1
|
Kim S, Park M, Yeom SI, Kim YM, Lee JM, Lee HA, Seo E, Choi J, Cheong K, Kim KT, Jung K, Lee GW, Oh SK, Bae C, Kim SB, Lee HY, Kim SY, Kim MS, Kang BC, Jo YD, Yang HB, Jeong HJ, Kang WH, Kwon JK, Shin C, Lim JY, Park JH, Huh JH, Kim JS, Kim BD, Cohen O, Paran I, Suh MC, Lee SB, Kim YK, Shin Y, Noh SJ, Park J, Seo YS, Kwon SY, Kim HA, Park JM, Kim HJ, Choi SB, Bosland PW, Reeves G, Jo SH, Lee BW, Cho HT, Choi HS, Lee MS, Yu Y, Do Choi Y, Park BS, van Deynze A, Ashrafi H, Hill T, Kim WT, Pai HS, Ahn HK, Yeam I, Giovannoni JJ, Rose JKC, Sørensen I, Lee SJ, Kim RW, Choi IY, Choi BS, Lim JS, Lee YH, Choi D. Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species. Nat Genet 2014; 46:270-8. [PMID: 24441736 DOI: 10.1038/ng.2877] [Citation(s) in RCA: 584] [Impact Index Per Article: 53.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 12/30/2013] [Indexed: 12/12/2022]
Abstract
Hot pepper (Capsicum annuum), one of the oldest domesticated crops in the Americas, is the most widely grown spice crop in the world. We report whole-genome sequencing and assembly of the hot pepper (Mexican landrace of Capsicum annuum cv. CM334) at 186.6× coverage. We also report resequencing of two cultivated peppers and de novo sequencing of the wild species Capsicum chinense. The genome size of the hot pepper was approximately fourfold larger than that of its close relative tomato, and the genome showed an accumulation of Gypsy and Caulimoviridae family elements. Integrative genomic and transcriptomic analyses suggested that change in gene expression and neofunctionalization of capsaicin synthase have shaped capsaicinoid biosynthesis. We found differential molecular patterns of ripening regulators and ethylene synthesis in hot pepper and tomato. The reference genome will serve as a platform for improving the nutritional and medicinal values of Capsicum species.
Collapse
|
|
11 |
584 |
2
|
Cho HT, Cosgrove DJ. Altered expression of expansin modulates leaf growth and pedicel abscission in Arabidopsis thaliana. Proc Natl Acad Sci U S A 2000; 97:9783-8. [PMID: 10931949 PMCID: PMC16942 DOI: 10.1073/pnas.160276997] [Citation(s) in RCA: 292] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Expansins are cell-wall-loosening proteins that induce stress relaxation and extension of plant cell walls. To evaluate their hypothesized role in cell growth, we genetically manipulated expansin gene expression in Arabidopsis thaliana and assessed the consequent changes in growth and cell-wall properties. Various combinations of promoters were used to drive antisense and sense sequences of AtEXP10, which is maximally expressed in the growing leaf and at the base of the pedicel. Compared with controls, antisense lines had smaller rosettes because of shorter petioles and leaf blades and often acquired a twisted leaf morphology. Petiole cells from antisense plants were smaller than controls and their cell walls were significantly less extensible in vitro. Sense plants had slightly longer petioles, larger leaf blades, and larger cells than controls. Abscission at the base of the pedicel, where AtEXP10 is endogenously expressed, was enhanced in sense plants but reduced in antisense lines. These results support the concept that expansins function endogenously as cell-wall-loosening agents and indicate that expansins have versatile developmental roles that include control of organ size, morphology, and abscission.
Collapse
|
research-article |
25 |
292 |
3
|
Cho HT, Cosgrove DJ. Regulation of root hair initiation and expansin gene expression in Arabidopsis. THE PLANT CELL 2002; 14:3237-53. [PMID: 12468740 PMCID: PMC151215 DOI: 10.1105/tpc.006437] [Citation(s) in RCA: 292] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2002] [Accepted: 09/15/2002] [Indexed: 05/18/2023]
Abstract
The expression of two Arabidopsis expansin genes (AtEXP7 and AtEXP18) is tightly linked to root hair initiation; thus, the regulation of these genes was studied to elucidate how developmental, hormonal, and environmental factors orchestrate root hair formation. Exogenous ethylene and auxin, as well as separation of the root from the medium, stimulated root hair formation and the expression of these expansin genes. The effects of exogenous auxin and root separation on root hair formation required the ethylene signaling pathway. By contrast, blocking the endogenous ethylene pathway, either by genetic mutations or by a chemical inhibitor, did not affect normal root hair formation and expansin gene expression. These results indicate that the normal developmental pathway for root hair formation (i.e., not induced by external stimuli) is independent of the ethylene pathway. Promoter analyses of the expansin genes show that the same promoter elements that determine cell specificity also determine inducibility by ethylene, auxin, and root separation. Our study suggests that two distinctive signaling pathways, one developmental and the other environmental/hormonal, converge to modulate the initiation of the root hair and the expression of its specific expansin gene set.
