1
|
Bowen WH, Koo H. Biology of Streptococcus mutans-derived glucosyltransferases: role in extracellular matrix formation of cariogenic biofilms. Caries Res 2011; 45:69-86. [PMID: 21346355 PMCID: PMC3068567 DOI: 10.1159/000324598] [Citation(s) in RCA: 726] [Impact Index Per Article: 51.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Accepted: 01/26/2011] [Indexed: 12/18/2022] Open
Abstract
The importance of Streptococcus mutans in the etiology and pathogenesis of dental caries is certainly controversial, in part because excessive attention is paid to the numbers of S. mutans and acid production while the matrix within dental plaque has been neglected. S. mutans does not always dominate within plaque; many organisms are equally acidogenic and aciduric. It is also recognized that glucosyltransferases from S. mutans (Gtfs) play critical roles in the development of virulent dental plaque. Gtfs adsorb to enamel synthesizing glucans in situ, providing sites for avid colonization by microorganisms and an insoluble matrix for plaque. Gtfs also adsorb to surfaces of other oral microorganisms converting them to glucan producers. S. mutans expresses 3 genetically distinct Gtfs; each appears to play a different but overlapping role in the formation of virulent plaque. GtfC is adsorbed to enamel within pellicle whereas GtfB binds avidly to bacteria promoting tight cell clustering, and enhancing cohesion of plaque. GtfD forms a soluble, readily metabolizable polysaccharide and acts as a primer for GtfB. The behavior of soluble Gtfs does not mirror that observed with surface-adsorbed enzymes. Furthermore, the structure of polysaccharide matrix changes over time as a result of the action of mutanases and dextranases within plaque. Gtfs at distinct loci offer chemotherapeutic targets to prevent caries. Nevertheless, agents that inhibit Gtfs in solution frequently have a reduced or no effect on adsorbed enzymes. Clearly, conformational changes and reactions of Gtfs on surfaces are complex and modulate the pathogenesis of dental caries in situ, deserving further investigation.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
726 |
2
|
Karygianni L, Ren Z, Koo H, Thurnheer T. Biofilm Matrixome: Extracellular Components in Structured Microbial Communities. Trends Microbiol 2020; 28:668-681. [PMID: 32663461 DOI: 10.1016/j.tim.2020.03.016] [Citation(s) in RCA: 683] [Impact Index Per Article: 136.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 03/16/2020] [Accepted: 03/25/2020] [Indexed: 02/04/2023]
Abstract
Biofilms consist of microbial communities embedded in a 3D extracellular matrix. The matrix is composed of a complex array of extracellular polymeric substances (EPS) that contribute to the unique attributes of biofilm lifestyle and virulence. This ensemble of chemically and functionally diverse biomolecules is termed the 'matrixome'. The composition and mechanisms of EPS matrix formation, and its role in biofilm biology, function, and microenvironment are being revealed. This perspective article highlights recent advances about the multifaceted role of the 'matrixome' in the development, physical-chemical properties, and virulence of biofilms. We emphasize that targeting biofilm-specific conditions such as the matrixome could lead to precise and effective antibiofilm approaches. We also discuss the limited knowledge in the context of polymicrobial biofilms, and the need for more in-depth analyses of the EPS matrix in mixed communities that are associated with many human infectious diseases.
Collapse
|
Review |
5 |
683 |
3
|
Koo H, Falsetta ML, Klein MI. The exopolysaccharide matrix: a virulence determinant of cariogenic biofilm. J Dent Res 2013; 92:1065-73. [PMID: 24045647 DOI: 10.1177/0022034513504218] [Citation(s) in RCA: 375] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Many infectious diseases in humans are caused or exacerbated by biofilms. Dental caries is a prime example of a biofilm-dependent disease, resulting from interactions of microorganisms, host factors, and diet (sugars), which modulate the dynamic formation of biofilms on tooth surfaces. All biofilms have a microbial-derived extracellular matrix as an essential constituent. The exopolysaccharides formed through interactions between sucrose- (and starch-) and Streptococcus mutans-derived exoenzymes present in the pellicle and on microbial surfaces (including non-mutans) provide binding sites for cariogenic and other organisms. The polymers formed in situ enmesh the microorganisms while forming a matrix facilitating the assembly of three-dimensional (3D) multicellular structures that encompass a series of microenvironments and are firmly attached to teeth. The metabolic activity of microbes embedded in this exopolysaccharide-rich and diffusion-limiting matrix leads to acidification of the milieu and, eventually, acid-dissolution of enamel. Here, we discuss recent advances concerning spatio-temporal development of the exopolysaccharide matrix and its essential role in the pathogenesis of dental caries. We focus on how the matrix serves as a 3D scaffold for biofilm assembly while creating spatial heterogeneities and low-pH microenvironments/niches. Further understanding on how the matrix modulates microbial activity and virulence expression could lead to new approaches to control cariogenic biofilms.
