1
|
Ramamoorthy S, Bauman AL, Moore KR, Han H, Yang-Feng T, Chang AS, Ganapathy V, Blakely RD. Antidepressant- and cocaine-sensitive human serotonin transporter: molecular cloning, expression, and chromosomal localization. Proc Natl Acad Sci U S A 1993; 90:2542-6. [PMID: 7681602 PMCID: PMC46124 DOI: 10.1073/pnas.90.6.2542] [Citation(s) in RCA: 603] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
A Na(+)- and Cl(-)-coupled serotonin (5-hydroxytryptamine, 5HT) transporter is expressed on human neuronal, platelet, placental, and pulmonary membranes. The brain 5HT transporter appears to be a principal site of action of therapeutic antidepressants and may mediate behavioral and/or toxic effects of cocaine and amphetamines. Oligonucleotides derived from consensus transporter sequences were used to identify human placental cDNAs highly related to the rat brain 5HT carrier. Transfection of one of these cDNAs into HeLa cells yields a high-affinity (Km = 463 nM), Na(+)- and Cl(-)-dependent 5HT transport activity which can be blocked by selective 5HT transport inhibitors, including paroxetine, fluoxetine, and imipramine, and which is antagonized by cocaine and amphetamine. Sequence analysis reveals a 630-amino acid open reading frame bearing 92% identity to the cloned rat brain 5HT transporter, with identical predicted topological features and conserved sites for posttranslational modifications. Unlike the rodent, where a single mRNA appears to encode 5HT transporters, multiple hybridizing RNAs are observed in human placenta and lung. Somatic cell hybrid and in situ hybridization studies are consistent, however, with a single gene encoding the human 5HT transporter, localized to chromosome 17q11.1-17q12.
Collapse
|
research-article |
32 |
603 |
2
|
Liang R, Fei YJ, Prasad PD, Ramamoorthy S, Han H, Yang-Feng TL, Hediger MA, Ganapathy V, Leibach FH. Human intestinal H+/peptide cotransporter. Cloning, functional expression, and chromosomal localization. J Biol Chem 1995; 270:6456-63. [PMID: 7896779 DOI: 10.1074/jbc.270.12.6456] [Citation(s) in RCA: 400] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
In mammalian small intestine, a H(+)-coupled peptide transporter is responsible for the absorption of small peptides arising from digestion of dietary proteins. Recently a cDNA clone encoding a H+/peptide cotransporter has been isolated from a rabbit intestinal cDNA library (Fei, Y.J., Kanai, Y., Nussberger, S., Ganapathy, V., Leibach, F.H., Romero, M.F., Singh, S.K., Boron, W. F., and Hediger, M. A. (1994) Nature 368, 563-566). Screening of a human intestinal cDNA library with a probe derived from the rabbit H+/peptide cotransporter cDNA resulted in the identification of a cDNA which when expressed in HeLa cells or in Xenopus laevis oocytes induced H(+)-dependent peptide transport activity. The predicted protein consists of 708 amino acids with 12 membrane-spanning domains and two putative sites for protein kinase C-dependent phosphorylation. The cDNA-induced transport process accepts dipeptides, tripeptides, and amino beta-lactam antibiotics but not free amino acids as substrates. The human H+/peptide cotransporter exhibits a high degree of homology (81% identity and 92% similarity) to the rabbit H+/peptide cotransporter. But surprisingly these transporters show only a weak homology to the H(+)-coupled peptide transport proteins present in bacteria and yeast. Chromosomal assignment studies with somatic cell hybrid analysis and in situ hybridization have located the gene encoding the cloned human H+/peptide cotransporter to chromosome 13 q33-->q34.
Collapse
|
|
30 |
400 |
3
|
Xie B, Ding Q, Han H, Wu D. miRCancer: a microRNA-cancer association database constructed by text mining on literature. Bioinformatics 2013; 29:638-44. [DOI: 10.1093/bioinformatics/btt014] [Citation(s) in RCA: 399] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
|
12 |
399 |
4
|
Abstract
In addition to the familiar duplex DNA, certain DNA sequences can fold into secondary structures that are four-stranded; because they are made up of guanine (G) bases, such structures are called G-quadruplexes. Considerable circumstantial evidence suggests that these structures can exist in vivo in specific regions of the genome including the telomeric ends of chromosomes and oncogene regulatory regions. Recent studies have demonstrated that small molecules can facilitate the formation of, and stabilize, G-quadruplexes. The possible role of G-quadruplex-interactive compounds as pharmacologically important molecules is explored in this article.