Collapse
|
research-article |
23 |
292 |
4
|
Kende H, Cho HT. Deepwater rice: A model plant to study stem elongation. PLANT PHYSIOLOGY 1998; 118:1105-10. [PMID: 9847084 PMCID: PMC1539197 DOI: 10.1104/pp.118.4.1105] [Citation(s) in RCA: 240] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
|
research-article |
27 |
240 |
5
|
Cosgrove DJ, Li LC, Cho HT, Hoffmann-Benning S, Moore RC, Blecker D. The growing world of expansins. PLANT & CELL PHYSIOLOGY 2002; 43:1436-44. [PMID: 12514240 DOI: 10.1093/pcp/pcf180] [Citation(s) in RCA: 204] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Expansins are cell wall proteins that induce pH-dependent wall extension and stress relaxation in a characteristic and unique manner. Two families of expansins are known, named alpha- and beta-expansins, and they comprise large multigene families whose members show diverse organ-, tissue- and cell-specific expression patterns. Other genes that bear distant sequence similarity to expansins are also represented in the sequence databases, but their biological and biochemical functions have not yet been uncovered. Expansin appears to weaken glucan-glucan binding, but its detailed mechanism of action is not well established. The biological roles of expansins are diverse, but can be related to the action of expansins to loosen cell walls, for example during cell enlargement, fruit softening, pollen tube and root hair growth, and abscission. Expansin-like proteins have also been identified in bacteria and fungi, where they may aid microbial invasion of the plant body.
Collapse
|
Review |
23 |
204 |
6
|
Choi D, Lee Y, Cho HT, Kende H. Regulation of expansin gene expression affects growth and development in transgenic rice plants. THE PLANT CELL 2003; 15:1386-98. [PMID: 12782731 PMCID: PMC156374 DOI: 10.1105/tpc.011965] [Citation(s) in RCA: 195] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2003] [Accepted: 03/24/2003] [Indexed: 05/18/2023]
Abstract
To investigate the in vivo functions of expansins, we generated transgenic rice plants that express sense and antisense constructs of the expansin gene OsEXP4. In adult plants with constitutive OsEXP4 expression, 12% of overexpressors were taller and 88% were shorter than the average control plants, and most overexpressors developed at least two additional leaves. Antisense plants were shorter and flowered earlier than the average control plants. In transgenic plants with inducible OsEXP4 expression, we observed a close correlation between OsEXP4 protein levels and seedling growth. Coleoptile and mesocotyl length increased by up to 31 and 97%, respectively, in overexpressors, whereas in antisense seedlings, they decreased by up to 28 and 43%, respectively. The change in seedling growth resulted from corresponding changes in cell size, which in turn appeared to be a function of altered cell wall extensibility. Our results support the hypothesis that expansins are involved in enhancing growth by mediating cell wall loosening.
Collapse
|
research-article |
22 |
195 |
7
|
Kende H, Bradford K, Brummell D, Cho HT, Cosgrove D, Fleming A, Gehring C, Lee Y, McQueen-Mason S, Rose J, Voesenek LACJ. Nomenclature for members of the expansin superfamily of genes and proteins. PLANT MOLECULAR BIOLOGY 2004; 55:311-4. [PMID: 15604683 DOI: 10.1007/s11103-004-0158-6] [Citation(s) in RCA: 175] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
|
Letter |
21 |
175 |
8
|
Won SK, Lee YJ, Lee HY, Heo YK, Cho M, Cho HT. Cis-element- and transcriptome-based screening of root hair-specific genes and their functional characterization in Arabidopsis. PLANT PHYSIOLOGY 2009; 150:1459-73. [PMID: 19448035 PMCID: PMC2705046 DOI: 10.1104/pp.109.140905] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Accepted: 05/11/2009] [Indexed: 05/18/2023]
Abstract
Understanding the cellular differentiation of multicellular organisms requires the characterization of genes whose expression is modulated in a cell type-specific manner. The Arabidopsis (Arabidopsis thaliana) root hair cell is one model for studying cellular differentiation. In this study, root hair cell-specific genes were screened by a series of in silico and experimental filtration procedures. This process included genome-wide screening for genes with a root hair-specific cis-element in their promoters, filtering root-specific genes from the root hair-specific cis-element-containing genes, further filtering of genes that were suppressed in root hair-defective plant lines, and experimental confirmation by promoter assay. These procedures revealed 19 root hair-specific genes, including many protein kinases and cell wall-related genes, most of which have not been characterized thus far. Functional analyses of these root hair-specific genes with loss-of-function mutants and overexpressing transformants revealed that they play roles in hair growth and morphogenesis. This study demonstrates that a defined cis-element can serve as a filter to screen certain cell type-specific genes and implicates many new root hair-specific genes in root hair development.