Collapse
|
Review |
12 |
375 |
4
|
Koo H, Hayacibara MF, Schobel BD, Cury JA, Rosalen PL, Park YK, Vacca-Smith AM, Bowen WH. Inhibition of Streptococcus mutans biofilm accumulation and polysaccharide production by apigenin and tt-farnesol. J Antimicrob Chemother 2003; 52:782-9. [PMID: 14563892 DOI: 10.1093/jac/dkg449] [Citation(s) in RCA: 265] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVES Apigenin is a potent inhibitor of glucosyltransferases and tt-farnesol affects the membrane integrity of Streptococcus mutans. We investigated the influence of apigenin and tt-farnesol, alone and in combination, on the accumulation, polysaccharide composition and viability of S. mutans UA159 biofilms. METHODS Initially, biofilms were grown for 54 h; then, the early-formed biofilms were treated for 1 min twice daily with one of the following: (i). 1.33 mM tt-farnesol; (ii). 1.33 mM apigenin; (iii). apigenin + tt-farnesol (1.33 mM each); (iv). vehicle control (20% ethanol with 0.75% dimethyl sulphoxide); (v). 0.12% chlorhexidine (1.33 mM); or (vi). physiological saline (145 mM NaCl). The procedure was repeated at biofilm ages of 78 and 102 h, and biofilms were harvested at 126 h. The dry weight, protein concentration, number of cfu, and polysaccharide composition per biofilm were determined. RESULTS The dry weights of the biofilms treated with the test agents were significantly less (30-50%) than those treated with vehicle control (P < 0.05). Biofilms treated with the test agents also resulted in lower amounts of extracellular alkali-soluble glucans, intracellular iodophilic polysaccharides and, to a lesser extent, fructans. The fructosyltransferase activity was affected only by apigenin and apigenin + tt-farnesol. The recoverable viable counts of S. mutans were slightly lower (0.5 to 1 log10 decrease in cfu/biofilm) after apigenin and tt-farnesol treatments compared with the vehicle control. Chlorhexidine displayed potent bactericidal activity, and virtually halted the further accumulation of early-formed (54 h old) biofilms. CONCLUSIONS Apigenin and tt-farnesol affected the accumulation and polysaccharide content of S. mutans biofilms without major impact on the bacterial viability.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
22 |
265 |
5
|
Koo HJ, Park J, Yoo B, Yoo K, Kim K, Park NG. Size-dependent scattering efficiency in dye-sensitized solar cell. Inorganica Chim Acta 2008. [DOI: 10.1016/j.ica.2007.05.017] [Citation(s) in RCA: 233] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
|
17 |
233 |
6
|
Koo H, Gomes BP, Rosalen PL, Ambrosano GM, Park YK, Cury JA. In vitro antimicrobial activity of propolis and Arnica montana against oral pathogens. Arch Oral Biol 2000; 45:141-8. [PMID: 10716618 DOI: 10.1016/s0003-9969(99)00117-x] [Citation(s) in RCA: 193] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Arnica and propolis have been used for thousands of years in folk medicine for several purposes. They possess several biological activities such as anti-inflammatory, antifungal, antiviral and tissue regenerative, among others. Although the antibacterial activity of propolis has already been demonstrated, very few studies have been done on bacteria of clinical relevance in dentistry. Also, the antimicrobial activity of Arnica has not been extensively investigated. Therefore the aim here was to evaluate in vitro the antimicrobial activity, inhibition of adherence of mutans streptococci and inhibition of formation of water-insoluble glucan by Arnica and propolis extracts. Arnica montana (10%, w/v) and propolis (10%, w/v) extracts from Minas Gerais State were compared with controls. Fifteen microorganisms were used as follows: Candida albicans--NTCC 3736, F72; Staphylococcus aureus--ATCC 25923; Enterococcus faecalis--ATCC 29212; Streptococcus sobrinus 6715; Strep. sanguis--ATCC 10556; Strep. cricetus--HS-6; Strep. mutans--Ingbritt 1600; Strep. mutans--OMZ 175; Actinomyces naeslundii--ATCC 12104, W 1053; Act. viscosus OMZ 105; Porphyromonas gingivalis; Porph. endodontalis and Prevotella denticola (the last three were clinical isolates). Antimicrobial activity was determined by the agar diffusion method and the zones of growth inhibition were measured. To assess cell adherence to a glass surface, the organisms were grown for 18 h at 37 degrees C in test-tubes at a 30 degree angle. To assay water-insoluble glucan formation, a mixture of crude glucosyltransferase and 0.125 M sucrose was incubated for 18 h at 37 degrees C in test-tubes at a 30 degree angle. Arnica and propolis extracts (20 microl) were added to these tubes to evaluate the % of inhibition of cell adherence and water-insoluble glucan formation. The propolis extract significantly inhibited all the microorganisms tested (p < 0.05), showing the largest inhibitory zone for Actinomyces spp. The Arnica extract did not demonstrate significant antimicrobial activity. Cell adherence and water-insoluble glucan formation were almost completely inhibited by the propolis extract at a final concentration of 400 microg/ml and 500 microg/ml, respectively. The Arnica extract showed slight inhibition of the adherence of the growing cells (19% for Strep. mutans and 15% for Strep. sobrinus) and of water-insoluble glucan formation (29%) at these same concentrations. Thus, the propolis extract showed in vitro antibacterial activity, inhibition of cell adherence and inhibition of water-insoluble glucan formation, while the Arnica extract was only slightly active in those three conditions.
