leder G, Lee SH, Lesiak T, Lin SW, Liventsev D, MacNaughton J, Majumder G, Mandl F, Marlow D, Matsumoto T, Michizono S, Mimashi T, Mitaroff W, Miyabayashi K, Miyake H, Mohapatra D, Moloney GR, Nagamine T, Nagasaka Y, Nakadaira T, Nakamura TT, et alChoi SK, Olsen SL, Abe K, Abe T, Adachi I, Ahn BS, Aihara H, Akai K, Akatsu M, Akemoto M, Asano Y, Aso T, Aulchenko V, Aushev T, Bakich AM, Ban Y, Banerjee S, Bondar A, Bozek A, Bracko M, Brodzicka J, Browder TE, Chang P, Chao Y, Chen KF, Cheon BG, Chistov R, Choi Y, Choi YK, Danilov M, Dong LY, Drutskoy A, Eidelman S, Eiges V, Flanagan J, Fukunaga C, Furukawa K, Gabyshev N, Gershon T, Golob B, Guler H, Guo R, Hagner C, Handa F, Hara T, Hastings NC, Hayashii H, Hazumi M, Hinz L, Hoshi Y, Hou WS, Hsiung YB, Huang HC, Iijima T, Inami K, Ishikawa A, Itoh R, Iwasaki M, Iwasaki Y, Kang JH, Kataoka SU, Katayama N, Kawai H, Kawasaki T, Kichimi H, Kikutani E, Kim HJ, Kim H, Kim JH, Kim SK, Kinoshita K, Koiso H, Koppenburg P, Korpar S, Krizan P, Krokovny P, Kumar S, Kuzmin A, Lange JS, Leder G, Lee SH, Lesiak T, Lin SW, Liventsev D, MacNaughton J, Majumder G, Mandl F, Marlow D, Matsumoto T, Michizono S, Mimashi T, Mitaroff W, Miyabayashi K, Miyake H, Mohapatra D, Moloney GR, Nagamine T, Nagasaka Y, Nakadaira T, Nakamura TT, Nakao M, Natkaniec Z, Nishida S, Nitoh O, Nozaki T, Ogawa S, Ogawa Y, Ohmi K, Ohnishi Y, Ohshima T, Ohuchi N, Oide K, Okabe T, Okuno S, Ostrowicz W, Ozaki H, Palka H, Park H, Parslow N, Piilonen LE, Sagawa H, Saitoh S, Sakai Y, Sarangi TR, Satapathy M, Satpathy A, Schneider O, Schwartz AJ, Semenov S, Senyo K, Seuster R, Sevior ME, Shibuya H, Shidara T, Shwartz B, Sidorov V, Soni N, Stanic S, Staric M, Sugiyama A, Sumiyoshi T, Suzuki S, Takasaki F, Tamai K, Tamura N, Tanaka M, Tawada M, Taylor GN, Teramoto Y, Tomura T, Trabelsi K, Tsukamoto T, Uehara S, Ueno K, Unno Y, Uno S, Varner G, Varvell KE, Wang CC, Wang CH, Wang JG, Watanabe Y, Won E, Yabsley BD, Yamada Y, Yamaguchi A, Yamashita Y, Yanai H, Yang H, Ying J, Yoshida M, Zhang CC, Zhang ZP, Zontar D. Observation of a narrow charmoniumlike state in exclusive B+/--->K+/-pi+pi-J/psi decays. PHYSICAL REVIEW LETTERS 2003; 91:262001. [PMID: 14754041 DOI: 10.1103/physrevlett.91.262001] [Show More Authors] [Citation(s) in RCA: 189] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2003] [Indexed: 05/24/2023]
Abstract
We report the observation of a narrow charmoniumlike state produced in the exclusive decay process B+/--->K+/-pi(+)pi(-)J/psi. This state, which decays into pi(+)pi(-)J/psi, has a mass of 3872.0+/-0.6(stat)+/-0.5(syst) MeV, a value that is very near the M(D0)+M(D(*0)) mass threshold. The results are based on an analysis of 152M B-Bmacr; events collected at the Upsilon(4S) resonance in the Belle detector at the KEKB collider. The signal has a statistical significance that is in excess of 10sigma.
Collapse
|
|
22 |
189 |
17
|
Kim W, Choi K, Kim Y, Park H, Choi J, Lee Y, Oh H, Kwon I, Lee S. Purification and characterization of a fibrinolytic enzyme produced from Bacillus sp. strain CK 11-4 screened from Chungkook-Jang. Appl Environ Microbiol 1996; 62:2482-8. [PMID: 8779587 PMCID: PMC168030 DOI: 10.1128/aem.62.7.2482-2488.1996] [Citation(s) in RCA: 181] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Bacillus sp. strain CK 11-4, which produces a strongly fibrinolytic enzyme, was screened from Chungkook-Jang, a traditional Korean fermented-soybean sauce. The fibrinolytic enzyme (CK) was purified from supernatant of Bacillus sp. strain CK 11-4 culture broth and showed thermophilic, hydrophilic, and strong fibrinolytic activity. The optimum temperature and pH were 70 degrees C and 10.5, respectively, and the molecular weight was 28,200 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The first 14 amino acids of the N-terminal sequence of CK are Ala-Gin-Thr-Val-Pro-Tyr-Gly-Ile-Pro-Leu-Ile-Lys-Ala-Asp. This sequence is identical to that of subtilisin Carlsberg and different from that of nattokinase, but CK showed a level of fibrinolytic activity that was about eight times higher than that of subtilisin Carlsberg. The amidolytic activity of CK increased about twofold at the initial state of the reaction when CK enzyme was added to a mixture of plasminogen and substrate (H-D-Val-Leu-Lys-pNA). A similar result was also obtained from fibrin plate analysis.