Collapse
|
research-article |
16 |
161 |
9
|
Cho M, Lee SH, Cho HT. P-glycoprotein4 displays auxin efflux transporter-like action in Arabidopsis root hair cells and tobacco cells. THE PLANT CELL 2007; 19:3930-43. [PMID: 18156217 PMCID: PMC2217643 DOI: 10.1105/tpc.107.054288] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Revised: 11/11/2007] [Accepted: 11/16/2007] [Indexed: 05/18/2023]
Abstract
ATP binding cassette (ABC) transporters transport diverse substrates across membranes in various organisms. However, plant ABC transporters have only been scantily characterized. By taking advantage of the auxin-sensitive Arabidopsis thaliana root hair cell and tobacco (Nicotiana tabacum) suspension cell systems, we show here that Arabidopsis P-glycoprotein4 (PGP4) displays auxin efflux activity in plant cells. Root hair cell-specific overexpression of PGP4 (PGP4ox) and known auxin efflux transporters, such as PGP1, PGP19, and PIN-FORMEDs, decreased root hair elongation, whereas overexpression of the influx transporter AUXIN-RESISTANT1 enhanced root hair length. PGP4ox-mediated root hair shortening was rescued by the application of auxin or an auxin efflux inhibitor. These results indicate that the increased auxin efflux activity conferred by PGP4 reduces auxin levels in the root hair cell and consequently inhibits root hair elongation. PGP4ox in tobacco suspension cells also increased auxin efflux. PGP4 proteins were targeted to the plasma membrane of Arabidopsis root hair cells and tobacco cells without any clear subcellular polarity. Brefeldin A partially interfered with the trafficking of PGP4 reversibly, and this was rescued by pretreatment with auxin. These results suggest that PGP4 is an auxin efflux transporter in plants and that its trafficking to the plasma membrane involves both BFA-sensitive and -insensitive pathways.
Collapse
|
research-article |
18 |
160 |
10
|
Lee SH, Cho HT. PINOID positively regulates auxin efflux in Arabidopsis root hair cells and tobacco cells. THE PLANT CELL 2006; 18:1604-16. [PMID: 16731587 PMCID: PMC1488908 DOI: 10.1105/tpc.105.035972] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2005] [Revised: 04/19/2006] [Accepted: 05/08/2006] [Indexed: 05/09/2023]
Abstract
Intercellular transport of auxin is mediated by influx and efflux carriers in the plasma membrane and subjected to developmental and environmental regulation. Here, using the auxin-sensitive Arabidopsis thaliana root hair cell system and the tobacco (Nicotiana tabacum) suspension cell system, we demonstrate that the protein kinase PINOID (PID) positively regulates auxin efflux. Overexpression of PID (PIDox) or the auxin efflux carrier component PINFORMED3 (PIN3, PIN3ox), specifically in the root hair cell, greatly suppressed root hair growth. In both PIDox and PIN3ox transformants, root hair growth was nearly restored to wild-type levels by the addition of auxin, protein kinase inhibitors, or auxin efflux inhibitors. Localization of PID or PIN3 at the cell boundary was disrupted by brefeldin A and staurosporine. A mutation in the kinase domain abrogated the ability of PID to localize at the cell boundary and to inhibit root hair growth. These results suggest that PIDox- or PIN3ox-enhanced auxin efflux results in a shortage of intracellular auxin and a subsequent inhibition of root hair growth. In an auxin efflux assay using transgenic tobacco suspension cells, PIDox or PIN3ox also enhanced auxin efflux. Collectively, these results suggest that PID positively regulates cellular auxin efflux, most likely by modulating the trafficking of PIN and/or some other molecular partners involved in auxin efflux.