Collapse
|
Comparative Study |
25 |
193 |
7
|
Jeon JG, Rosalen PL, Falsetta ML, Koo H. Natural products in caries research: current (limited) knowledge, challenges and future perspective. Caries Res 2011; 45:243-63. [PMID: 21576957 PMCID: PMC3104868 DOI: 10.1159/000327250] [Citation(s) in RCA: 186] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2010] [Accepted: 03/08/2011] [Indexed: 02/04/2023] Open
Abstract
Dental caries is the most prevalent and costly oral infectious disease worldwide. Virulent biofilms firmly attached to tooth surfaces are prime biological factors associated with this disease. The formation of an exopolysaccharide-rich biofilm matrix, acidification of the milieu and persistent low pH at the tooth-biofilm interface are major controlling virulence factors that modulate dental caries pathogenesis. Each one offers a selective therapeutic target for prevention. Although fluoride, delivered in various modalities, remains the mainstay for the prevention of caries, additional approaches are required to enhance its effectiveness. Available antiplaque approaches are based on the use of broad-spectrum microbicidal agents, e.g. chlorhexidine. Natural products offer a rich source of structurally diverse substances with a wide range of biological activities, which could be useful for the development of alternative or adjunctive anticaries therapies. However, it is a challenging approach owing to complex chemistry and isolation procedures to derive active compounds from natural products. Furthermore, most of the studies have been focused on the general inhibitory effects on glucan synthesis as well as on bacterial metabolism and growth, often employing methods that do not address the pathophysiological aspects of the disease (e.g. bacteria in biofilms) and the length of exposure/retention in the mouth. Thus, the true value of natural products in caries prevention and/or their exact mechanisms of action remain largely unknown. Nevertheless, natural substances potentially active against virulent properties of cariogenic organisms have been identified. This review focuses on gaps in the current knowledge and presents a model for investigating the use of natural products in anticaries chemotherapy.
Collapse
|
Review |
14 |
186 |
8
|
Hajishengallis E, Parsaei Y, Klein MI, Koo H. Advances in the microbial etiology and pathogenesis of early childhood caries. Mol Oral Microbiol 2016; 32:24-34. [PMID: 26714612 DOI: 10.1111/omi.12152] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/26/2015] [Indexed: 01/18/2023]
Abstract
Early childhood caries (ECC) is one of the most prevalent infectious diseases affecting children worldwide. ECC is an aggressive form of dental caries, which, left untreated, can result in rapid and extensive cavitation in teeth (rampant caries) that is painful and costly to treat. Furthermore, it affects mostly children from impoverished backgrounds, and so constitutes a major challenge in public health. The disease is a prime example of the consequences arising from complex, dynamic interactions between microorganisms, host, and diet, leading to the establishment of highly pathogenic (cariogenic) biofilms. To date, there are no effective methods to identify those at risk of developing ECC or to control the disease in affected children. Recent advances in deep-sequencing technologies, novel imaging methods, and (meta)proteomics-metabolomics approaches provide an unparalleled potential to reveal new insights to illuminate our current understanding about the etiology and pathogenesis of the disease. In this concise review, we provide a broader perspective about the etiology and pathogenesis of ECC based on previous and current knowledge on biofilm matrix, microbial diversity, and host-microbe interactions, which could have direct implications for developing new approaches for improved risk assessment and prevention of this devastating and costly childhood health condition.
Collapse
|
Research Support, N.I.H., Extramural |
9 |
157 |
9
|
Manson JL, Huang Q, Lynn JW, Koo HJ, Whangbo MH, Bateman R, Otsuka T, Wada N, Argyriou DN, Miller JS. Long-range magnetic order in Mn[N(CN)2]2(pyz) (pyz = pyrazine). Susceptibility, magnetization, specific heat, and neutron diffraction measurements and electronic structure calculations. J Am Chem Soc 2001; 123:162-72. [PMID: 11273613 DOI: 10.1021/ja0024791] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Using dc magnetization, ac susceptibility, specific heat, and neutron diffraction, we have studied the magnetic properties of Mn[N(CN)2]2(pyz) (pyz = pyrazine) in detail. The material crystallizes in the monoclinic space group P2(1)/n with a = 7.3248(2), b = 16.7369(4), and c = 8.7905 (2) A, beta = 89.596 (2) degrees, V = 1077.65(7) A(3), and Z = 4, as determined by Rietveld refinement of neutron powder diffraction data at 1.35 K. The 5 K neutron powder diffraction data reflect very little variation in the crystal structure. Interpenetrating ReO3-like networks are formed from axially elongated Mn(2+) octahedra and edges made up of mu-bonded [N(CN)2](-) anions and neutral pyz ligands. A three-dimensional antiferromagnetic ordering occurs below T(N) = 2.53(2) K. The magnetic unit cell is double the nuclear one along the a- and c-axes, giving the (1/2, 0, 1/2) superstructure. The crystallographic and antiferromagnetic structures are commensurate and consist of collinear Mn(2+) moments, each with a magnitude of 4.15(6) mu(B) aligned parallel to the a-direction (Mn-pyz-Mn chains). Electronic structure calculations indicate that the exchange interaction is much stronger along the Mn-pyz-Mn chain axis than along the Mn-NCNCN-Mn axes by a factor of approximately 40, giving rise to a predominantly one-dimensional magnetic system. Thus, the variable-temperature magnetic susceptibility data are well described by a Heisenberg antiferromagnetic chain model, giving g = 2.01(1) and J/k(B) = -0.27(1) K. Owing to single-ion anisotropy of the Mn(2+) ion, field-induced phenomena ascribed to spin-flop and paramagnetic transitions are observed at 0.43 and 2.83 T, respectively.