Collapse
|
research-article |
29 |
181 |
18
|
Park H, Davies MV, Langland JO, Chang HW, Nam YS, Tartaglia J, Paoletti E, Jacobs BL, Kaufman RJ, Venkatesan S. TAR RNA-binding protein is an inhibitor of the interferon-induced protein kinase PKR. Proc Natl Acad Sci U S A 1994; 91:4713-7. [PMID: 7515177 PMCID: PMC43858 DOI: 10.1073/pnas.91.11.4713] [Citation(s) in RCA: 173] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
A cDNA encoding a double-stranded-RNA (dsRNA)-binding protein was isolated by screening a HeLa cell cDNA expression library for proteins that bind the HIV-1 Rev-responsive-element RNA. The cDNA encoded a protein that was identical to TRBP, the previously reported cellular protein that binds the transactivation response element (TAR) RNA of human immunodeficiency virus type 1. TRBP inhibited phosphorylation of the interferon-induced ribosome-associated protein kinase PKR and of the eukaryotic translation initiation factor eIF-2 alpha in a transient-expression system in which the translation of a reporter gene was inhibited by the localized activation of PKR. TRBP expression in HeLa cells complemented the growth and protein-synthesis defect of a vaccinia virus mutant lacking the expression of the dsRNA-binding protein E3L. These results implicate TRBP as a cellular regulatory protein that binds RNAs containing specific secondary structure(s) to mediate the inhibition of PKR activation and stimulate translation in a localized manner.
Collapse
|
research-article |
31 |
173 |
19
|
Ruderman NB, Park H, Kaushik VK, Dean D, Constant S, Prentki M, Saha AK. AMPK as a metabolic switch in rat muscle, liver and adipose tissue after exercise. ACTA PHYSIOLOGICA SCANDINAVICA 2003; 178:435-42. [PMID: 12864749 DOI: 10.1046/j.1365-201x.2003.01164.x] [Citation(s) in RCA: 166] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
UNLABELLED An increasing body of evidence has revealed that activation of adenosine monophosphate (AMP)-activated protein kinase (AMPK)-activated protein kinase increases fatty acid oxidation by lowering the concentration of malonyl coenzyme A (CoA), an inhibitor of carnitine palmitoyl transferase 1. Studies carried out primarily in skeletal muscle suggest that AMPK modulates the concentration of malonyl CoA by concurrently phosphorylating and inhibiting acetyl CoA carboxylase (ACC), the rate limiting enzyme in malonyl CoA synthesis, and phosphorylating and activating malonyl CoA decarboxylase (MCD), an enzyme involved in its degradation. We have recently observed that AMPK and MCD activities are increased and ACC activity diminished in skeletal muscle, liver and, surprisingly, in adipose tissue 30 min following exercise (treadmill run) in normal rats. In liver and adipose tissue these changes were associated with a decrease in the activity of glycerol-3-phosphate acyltransferase (GPAT), which catalyses the first committed reaction in glycerolipid synthesis and, which like ACC, is phosphorylated and inhibited by AMPK. Similar changes in ACC, MCD and GPAT were observed following the administration of 5-aminoimidazole 4-carboxamide-riboside (AICAR), further indicating that the exercise-induced alterations in these enzymes were AMPK-mediated. CONCLUSIONS (1) AMPK plays a major role in regulating lipid metabolism in multiple tissues following exercise. (2) The net effect of its activation is to increase fatty acid oxidation and diminish glycerolipid synthesis. (3) The relevance of these findings to the regulation of muscle glycogen repletion in the post-exercise state and to the demonstrated ability of AMPK activation to decrease adiposity and increase insulin sensitivity in rodents remains to be determined.
Collapse
|
Review |
22 |
166 |
20
|
|
Journal Article |
15 |
164 |
21
|
Chen J, Blevins WE, Park H, Park K. Gastric retention properties of superporous hydrogel composites. J Control Release 2000; 64:39-51. [PMID: 10640644 DOI: 10.1016/s0168-3659(99)00139-x] [Citation(s) in RCA: 164] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In many applications, usefulness of conventional hydrogels is limited by their slow swelling. To improve the swelling property of the conventional hydrogels, we have synthesized superporous hydrogels (SPHs) which swell fast to equilibrium size in minutes due to water uptake by capillary wetting through numerous interconnected open pores. The swelling ratio was also large in the range of hundreds. The mechanical strength of the highly swollen SPHs was increased by adding a composite material during the synthesis. The composite material used in the synthesis of SPH composites was Ac-Di-Sol((R)) (croscarmellose sodium). The gastric retention property of the prepared SPH composites was tested in dogs both in fasted and fed conditions. The SPH composites were placed in a hard gelatin capsule (size 000) for oral administration. All dogs tested were fasted for 36 h before experiments. Under the fasted condition, the SPH composite remained in the stomach for 2-3 h after before breaking into two pieces and being emptied. When food was given before the experiment just once following 36 h of fasting, the SPH composite remained in the stomach for more than 24 h, even though the fed condition was maintained only for the first few hours. Our study indicated that SPH composites possessed three properties necessary for gastric retention: fast swelling; superswelling; and high mechanical strength. While more improvements need to be made, the SPH composites provide the basis for the development of effective long-term gastric retention devices.