Collapse
|
research-article |
19 |
119 |
11
|
Kim DW, Lee SH, Choi SB, Won SK, Heo YK, Cho M, Park YI, Cho HT. Functional conservation of a root hair cell-specific cis-element in angiosperms with different root hair distribution patterns. THE PLANT CELL 2006; 18:2958-70. [PMID: 17098810 PMCID: PMC1693936 DOI: 10.1105/tpc.106.045229] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Vascular plants develop distinctive root hair distribution patterns in the root epidermis, depending on the taxon. The three patterns, random (Type 1), asymmetrical cell division (Type 2), and positionally cued (Type 3), are controlled by different upstream fate-determining factors that mediate expression of root hair cell-specific genes for hair morphogenesis. Here, we address whether these root hair genes possess a common transcriptional regulatory module (cis-element) determining cell-type specificity despite differences in the final root hair pattern. We identified Arabidopsis thaliana expansinA7 (At EXPA7) orthologous (and paralogous) genes from diverse angiosperm species with different hair distribution patterns. The promoters of these genes contain conserved root hair-specific cis-elements (RHEs) that were functionally verified in the Type-3 Arabidopsis root. The promoter of At EXPA7 (Type-3 pattern) also showed hair cell-specific expression in the Type 2 rice (Oryza sativa) root. Root hair-specific genes other than EXPAs also carry functionally homologous RHEs in their promoters. The RHE core consensus was established by a multiple alignment of functionally characterized RHEs from different species and by high-resolution analysis of At EXPA7 RHE1. Our results suggest that this regulatory module of root hair-specific genes has been conserved across angiosperms despite the divergence of upstream fate-determining machinery.
Collapse
|
research-article |
19 |
116 |
12
|
Kim YY, Choi H, Segami S, Cho HT, Martinoia E, Maeshima M, Lee Y. AtHMA1 contributes to the detoxification of excess Zn(II) in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 58:737-53. [PMID: 19207208 DOI: 10.1111/j.1365-313x.2009.03818.x] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
AtHMA1 is a member of the heavy metal-transporting ATPase family. It exhibits amino acid sequence similarity to two other Zn(II) transporters, AtHMA2 and AtHMA4, and contains poly-His motifs that are commonly found in Zn(II)-binding proteins, but lacks some amino acids that are typical for this class of transporters. AtHMA1 localizes to the chloroplast envelope. In comparison with wild-type plants, we observed a more pronounced sensitivity in the presence of high Zn(II) concentrations, and increased accumulation of Zn in the chloroplast of T-DNA insertional mutants in AtHMA1. The Zn(II)-sensitive phenotype of AtHMA1 knock-out plants was complemented by the expression of AtHMA1 under the control of its own promoter. The Zn(II)-transporting activity of AtHMA1 was confirmed in a heterologous expression system, Saccharomyces cerevisiae. The sensitivity of yeast to high concentrations of Zn(II) was altered by the expression of AtHMA1 lacking its N-terminal chloroplast-targeting signal. Taken together, these results suggest that under conditions of excess Zn(II), AtHMA1 contributes to Zn(II) detoxification by reducing the Zn content of Arabidopsis thaliana plastids.
Collapse
|
|
16 |
115 |
13
|
Ganguly A, Lee SH, Cho M, Lee OR, Yoo H, Cho HT. Differential auxin-transporting activities of PIN-FORMED proteins in Arabidopsis root hair cells. PLANT PHYSIOLOGY 2010; 153:1046-61. [PMID: 20439545 PMCID: PMC2899906 DOI: 10.1104/pp.110.156505] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Accepted: 04/28/2010] [Indexed: 05/18/2023]
Abstract
The Arabidopsis (Arabidopsis thaliana) genome includes eight PIN-FORMED (PIN) members that are molecularly diverged. To comparatively examine their differences in auxin-transporting activity and subcellular behaviors, we expressed seven PIN proteins specifically in Arabidopsis root hairs and analyzed their activities in terms of the degree of PIN-mediated root hair inhibition or enhancement and determined their subcellular localization. Expression of six PINs (PIN1-PIN4, PIN7, and PIN8) in root hair cells greatly inhibited root hair growth, most likely by lowering auxin levels in the root hair cell by their auxin efflux activities. The auxin efflux activity of PIN8, which had not been previously demonstrated, was further confirmed using a tobacco (Nicotiana tabacum) cell assay system. In accordance with these results, those PINs were localized in the plasma membrane, where they likely export auxin to the apoplast and formed internal compartments in response to brefeldin A. These six PINs conferred different degrees of root hair inhibition and sensitivities to auxin or auxin transport inhibitors. Conversely, PIN5 mostly localized to internal compartments, and its expression in root hair cells rather slightly stimulated hair growth, implying that PIN5 enhanced internal auxin availability. These results suggest that different PINs behave differentially in catalyzing auxin transport depending upon their molecular activity and subcellular localization in the root hair cell.