Collapse
|
|
24 |
145 |
10
|
Koo H, Schobel B, Scott-Anne K, Watson G, Bowen WH, Cury JA, Rosalen PL, Park YK. Apigenin and tt-farnesol with fluoride effects on S. mutans biofilms and dental caries. J Dent Res 2005; 84:1016-20. [PMID: 16246933 PMCID: PMC1490022 DOI: 10.1177/154405910508401109] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Apigenin (Api) and tt-farnesol (Far) are two naturally occurring agents that affect the development of cariogenic biofilms. Fluoride (F) interferes physicochemically with caries development and also exhibits antibacterial activity. We examined whether the association of Api and Far enhance the anti-caries properties of F by acting cooperatively on the expression of virulence of Streptococcus mutans. The biological effects of each of the agents were greatly enhanced when used in combination with F. In general, biofilms treated with Api and/or Far in combination with F displayed less biomass and fewer insoluble glucans and iodophilic polysaccharides than did those treated with the test agents alone (P < 0.05). The combination of the test agents with F was highly effective in preventing caries development in rats, especially Api+Far+F, and results were comparable with those observed with chlorhexidine + F (positive control). Results from these studies showed that apigenin and tt-farnesol may enhance the cariostatic effectiveness of fluoride.
Collapse
|
Research Support, N.I.H., Extramural |
20 |
138 |
11
|
Jo Y, Choi N, Kim K, Koo HJ, Choi J, Kim HN. Chemoresistance of Cancer Cells: Requirements of Tumor Microenvironment-mimicking In Vitro Models in Anti-Cancer Drug Development. Am J Cancer Res 2018; 8:5259-5275. [PMID: 30555545 PMCID: PMC6276092 DOI: 10.7150/thno.29098] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 10/04/2018] [Indexed: 01/09/2023] Open
Abstract
For decades, scientists have been using two-dimensional cell culture platforms for high-throughput drug screening of anticancer drugs. Growing evidence indicates that the results of anti-cancer drug screening vary with the cell culture microenvironment, and this variation has been proposed as a reason for the high failure rate of clinical trials. Since the culture condition-dependent drug sensitivity of anti-cancer drugs may negatively impact the identification of clinically effective drug candidates, more reliable in vitro cancer platforms are urgently needed. In this review article, we provide an overview of how cell culture conditions can alter drug efficacy and highlight the importance of developing more reliable cancer drug testing platforms for use in the drug discovery process. The environmental factors that can alter drug delivery and efficacy are reviewed. Based on these observations of chemoresistant tumor physiology, we summarize the recent advances in the fabrication of in vitro cancer models and the model-dependent cytotoxicity of anti-cancer drugs, with a particular focus on engineered environmental factors in these platforms. It is believed that more physiologically relevant cancer models can revolutionize the drug discovery process.