Collapse
|
Review |
25 |
363 |
5
|
Guo Y, Jones WK, Xuan YT, Tang XL, Bao W, Wu WJ, Han H, Laubach VE, Ping P, Yang Z, Qiu Y, Bolli R. The late phase of ischemic preconditioning is abrogated by targeted disruption of the inducible NO synthase gene. Proc Natl Acad Sci U S A 1999; 96:11507-12. [PMID: 10500207 PMCID: PMC18064 DOI: 10.1073/pnas.96.20.11507] [Citation(s) in RCA: 296] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The goal of this study was to interrogate the role of inducible NO synthase (iNOS) in the late phase of ischemic preconditioning (PC) in vivo. A total of 321 mice were used. Wild-type mice preconditioned 24 h earlier with six cycles of 4-min coronary occlusion/4-min reperfusion exhibited a significant (P < 0.05) increase in myocardial iNOS protein content, iNOS activity (assessed as calcium-independent L-citrulline formation), and nitrite + nitrate tissue levels. In contrast, endothelial NOS protein content and calcium-dependent NOS activity remained unchanged. No immunoreactive neuronal NOS was detected. When wild-type mice were preconditioned 24 h earlier with six 4-min occlusion/4-min reperfusion cycles, the size of the infarcts produced by a 30-min coronary occlusion followed by 24 h of reperfusion was reduced markedly (by 67%; P < 0.05) compared with sham-preconditioned controls, indicating a late PC effect. In contrast, when mice homozygous for a null iNOS allele were preconditioned 24 h earlier with the same protocol, infarct size was not reduced. Disruption of the iNOS gene had no effect on early PC or on infarct size in the absence of PC. These results demonstrate that (i) the late phase of ischemic PC is associated with selective up-regulation of iNOS, and (ii) targeted disruption of the iNOS gene completely abrogates the infarct-sparing effect of late PC (but not of early PC), providing unequivocal molecular genetic evidence for an obligatory role of iNOS in the cardioprotection afforded by the late phase of ischemic PC. Thus, this study identifies a specific protein that mediates late PC in vivo.
Collapse
|
research-article |
26 |
296 |
6
|
Fedoroff OY, Salazar M, Han H, Chemeris VV, Kerwin SM, Hurley LH. NMR-Based model of a telomerase-inhibiting compound bound to G-quadruplex DNA. Biochemistry 1998; 37:12367-74. [PMID: 9730808 DOI: 10.1021/bi981330n] [Citation(s) in RCA: 288] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The single-stranded (TTAGGG)n tail of human telomeric DNA is known to form stable G-quadruplex structures. Optimal telomerase activity requires the nonfolded single-stranded form of the primer, and stabilization of the G-quadruplex form is known to interfere with telomerase binding. We have identified 3,4,9, 10-perylenetetracarboxylic diimide-based ligands as potent inhibitors of human telomerase by using a primer extension assay that does not use PCR-based amplification of the telomerase primer extension products. A set of NMR titrations of the ligand into solutions of G-quadruplexes using various oligonucleotides related to human telomeric DNA showed strong and specific binding of the ligand to the G-quadruplex. The exchange rate between bound and free DNA forms is slow on the NMR time scale and allows the unequivocal determination of the binding site and mode of binding. In the case of the 5'-TTAGGG sequence, the ligand-DNA complex consists of two quadruplexes oriented in a tail-to-tail manner with the ligand sandwiched between terminal G4 planes. Longer telomeric sequences, such as TTAGGGTT, TTAGGGTTA, and TAGGGTTA, form 1:1 ligand-quadruplex complexes with the ligand bound at the GT step by a threading intercalation mode. On the basis of 2D NOESY data, a model of the latter complex has been derived that is consistent with the available experimental data. The determination of the solution structure of this telomerase inhibitor bound to telomeric quadruplex DNA should help in the design of new anticancer agents with a unique and novel mechanism of action.