Collapse
|
research-article |
15 |
100 |
14
|
Abstract
Plant ATP-binding cassette (ABC) transporters consist of largest family members among many other membrane transporters and have been implicated in various functions such as detoxification, disease resistance and transport of diverse substrates. Of the ABC-B/multi-drug resistance/P-glycoprotein (ABCB/MDR/PGP) subfamily, at least five members have been reported to mediate cellular transport of auxin or auxin derivatives. Although single mutant phenotypes of these genes are milder than PIN-FORMED (PIN) mutants, those ABCBs significantly contribute for the directional auxin movement in the tissue-level auxin-transporting assay. Uniformly localized ABCB proteins in the plasma membrane (PM) are generaly found in different plant species and stably retained regardless of internal and external signals. This implies that these ABCB proteins may play as basal auxin transporters.
Collapse
|
research-article |
12 |
83 |
15
|
Lee OR, Kim SJ, Kim HJ, Hong JK, Ryu SB, Lee SH, Ganguly A, Cho HT. Phospholipase A(2) is required for PIN-FORMED protein trafficking to the plasma membrane in the Arabidopsis root. THE PLANT CELL 2010; 22:1812-25. [PMID: 20525850 PMCID: PMC2910968 DOI: 10.1105/tpc.110.074211] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Revised: 05/04/2010] [Accepted: 05/20/2010] [Indexed: 05/19/2023]
Abstract
Phospholipase A(2) (PLA(2)), which hydrolyzes a fatty acyl chain of membrane phospholipids, has been implicated in several biological processes in plants. However, its role in intracellular trafficking in plants has yet to be studied. Here, using pharmacological and genetic approaches, the root hair bioassay system, and PIN-FORMED (PIN) auxin efflux transporters as molecular markers, we demonstrate that plant PLA(2)s are required for PIN protein trafficking to the plasma membrane (PM) in the Arabidopsis thaliana root. PLA(2)alpha, a PLA(2) isoform, colocalized with the Golgi marker. Impairments of PLA(2) function by PLA(2)alpha mutation, PLA(2)-RNA interference (RNAi), or PLA(2) inhibitor treatments significantly disrupted the PM localization of PINs, causing internal PIN compartments to form. Conversely, supplementation with lysophosphatidylethanolamine (the PLA(2) hydrolytic product) restored the PM localization of PINs in the pla(2)alpha mutant and the ONO-RS-082-treated seedling. Suppression of PLA(2) activity by the inhibitor promoted accumulation of trans-Golgi network vesicles. Root hair-specific PIN overexpression (PINox) lines grew very short root hairs, most likely due to reduced auxin levels in root hair cells, but PLA(2) inhibitor treatments, PLA(2)alpha mutation, or PLA(2)-RNAi restored the root hair growth of PINox lines by disrupting the PM localization of PINs, thus reducing auxin efflux. These results suggest that PLA(2), likely acting in Golgi-related compartments, modulates the trafficking of PIN proteins.
Collapse
|
research-article |
15 |
80 |
16
|
Lin C, Choi HS, Cho HT. Root hair-specific EXPANSIN A7 is required for root hair elongation in Arabidopsis. Mol Cells 2011; 31:393-7. [PMID: 21359675 PMCID: PMC3933966 DOI: 10.1007/s10059-011-0046-2] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Accepted: 01/17/2011] [Indexed: 10/18/2022] Open
Abstract
Expansins are non-hydrolytic cell wall-loosening proteins that are involved in the cell wall modifications that underlie many plant developmental processes. Root hair growth requires the accumulation of cell wall materials and dynamic cell wall modification at the tip region. Although several lines of indirect evidence support the idea that expansin-mediated wall modification occurs during root hair growth, the involvement of these proteins remains to be demonstrated in vivo. In this study, we used RNA interference (RNAi) to examine the biological function of Arabidopsis thaliana EXPANSIN A7 (AtEXPA7), which is expressed specifically in the root hair cell. The root hairspecific AtEXPA7 promoter was used to drive RNAi expression, which targeted two independent regions in the AtEXPA7 transcript. Quantitative reverse transcriptase-PCR analyses were used to examine AtEXPA7 transcript levels. In four independent RNAi transformant lines, RNAi expression reduced AtEXPA7 transcript levels by 25-58% compared to controls. Accordingly, the root hairs of RNAi transformant lines were 25-48% shorter than control plants and exhibited a broader range of lengths than the controls. Our results provide in vivo evidence that expansins are required for root hair tip growth.