Collapse
|
Review |
7 |
125 |
12
|
Klein MI, Duarte S, Xiao J, Mitra S, Foster TH, Koo H. Structural and molecular basis of the role of starch and sucrose in Streptococcus mutans biofilm development. Appl Environ Microbiol 2009; 75:837-41. [PMID: 19028906 PMCID: PMC2632160 DOI: 10.1128/aem.01299-08] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Accepted: 11/17/2008] [Indexed: 11/20/2022] Open
Abstract
The interaction of sucrose and starch with bacterial glucosyltransferases and human salivary amylase may enhance the pathogenic potential of Streptococcus mutans within biofilms by influencing the structural organization of the extracellular matrix and modulating the expression of genes involved in exopolysaccharide synthesis and specific sugar transport and two-component systems.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
123 |
13
|
Zhu Z, Hattori K, Zhang H, Jimenez X, Ludwig DL, Dias S, Kussie P, Koo H, Kim HJ, Lu D, Liu M, Tejada R, Friedrich M, Bohlen P, Witte L, Rafii S. Inhibition of human leukemia in an animal model with human antibodies directed against vascular endothelial growth factor receptor 2. Correlation between antibody affinity and biological activity. Leukemia 2003; 17:604-11. [PMID: 12646950 DOI: 10.1038/sj.leu.2402831] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Vascular endothelial growth factor (VEGF) and its receptors (VEGFR) have been implicated in promoting solid tumor growth and metastasis via stimulating tumor-associated angiogenesis. We recently showed that certain 'liquid' tumors such as leukemia not only produce VEGF, but also express functional VEGFR, resulting in an autocrine loop for tumor growth and propagation. A chimeric anti-VEGFR2 (or kinase insert domain-containing receptor, KDR) antibody, IMC-1C11, was shown to be able to inhibit VEGF-induced proliferation of human leukemia cells in vitro, and to prolong survival of nonobese diabetic-severe combined immune deficient (NOD-SCID) mice inoculated with human leukemia cells. Here we produced two fully human anti-KDR antibodies (IgG1), IMC-2C6 and IMC-1121, from Fab fragments originally isolated from a large antibody phage display library. These antibodies bind specifically to KDR with high affinities: 50 and 200 pM for IMC-1121 and IMC-2C6, respectively, as compared to 270 pM for IMC-1C11. Like IMC-1C11, both human antibodies block VEGF/KDR interaction with an IC(50) of approximately 1 nM, but IMC-1121 is a more potent inhibitor to VEGF-stimulated proliferation of human endothelial cells. These anti-KDR antibodies strongly inhibited VEGF-induced migration of human leukemia cells in vitro, and when administered in vivo, significantly prolonged survival of NOD-SCID mice inoculated with human leukemia cells. It is noteworthy that the mice treated with antibody of the highest affinity, IMC-1121, survived the longest period of time, followed by mice treated with IMC-2C6 and IMC-1C11. Taken together, our data suggest that anti-KDR antibodies may have broad applications in the treatment of both solid tumors and leukemia. It further underscores the efforts to identify antibodies of high affinity for enhanced antiangiogenic and antitumor activities.
Collapse
|
|
22 |
120 |
14
|
Hagrman PJ, LaDuca RL, Koo HJ, Rarig R, Haushalter RC, Whangbo MH, Zubieta J. Ligand influences of the structures of molybdenum oxide networks. Inorg Chem 2000; 39:4311-7. [PMID: 11196927 DOI: 10.1021/ic000496l] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The influence of organonitrogen ligands on the network structure of molybdenum oxides was examined by preparing three new molybdenum oxide phases [MoO3(4,4'-bpy)0.5] (MOXI-8), [HxMoO3(4,4'-bpy)0.5] (MOXI-9), and [MoO3(triazole)0.5] (MOXI-32). The structure of [MoO3(4,4'-bpy)0.5) consists of layers of corner-sharing MoO5N octahedra, buttressed by bridging 4,4'-bipyridyl ligands into a three-dimensional covalently bonded organic-inorganic composite material. Partial reduction of [MoO3(4,4'-bpy)0.5] yields the mixed-valence material [HxMoO3(4,4'-bpy)0.5] (x approximately 0.5). The most apparent structural change upon reduction is found in the Mo-ligand bond lengths of the MoO5N octahedra, which exhibit the usual (2 + 2 + 2) pattern in [MoO3(4,4'-bpy)0.5] and a more regular (5 + 1) pattern in [HxMoO3(4,4'-bpy)0.5]. Substitution of triazole for 4,4'-bipyridine yields [MoO3(triazole)0.5], which retains the layer motif of corner-sharing MoO5N octahedra but with distinct sinusoidal ruffling in contrast to planar layers of [MoO3(4,4'-bpy)0.5] and [HxMoO3(4,4'-bpy)0.5]. The folding reflects the ligand constraints imposed by the triazole ligand that bridges adjacent Mo sites within a layer. MOXI-8, C5H4NMoO3: monoclinic P2(1)/c, a = 7.5727(6) A, b = 7.3675(7) A, c = 22.433(3) A, beta = 90.396(8) degrees, Z = 8. MOXI-9, C5H4.5NMoO3: monoclinic I2/m, a = 5.2644(4) A, b = 5.2642(4) A, c = 22.730(2) A, beta = 90.035(1) degrees, Z = 4. MOXI-32, C2H3N3Mo2O6: orthorhombic Pbcm, a = 3.9289(5) A, b = 13.850(2) A, c = 13.366(2) A, Z = 4.