Collapse
|
|
27 |
288 |
7
|
Han H, Langley DR, Rangan A, Hurley LH. Selective interactions of cationic porphyrins with G-quadruplex structures. J Am Chem Soc 2001; 123:8902-13. [PMID: 11552797 DOI: 10.1021/ja002179j] [Citation(s) in RCA: 260] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
G-quadruplex DNA presents a potential target for the design and development of novel anticancer drugs. Because G-quadruplex DNA exhibits structural polymorphism, different G-quadruplex typologies may be associated with different cellular processes. Therefore, to achieve therapeutic selectivity using G-quadruplexes as targets for drug design, it will be necessary to differentiate between different types of G-quadruplexes using G-quadruplex-interactive agents. In this study, we compare the interactions of three cationic porphyrins, TMPyP2, TMPyP3, and TMPyP4, with parallel and antiparallel types of G-quadruplexes using gel mobility shift experiments and a helicase assay. Gel mobility shift experiments indicate that TMPyP3 specifically promotes the formation of parallel G-quadruplex structures. A G-quadruplex helicase unwinding assay reveals that the three porphyrins vary dramatically in their abilities to prevent the unwinding of both the parallel tetrameric G-quadruplex and the antiparallel hairpin dimer G-quadruplex DNA by yeast Sgs1 helicase (Sgs1p). For the parallel G-quadruplex, TMPyP3 has the strongest inhibitory effect on Sgs1p, followed by TMPyP4, but the reverse is true for the antiparallel G-quadruplex. TMPyP2 does not appear to have any effect on the helicase-catalyzed unwinding of either type of G-quadruplex. Photocleavage experiments were carried out to investigate the binding modes of all three porphyrins with parallel G-quadruplexes. The results reveal that TMPyP3 and TMPyP4 appear to bind to parallel G-quadruplex structures through external stacking at the ends rather than through intercalation between the G-tetrads. Since intercalation between G-tetrads has been previously proposed as an alternative binding mode for TMPyP4 to G-quadruplexes, this mode of binding, versus that determined by a photocleavage assay described here (external stacking), was subjected to molecular dynamics calculations to identify the relative stabilities of the complexes and the factors that contribute to these differences. The DeltaG(o) for the external binding mode was found to be driven by DeltaH(o) with a small unfavorable TDeltaS(o) term. The DeltaG(o) for the intercalation binding model was driven by a large TDeltaS(o) term and complemented by a small DeltaH(o) term. One of the main stabilizing components of the external binding model is the energy of solvation, which favors the external model over the intercalation model by -67.94 kcal/mol. Finally, we propose that intercalative binding, although less favored than external binding, may occur, but because of the nature of the intercalative binding, it is invisible to the photocleavage assay. This study provides the first experimental insight into how selectivity might be achieved for different G-quadruplexes by using structural variants within a single group of G-quadruplex-interactive drugs.