Collapse
|
research-article |
14 |
79 |
17
|
Abstract
Cell walls of deepwater rice (Oryza sativa L.) internodes undergo long-term extension (creep) when placed under tension in acidic buffers. This is indicative of the action of the cell wall-loosening protein expansin. Wall extension had a pH optimum of around 4.0 and was abolished by boiling. Acid-induced extension of boiled cell walls could be reconstituted by addition of salt-extracted rice or cucumber cell wall proteins. Cucumber expansin antibody recognized a single protein band of 24.5-kD apparent molecular mass on immunoblots of rice cell wall proteins. Expansins were partially purified by concanavalin A affinity chromatography and sulfopropyl (SP) cation-exchange chromatography. The latter yielded two peaks with extension activity (SP20 and SP29), and immunoblot analysis showed that both of these active fractions contained expansin of 24.5-kD molecular mass. The N-terminal amino acid sequence of SP20 expansin is identical to that deduced from the rice expansin cDNA Os-EXP1. The N-terminal amino acid sequence of SP29 expansin matches that deduced from the rice expansin cDNA Os-EXP2 in six of eight amino acids. Our results show that two expansins occur in the cell walls of rice internodes and that they may mediate acid-induced wall extension.
Collapse
|
Comparative Study |
28 |
79 |
18
|
Lee RDW, Cho HT. Auxin, the organizer of the hormonal/environmental signals for root hair growth. FRONTIERS IN PLANT SCIENCE 2013; 4:448. [PMID: 24273547 PMCID: PMC3824147 DOI: 10.3389/fpls.2013.00448] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 10/20/2013] [Indexed: 05/18/2023]
Abstract
The root hair development is controlled by diverse factors such as fate-determining developmental cues, auxin-related environmental factors, and hormones. In particular, the soil environmental factors are important as they maximize their absorption by modulating root hair development. These environmental factors affect the root hair developmental process by making use of diverse hormones. These hormonal factors interact with each other to modulate root hair development in which auxin appears to form the most intensive networks with the pathways from environmental factors and hormones. Moreover, auxin action for root hair development is genetically located immediately upstream of the root hair-morphogenetic genes. These observations suggest that auxin plays as an organizing node for environmental/hormonal pathways to modulate root hair growth.
Collapse
|
Review |
12 |
77 |
19
|
Lee Y, Bak G, Choi Y, Chuang WI, Cho HT, Lee Y. Roles of phosphatidylinositol 3-kinase in root hair growth. PLANT PHYSIOLOGY 2008; 147:624-35. [PMID: 18408046 PMCID: PMC2409009 DOI: 10.1104/pp.108.117341] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Accepted: 04/07/2008] [Indexed: 05/18/2023]
Abstract
The root hair is a model system for understanding plant cell tip growth. As phosphatidylinositol 3-phosphate [PtdIns(3)P] has been shown in other plant cell types to regulate factors that affect root hair growth, including reactive oxygen species (ROS) levels, cytoskeleton, and endosomal movement, we hypothesized that PtdIns(3)P is also important for root hair elongation. The enzyme that generates PtdIns(3)P, phosphatidylinositol 3-kinase (PI3K), was expressed in root hair cells of transgenic plants containing the PI3K promoter:beta-glucuronidase reporter construct. To obtain genetic evidence for the role of PtdIns(3)P in root hair elongation, we attempted to isolate Arabidopsis (Arabidopsis thaliana) mutant plants that did not express the gene VPS34 encoding the PI3K enzyme. However, the homozygous mutant was lethal due to gametophytic defects, and heterozygous plants were not discernibly different from wild-type plants. Alternatively, we made transgenic plants expressing the PtdIns(3)P-binding FYVE domain in the root hair cell to block signal transduction downstream of PtdIns(3)P. These transgenic plants had shorter root hairs and a reduced hair growth rate compared with wild-type plants. In addition, LY294002, a PI3K-specific inhibitor, inhibited root hair elongation but not initiation. In LY294002-treated root hair cells, endocytosis at the stage of final fusion of the late endosomes to the tonoplast was inhibited and ROS level decreased in a dose-dependent manner. Surprisingly, the LY294002 effects on ROS and root hair elongation were similar in rhd2 mutant plants, suggesting that RHD2 was not the major ROS generator in the PtdIns(3)P-mediated root hair elongation process. Collectively, these results suggest that PtdIns(3)P is required for maintenance of the processes essential for root hair cell elongation.