Collapse
|
|
25 |
114 |
15
|
Aires CP, Del Bel Cury AA, Tenuta LMA, Klein MI, Koo H, Duarte S, Cury JA. Effect of starch and sucrose on dental biofilm formation and on root dentine demineralization. Caries Res 2008; 42:380-6. [PMID: 18781066 DOI: 10.1159/000154783] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Accepted: 07/07/2008] [Indexed: 11/19/2022] Open
Abstract
The cariogenicity of starch alone or in combination with sucrose is controversial and the effect on dentine demineralization and on the dental biofilm formed has not been explored under controlled conditions. A crossover, single-blind study was conducted in four steps of 14 days each, during which 11 volunteers wore palatal appliance containing 10 slabs of root dentine to which the following treatments were applied extraorally: 2% starch gel-like solution (starch group); 10% sucrose solution (sucrose group); a solution containing 2% starch and 10% sucrose (starch + sucrose group), or 2% starch solution followed by 10% sucrose solution (starch --> sucrose group). On the 14th day of each phase the biofilms were collected for biochemical and microbiological analyses, and dentine demineralization was assessed by hardness. A higher demineralization was found in dentine exposed to sucrose and starch sucrose combinations than to starch alone (p < 0.01), but the sucrose-containing groups did not differ significantly from each other (p > 0.05). The concentrations of soluble and insoluble extracellular polysaccharides (EPS), and the proportion of insoluble EPS, were lower in the biofilm formed in presence of starch (p < 0.01) than in those formed in the presence of sucrose or sucrose/starch combinations; however, no significant difference was observed among the groups containing sucrose (p > 0.05). RNA was successfully isolated and purified from in situ biofilms and only biofilms formed in response to sucrose and starch/sucrose combinations showed detectable levels of gtfB and gtfC mRNA. The findings suggest that the combination of starch with sucrose may not be more cariogenic to dentine than sucrose alone.
Collapse
|
Research Support, Non-U.S. Gov't |
17 |
109 |
16
|
Koo H, Duarte S, Murata RM, Scott-Anne K, Gregoire S, Watson GE, Singh AP, Vorsa N. Influence of cranberry proanthocyanidins on formation of biofilms by Streptococcus mutans on saliva-coated apatitic surface and on dental caries development in vivo. Caries Res 2010; 44:116-26. [PMID: 20234135 DOI: 10.1159/000296306] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Accepted: 01/27/2010] [Indexed: 11/19/2022] Open
Abstract
Cranberry crude extracts, in various vehicles, have shown inhibitory effects on the formation of oral biofilms in vitro. The presence of proanthocyanidins (PAC) in cranberry extracts has been linked to biological activities against specific virulence attributes of Streptococcus mutans, e.g. the inhibition of glucosyltransferase (Gtf) activity. The aim of the present study was to determine the influence of a highly purified and chemically defined cranberry PAC fraction on S. mutans biofilm formation on saliva-coated hydroxyapatite surface, and on dental caries development in Sprague-Dawley rats. In addition, we examined the ability of specific PAC (ranging from low-molecular-weight monomers and dimers to high-molecular-weight oligomers/polymers) to inhibit GtfB activity and glycolytic pH drop by S. mutans cells, in an attempt to identify specific bioactive compounds. Topical applications (60-second exposure, twice daily) with PAC (1.5 mg/ml) during biofilm formation resulted in less biomass and fewer insoluble polysaccharides than the biofilms treated with vehicle control had (10% ethanol, v/v; p < 0.05). The incidence of smooth-surface caries in rats was significantly reduced by PAC treatment (twice daily), and resulted in less severe carious lesions compared to the vehicle control group (p < 0.05); the animals treated with PAC also showed significantly less caries severity on sulcal surfaces (p < 0.05). Furthermore, specific A-type PAC oligomers (dimers to dodecamers; 0.1 mg/ml) effectively diminished the synthesis of insoluble glucans by GtfB adsorbed on a saliva-coated hydroxyapatite surface, and also affected bacterial glycolysis. Our data show that cranberry PAC reduced the formation of biofilms by S. mutans in vitro and dental caries development in vivo, which may be attributed to the presence of specific bioactive A-type dimers and oligomers.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
107 |
17
|
Kim JH, Kim S, So JH, Kim K, Koo HJ. Cytotoxicity of Gallium-Indium Liquid Metal in an Aqueous Environment. ACS APPLIED MATERIALS & INTERFACES 2018; 10:17448-17454. [PMID: 29715000 DOI: 10.1021/acsami.8b02320] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Eutectic gallium-indium alloy (EGaIn) liquid metal is highly conductive, moldable, and extremely deformable and has attracted significant attention for many applications, ranging from stretchable electronics to drug delivery. Even though EGaIn liquid metal is generally known to have low toxicity, the toxicity of the metal, rather than a salt form of Ga or In, has not been systematically studied yet. In this paper, we investigate the time-dependent concentration of the ions released from EGaIn liquid metal in an aqueous environment and their cytotoxicity to human cells. It is observed that only the Ga ion is dominantly released from EGaIn when no external agitation is applied, whereas the concentration of the In ion drastically increases with sonication. The cytotoxicity study reveals that all human cells tested are viable in the growth media with naturally released EGaIn ions, but the cytotoxicity becomes significant with sonication-induced EGaIn releasates. On the basis of the comparative study with other representative toxic elements, that is, Hg and Cd, it could be concluded that EGaIn is reasonably safe to use in an aqueous environment; however, it should be cautiously handled when any mechanical agitation is applied.