Collapse
|
|
25 |
164 |
22
|
|
Review |
29 |
157 |
23
|
Ko YG, Kim EY, Kim T, Park H, Park HS, Choi EJ, Kim S. Glutamine-dependent antiapoptotic interaction of human glutaminyl-tRNA synthetase with apoptosis signal-regulating kinase 1. J Biol Chem 2001; 276:6030-6. [PMID: 11096076 DOI: 10.1074/jbc.m006189200] [Citation(s) in RCA: 154] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Glutamine has been known to be an apoptosis suppressor, since it blocks apoptosis induced by heat shock, irradiation, and c-Myc overexpression. Here, we demonstrated that HeLa cells were susceptible to Fas-mediated apoptosis under the condition of glutamine deprivation. Fas ligation activated apoptosis signal-regulating kinase 1 (ASK1) and c-Jun N-terminal kinase (JNK; also known as stress-activated protein kinase (SAPK)) in Gln-deprived cells but not in normal cells, suggesting that Gln might be involved in the activity control of ASK1 and JNK/SAPK. As one of the possible mechanisms for the suppressive effect of Gln on ASK1, we investigated the molecular interaction between human glutaminyl-tRNA synthetase (QRS) and ASK1 and found the Gln-dependent association of the two molecules. While their association was enhanced by the elevation of Gln concentration, they were dissociated by Fas ligation within 5 min. The association involved the catalytic domains of the two enzymes. The ASK1 activity was inhibited by the interaction with QRS as determined by in vitro kinase and transcription assays. Finally, we have shown that QRS inhibited the cell death induced by ASK1, and this antiapoptotic function of QRS was weakened by the deprivation of Gln. Thus, the antiapoptotic interaction of QRS with ASK1 is controlled positively by the cellular concentration of Gln and negatively by Fas ligation. The results of this work provide one possible explanation for the working mechanism of the antiapoptotic activity of Gln and suggest a novel function of mammalian ARSs.
Collapse
|
|
24 |
154 |
24
|
Ashraf S, Cha BH, Kim JS, Ahn J, Han I, Park H, Lee SH. Regulation of senescence associated signaling mechanisms in chondrocytes for cartilage tissue regeneration. Osteoarthritis Cartilage 2016; 24:196-205. [PMID: 26190795 DOI: 10.1016/j.joca.2015.07.008] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 06/11/2015] [Accepted: 07/09/2015] [Indexed: 02/06/2023]
Abstract
Adult articular chondrocytes undergo slow senescence and dedifferentiation during in vitro expansion, restricting successful cartilage regeneration. A complete understanding of the molecular signaling pathways involved in the senescence and dedifferentiation of chondrocytes is essential in order to better characterize chondrocytes for cartilage tissue engineering applications. During expansion, cell fate is determined by the change in expression of various genes in response to aspects of the microenvironment, including oxidative stress, mechanical stress, and unsuitable culture conditions. Rapid senescence or dedifferentiation not only results in the loss of the chondrocytic phenotype but also enhances production of inflammatory mediators and matrix-degrading enzymes. This review focuses on the two groups of genes that play direct and indirect roles in the induction of senescence and dedifferentiation. Numerous degenerative signaling pathways associated with these genes have been reported. Upregulation of the genes interleukin 1 beta (IL-1β), p53, p16, p21, and p38 mitogen-activated protein kinase (MAPK) is responsible for the direct induction of senescence, whereas downregulation of the genes transforming growth factor-beta (TGF-β), bone morphogenetic protein-2 (BMP-2), SRY (sex determining region Y)-box 9 (SOX9), and insulin-like growth factor-1 (IGF-1), indirectly induces senescence. In senescent and dedifferentiated chondrocytes, it was found that TGF-β, BMP-2, SOX9, and IGF-1 are downregulated, while the levels of IL-1β, p53, p16, p21, and p38 MAPK are upregulated followed by inhibition of the normal molecular functioning of the chondrocytes. This review helps to elucidate the underlying mechanism in degenerative cartilage disease, which may help to improve cartilage tissue regeneration techniques.
Collapse
|
Review |
9 |
150 |
25
|
Kim J, Park H, Hannon JB, Bedell SW, Fogel K, Sadana DK, Dimitrakopoulos C. Layer-Resolved Graphene Transfer via Engineered Strain Layers. Science 2013; 342:833-6. [DOI: 10.1126/science.1242988] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
|
12 |
150 |