Collapse
|
research-article |
17 |
63 |
20
|
Park YJ, Lee HJ, Gil KE, Kim JY, Lee JH, Lee H, Cho HT, Vu LD, De Smet I, Park CM. Developmental Programming of Thermonastic Leaf Movement. PLANT PHYSIOLOGY 2019; 180:1185-1197. [PMID: 30948554 PMCID: PMC6548248 DOI: 10.1104/pp.19.00139] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 04/01/2019] [Indexed: 05/19/2023]
Abstract
Plants exhibit diverse polar behaviors in response to directional and nondirectional environmental signals, termed tropic and nastic movements, respectively. The ways in which plants incorporate directional information into tropic behaviors is well understood, but it is less well understood how nondirectional stimuli, such as ambient temperatures, specify the polarity of nastic behaviors. Here, we demonstrate that a developmentally programmed polarity of auxin flow underlies thermo-induced leaf hyponasty in Arabidopsis (Arabidopsis thaliana). In warm environments, PHYTOCHROME-INTERACTING FACTOR4 (PIF4) stimulates auxin production in the leaf. This results in the accumulation of auxin in leaf petioles, where PIF4 directly activates a gene encoding the PINOID (PID) protein kinase. PID is involved in polarization of the auxin transporter PIN-FORMED3 to the outer membranes of petiole cells. Notably, the leaf polarity-determining ASYMMETRIC LEAVES1 (AS1) directs the induction of PID to occur predominantly in the abaxial petiole region. These observations indicate that the integration of PIF4-mediated auxin biosynthesis and polar transport, and the AS1-mediated developmental shaping of polar auxin flow, coordinate leaf thermonasty, which facilitates leaf cooling in warm environments. We believe that leaf thermonasty is a suitable model system for studying the developmental programming of environmental adaptation in plants.
Collapse
|
research-article |
6 |
62 |
21
|
Cho HT, Kende H. Expression of expansin genes is correlated with growth in deepwater rice. THE PLANT CELL 1997; 9:1661-71. [PMID: 9338967 PMCID: PMC157041 DOI: 10.1105/tpc.9.9.1661] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Expansins are a family of proteins that catalyze long-term extension of isolated cell walls. Previously, two expansin proteins have been isolated from internodes of deepwater rice, and three rice expansin genes, Os-EXP1, Os-EXP2, and Os-EXP3, have been identified. We report here on the identification of a fourth rice expansin gene, Os-EXP4, and on the expression pattern of the rice expansin gene family in deepwater rice. Rice expansin genes show organ-specific differential expression in the coleoptile, root, leaf, and internode. In these organs, there is increased expression of Os-EXP1, Os-EXP3, and Os-EXP4 in developmental regions where elongation occurs. This pattern of gene expression is also correlated with acid-induced in vitro cell wall extensibility. Submergence and treatment with gibberellin, both of which promote rapid internodal elongation, induced accumulation of Os-EXP4 mRNA before the rate of growth started to increase. Our results indicate that the expression of expansin genes in deepwater rice is differentially regulated by developmental, hormonal, and environmental signals and is correlated with cell elongation.
Collapse
|
research-article |
28 |
58 |
22
|
Cho HT, Kende H. Tissue localization of expansins in deepwater rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1998; 15:805-812. [PMID: 9807819 DOI: 10.1046/j.1365-313x.1998.00258.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Expansins are a family of proteins capable of inducing stress relaxation of isolated cell walls. In earlier studies, we showed that the expression of expansin genes in deepwater rice (Oryza sativa L.) is regulated by developmental, hormonal and environmental stimuli. Here, we describe the spatial distribution pattern of expansin transcripts and proteins in tissues and organs of deepwater rice using in situ mRNA hybridization and immunohistochemical analysis. Expansin transcripts and proteins are present at high levels in the growing internodal epidermis, which has thick cell walls and acts, therefore, as a growth-limiting cell layer. Expansins are also concentrated in the differentiating vascular bundles of internodes. In the primary root, expansins are predominantly expressed in the tip region, particularly in the epidermis, differentiating vascular cylinder, and around the pericyle. Developing adventitious roots and lateral root primordia also contain high levels of expansin mRNA. In the shoot apex, expansin transcripts are abundant in the emerging leaf primordia. Our results indicate that expansins play an important role in the expansion and differentiation of plant tissues and organs.