Collapse
|
|
7 |
102 |
18
|
Koo HJ, So JH, Dickey MD, Velev OD. Towards all-soft matter circuits: prototypes of quasi-liquid devices with memristor characteristics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2011; 23:3559-64. [PMID: 21726000 DOI: 10.1002/adma.201101257] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 05/27/2011] [Indexed: 05/19/2023]
|
|
14 |
100 |
19
|
Koo H, Pearson SK, Scott-Anne K, Abranches J, Cury JA, Rosalen PL, Park YK, Marquis RE, Bowen WH. Effects of apigenin and tt-farnesol on glucosyltransferase activity, biofilm viability and caries development in rats. ORAL MICROBIOLOGY AND IMMUNOLOGY 2002; 17:337-43. [PMID: 12485324 DOI: 10.1034/j.1399-302x.2002.170602.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Propolis, a resinous hive product secreted by Apis mellifera bees, has been shown to reduce the incidence of dental caries in rats. Several compounds, mainly polyphenolics, have been identified in propolis. Apigenin and tt-farnesol demonstrated biological activity against mutans streptococci. We determined here their effects, alone or in combination, on glucosyltransferase activity, biofilm viability, and development of caries in rats. Sprague-Dawley rats were infected with Streptococcus sobrinus 6715 and treated topically twice daily as follows: (1) tt-farnesol, (2) apigenin, (3) vehicle control, (4) fluoride, (5) apigenin +tt-farnesol, and (6) chlorhexidine. Apigenin (1.33 mM) inhibited the activity of glucosyltransferases in solution (90-95%) and on the surface of saliva-coated hydroxyapatite beads (35-58%); it was devoid of antibacterial activity. tt-Farnesol (1.33 mM) showed modest antibacterial activity against biofilms and its effects on glucosyltransferases were minimal. The incidence of smooth-surface caries was significantly reduced by apigenin +tt-farnesol (60%), fluoride (70%), and chlorhexidine (72%) treatments compared to control (P < 0.05).
Collapse
|
Comparative Study |
23 |
99 |
20
|
Xiao J, Grier A, Faustoferri RC, Alzoubi S, Gill AL, Feng C, Liu Y, Quivey RG, Kopycka-Kedzierawski DT, Koo H, Gill SR. Association between Oral Candida and Bacteriome in Children with Severe ECC. J Dent Res 2018; 97:1468-1476. [PMID: 30049240 DOI: 10.1177/0022034518790941] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Candida albicans is an opportunistic fungal organism frequently detected in the oral cavity of children with severe early childhood caries (S-ECC). Previous studies suggested the cariogenic potential of C. albicans, in vitro and in vivo, and further demonstrated its synergistic interactions with Streptococcus mutans. In combination, the 2 organisms are associated with higher caries severity in a rodent model. However, it remains unknown whether C. albicans influences the composition and diversity of the entire oral bacterial community to promote S-ECC onset. With 16s rRNA amplicon sequencing, this study analyzed the microbiota of saliva and supragingival plaque from 39 children (21 S-ECC and 18 caries-free [CF]) and 33 mothers (17 S-ECC and 16 CF). The results revealed that the presence of oral C. albicans is associated with a highly acidogenic and acid-tolerant bacterial community in S-ECC, with an increased abundance of plaque Streptococcus (particularly S. mutans) and certain Lactobacillus/Scardovia species and salivary/plaque Veillonella and Prevotella, as well as decreased levels of salivary/plaque Actinomyces. Concurrent with this microbial community assembly, the activity of glucosyltransferases (cariogenic virulence factors secreted by S. mutans) in plaque was significantly elevated when C. albicans was present. Moreover, the oral microbial community composition and diversity differed significantly by disease group (CF vs. S-ECC) and sample source (saliva vs. plaque). Children and mothers within the CF and S-ECC groups shared microbiota composition and diversity, suggesting a strong maternal influence on children's oral microbiota. Altogether, this study underscores the importance of C. albicans in association with the oral bacteriome in the context of S-ECC etiopathogenesis. Further longitudinal studies are warranted to examine how fungal-bacterial interactions modulate the onset and severity of S-ECC, potentially leading to novel anticaries treatments that address fungal contributions.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
99 |
21
|
Gajendiran M, Choi J, Kim SJ, Kim K, Shin H, Koo HJ, Kim K. Conductive biomaterials for tissue engineering applications. J IND ENG CHEM 2017. [DOI: 10.1016/j.jiec.2017.02.031] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
|
8 |
78 |
22
|
Hwang G, Marsh G, Gao L, Waugh R, Koo H. Binding Force Dynamics of Streptococcus mutans-glucosyltransferase B to Candida albicans. J Dent Res 2015; 94:1310-7. [PMID: 26138722 DOI: 10.1177/0022034515592859] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Candida albicans cells are often detected with Streptococcus mutans in plaque biofilms from children affected with early childhood caries. The coadhesion between these 2 organisms appears to be largely mediated by the S. mutans-derived exoenzyme glucosyltransferase B (GtfB); GtfB readily binds to C. albicans cells in an active form, producing glucans locally that provide enhanced binding sites for S. mutans. However, knowledge is limited about the mechanisms by which the bacterial exoenzyme binds to and functions on the fungal surface to promote this unique cross-kingdom interaction. In this study, we use atomic force microscopy to understand the strength and binding dynamics modulating GtfB-C. albicans adhesive interactions in situ. Single-molecule force spectroscopy with GtfB-functionalized atomic force microscopy tips demonstrated that the enzyme binds with remarkable strength to the C. albicans cell surface (~2 nN) and showed a low dissociation rate, suggesting a highly stable bond. Strikingly, the binding strength of GtfB to the C. albicans surface was ~2.5-fold higher and the binding stability, ~20 times higher, as compared with the enzyme adhesion to S. mutans. Furthermore, adhesion force maps showed an intriguing pattern of GtfB binding. GtfB adhered heterogeneously on the surface of C. albicans, showing a higher frequency of adhesion failure but large sections of remarkably strong binding forces, suggesting the presence of GtfB binding domains unevenly distributed on the fungal surface. In contrast, GtfB bound uniformly across the S. mutans cell surface with less adhesion failure and a narrower range of binding forces (vs. the C. albicans surface). The data provide the first insights into the mechanisms underlying the adhesive and mechanical properties governing GtfB interactions with C. albicans. The strong and highly stable GtfB binding to C. albicans could explain, at least in part, why this bacterially derived exoenzyme effectively modulates this virulent cross-kingdom interaction.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
10 |
75 |
23
|
Ellepola K, Truong T, Liu Y, Lin Q, Lim TK, Lee YM, Cao T, Koo H, Seneviratne CJ. Multi-omics Analyses Reveal Synergistic Carbohydrate Metabolism in Streptococcus mutans-Candida albicans Mixed-Species Biofilms. Infect Immun 2019; 87:e00339-19. [PMID: 31383746 PMCID: PMC6759298 DOI: 10.1128/iai.00339-19] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/26/2019] [Indexed: 12/25/2022] Open
Abstract
Candida albicans, a major opportunistic fungal pathogen, is frequently found together with Streptococcus mutans in dental biofilms associated with severe childhood caries (tooth decay), a prevalent pediatric oral disease. However, the impact of this cross-kingdom relationship on C. albicans remains largely uncharacterized. Here, we employed a novel quantitative proteomics approach in conjunction with transcriptomic profiling to unravel molecular pathways of C. albicans when cocultured with S. mutans in mixed biofilms. RNA sequencing and iTRAQ (isobaric tags for relative and absolute quantitation)-based quantitative proteomics revealed that C. albicans genes and proteins associated with carbohydrate metabolism were significantly enhanced, including sugar transport, aerobic respiration, pyruvate breakdown, and the glyoxylate cycle. Other C. albicans genes and proteins directly and indirectly related to cell morphogenesis and cell wall components such as mannan and glucan were also upregulated, indicating enhanced fungal activity in mixed-species biofilm. Further analyses revealed that S. mutans-derived exoenzyme glucosyltransferase B (GtfB), which binds to the fungal cell surface to promote coadhesion, can break down sucrose into glucose and fructose that can be readily metabolized by C. albicans, enhancing growth and acid production. Altogether, we identified key pathways used by C. albicans in the mixed biofilm, indicating an active fungal role in the sugar metabolism and environmental acidification (key virulence traits associated with caries onset) when interacting with S. mutans, and a new cross-feeding mechanism mediated by GtfB that enhances C. albicans carbohydrate utilization. In addition, we demonstrate that comprehensive transcriptomics and quantitative proteomics can be powerful tools to study microbial contributions which remain underexplored in cross-kingdom biofilms.
Collapse
|
research-article |
6 |
74 |
24
|
|
Research Support, N.I.H., Extramural |
17 |
62 |
25
|
Aires CP, Tabchoury CPM, Del Bel Cury AA, Koo H, Cury JA. Effect of Sucrose Concentration on Dental Biofilm Formed in situ and on Enamel Demineralization. Caries Res 2005; 40:28-32. [PMID: 16352877 DOI: 10.1159/000088902] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2004] [Accepted: 04/01/2005] [Indexed: 11/19/2022] Open
Abstract
The relationship between sucrose concentration and cariogenic potential was studied in situ. Adult volunteers wore intraoral palatal appliances containing human dental enamel blocks, which were extraorally submitted 8 times a day for 14 days, to the treatments: deionized distilled water and sucrose solutions from 1 to 40%. The biofilm formed was analyzed with respect to acidogenicity and biochemical composition; enamel demineralization was evaluated by microhardness. The results showed that 1% sucrose is less cariogenic than 5% or higher concentrations, although sucrose solution at 40% was still able to increase the concentration of insoluble polysaccharide in the biofilm formed. The findings suggest that the threshold of sucrose solution concentration for the formation of a cariogenic biofilm is 5%, which provided the same cariogenic potential as that observed for 10 and 20% sucrose solution.
Collapse
|
|
20 |
62 |