Collapse
|
|
27 |
48 |
23
|
Won SK, Choi SB, Kumari S, Cho M, Lee SH, Cho HT. Root hair-specific EXPANSIN B genes have been selected for Graminaceae root hairs. Mol Cells 2010; 30:369-76. [PMID: 20811811 DOI: 10.1007/s10059-010-0127-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Accepted: 07/05/2010] [Indexed: 11/29/2022] Open
Abstract
Cell differentiation ultimately relies on the regulation of cell type-specific genes. For a root hair cell to undergo morphogenesis, diverse cellular processes including cell-wall loosening must occur in a root hair cell-specific manner. Previously, we identified and characterized root hairspecific cis-elements (RHE) from the genes encoding the cell wall-loosening protein EXPANSIN A (EXPA) which functions preferentially on dicot cell walls. This study reports two root hair-specific grass EXPB genes that contain RHEs. These genes are thought to encode proteins that function more efficiently on grass cell walls. The proximal promoter regions of two orthologous EXPB genes from rice (Oryza sativa; OsEXPB5) and barley (Hordeum vulgare; HvEXPB1) included RHE motifs. These promoters could direct root hair-specific expression of green fluorescent protein (GFP) in the roots of rice and Arabidopsis (Arabidopsis thaliana). Promoter deletion analyses demonstrated that the RHE motifs are necessary for root hairspecific expression of these EXPB promoters. Phylogenetic analysis of EXP protein sequences indicated that grass EXPBs are the only orthologs to these root hair-specific EXPBs, separating dicot EXPBs to distal branches of the tree. These results suggest that RHE-containing root hair-specific EXPB genes have evolved for grass-specific cell wall modification during root hair morphogenesis.
Collapse
|
|
15 |
48 |
24
|
Hwang Y, Choi HS, Cho HM, Cho HT. Tracheophytes Contain Conserved Orthologs of a Basic Helix-Loop-Helix Transcription Factor That Modulate ROOT HAIR SPECIFIC Genes. THE PLANT CELL 2017; 29:39-53. [PMID: 28087829 PMCID: PMC5304353 DOI: 10.1105/tpc.16.00732] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/05/2016] [Accepted: 01/11/2017] [Indexed: 05/21/2023]
Abstract
ROOT HAIR SPECIFIC (RHS) genes, which contain the root hair-specific cis-element (RHE) in their regulatory regions, function in root hair morphogenesis. Here, we demonstrate that an Arabidopsis thaliana basic helix-loop-helix transcription factor, ROOT HAIR DEFECTVE SIX-LIKE4 (RSL4), directly binds to the RHE in vitro and in vivo, upregulates RHS genes, and stimulates root hair formation in Arabidopsis. Orthologs of RSL4 from a eudicot (poplar [Populus trichocarpa]), a monocot (rice [Oryza sativa]), and a lycophyte (Selaginella moellendorffii) each restored root hair growth in the Arabidopsis rsl4 mutant. In addition, the rice and S. moellendorffii RSL4 orthologs bound to the RHE in in vitro and in vivo assays. The RSL4 orthologous genes contain RHEs in their promoter regions, and RSL4 was able to bind to its own RHEs in vivo and amplify its own expression. This process likely provides a positive feedback loop for sustainable root hair growth. When RSL4 and its orthologs were expressed in cells in non-root-hair positions, they induced ectopic root hair growth, indicating that these genes are sufficient to specify root hair formation. Our results suggest that RSL4 mediates root hair formation by regulating RHS genes and that this mechanism is conserved throughout the tracheophyte (vascular plant) lineage.
Collapse
|
research-article |
8 |
39 |
25
|
Korovin GS, Kuriloff DB, Cho HT, Sobol SM. Squamous cell carcinoma of the thyroid: a diagnostic dilemma. Ann Otol Rhinol Laryngol 1989; 98:59-65. [PMID: 2910191 DOI: 10.1177/000348948909800113] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Four cases of primary squamous cell carcinoma of the thyroid gland are reported. Thorough evaluation confirmed these lesions to be of primary thyroid origin rather than from metastasis or direct invasion from contiguous structures. These cases illustrate the aggressive nature of the disease and the propensity for local and distant metastases. The clinicopathologic data presented here underscore the challenge in diagnosis and treatment of this rare entity.
Collapse
|
Case Reports |
36 |
36 |