Collapse
|
Comparative Study |
24 |
260 |
8
|
Han H, de Vrueh RL, Rhie JK, Covitz KM, Smith PL, Lee CP, Oh DM, Sadée W, Amidon GL. 5'-Amino acid esters of antiviral nucleosides, acyclovir, and AZT are absorbed by the intestinal PEPT1 peptide transporter. Pharm Res 1998; 15:1154-9. [PMID: 9706043 DOI: 10.1023/a:1011919319810] [Citation(s) in RCA: 242] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
PURPOSE General use of nucleoside analogues in the treatment of viral infections and cancer is often limited by poor oral absorption. Valacyclovir, a water soluble amino acid ester prodrug of acyclovir has been reported to increase the oral bioavailability of acyclovir but its absorption mechanism is unknown. This study characterized the intestinal absorption mechanism of 5' -amino acid ester prodrugs of the antiviral drugs and examined the potential of amino acid esters as an effective strategy for improving oral drug absorption. METHODS Acyclovir (ACV) and Zidovudine (AZT) were selected as the different sugar-modified nucleoside antiviral agents and synthesized to L-valyl esters of ACV and AZT (L-Val-ACV and L-Val-AZT), D-valyl ester of ACV (D-Val-ACV) and glycly ester of ACV (Gly-ACV). The intestinal absorption mechanism of these 5' -amino acid ester prodrugs was characterized in three different experimental systems; in situ rat perfusion model, CHO/hPEPT1 cells and Caco-2 cells. RESULTS Testing 5' -amino acid ester prodrugs of acyclovir and AZT, we found that the prodrugs increased the intestinal permeability of the parent nucleoside analogue 3- to 10-fold. The dose- dependent permeation enhancement was selective for L-amino acid esters. Competitive inhibition studies in rats and in CHO cells transfected with the human peptide transporter, hPEPT1, demonstrated that membrane transport of the prodrugs was mediated predominantly by the PEPT1 H+/dipeptide cotransporter even though these prodrugs did not possess a peptide bond. Finally, transport studies in Caco-2 cells confirmed that the 5' - amino acid ester prodrugs enhanced the transcellular transport of the parent drug. CONCLUSIONS This study demonstrates that L-amino acid-nucleoside chimeras can serve as prodrugs to enhance intestinal absorption via the PEPT1 transporter, providing a novel strategy for improving oral therapy of nucleoside drugs.
Collapse
|
|
27 |
242 |
9
|
Ford SP, Hess BW, Schwope MM, Nijland MJ, Gilbert JS, Vonnahme KA, Means WJ, Han H, Nathanielsz PW. Maternal undernutrition during early to mid-gestation in the ewe results in altered growth, adiposity, and glucose tolerance in male offspring. J Anim Sci 2007; 85:1285-94. [PMID: 17224460 DOI: 10.2527/jas.2005-624] [Citation(s) in RCA: 234] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study utilized maternal undernutrition from early to midgestation in the ewe to determine the impact(s) of intrauterine growth restriction on postpartum growth of male offspring and the potential mechanisms involved. Multiparous ewes were fed 50% (nutrient-restricted) or 100% (control-fed) of their nutrient requirements (NRC, 1985) between d 28 and 78 of gestation, and then all ewes were fed 100% of the NRC requirements from d 79 through lambing. Male lambs born to nutrient-restricted (n = 9) and control-fed (n = 9) ewes exhibited similar BW (5.8 vs. 6.0 +/- 0.3 kg) and crown-rump lengths (53.8 vs. 55.4 +/- 1.0 cm) at birth. At 63 and 250 d of postnatal age, wether lambs were subjected to a glucose tolerance test, in which a bolus of glucose was administered i.v. to evaluate changes in glucose and insulin concentrations. After i.v. glucose administration at 63 d of age, lambs from nutrient-restricted ewes exhibited a greater area under the curve for glucose (AUCg; 6,281 vs. 5,242 +/- 429; P < 0.05) and insulin (AUCi; 21.0 vs. 8.6 +/- 1.9; P < 0.001) than lambs from control-fed ewes. After glucose administration at 250 d of age, lambs from nutrient-restricted ewes had greater AUCg (7,147 vs. 5,823 +/- 361; P < 0.01) but a lower AUCi (6.4 vs. 10.2 +/- 1.9; P = 0.05) than lambs from control-fed ewes. Lambs from nutrient-restricted ewes were heavier (26.6 vs. 21.8 +/- 2.3 kg; P < 0.05) and had more backfat (0.30 vs. 0.21 +/- 0.03 cm, P < 0.05) by 4 mo of age than the lambs from control-fed ewes. At slaughter at 280 d of age, lambs from nutrient-restricted ewes remained heavier than lambs from control-fed ewes, had greater (P < 0.05) amounts of kidney and pelvic-area adipose tissue, and tended (P < 0.10) to have reduced LM and semitendinosus muscle weights as a percentage of HCW. These data demonstrate that a bout of maternal undernutrition during early to midgestation in sheep increased BW and fat deposition during adolescence and dysregulated glucose uptake in the absence of any change in birth weight.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
234 |
10
|
Xuan YT, Tang XL, Banerjee S, Takano H, Li RC, Han H, Qiu Y, Li JJ, Bolli R. Nuclear factor-kappaB plays an essential role in the late phase of ischemic preconditioning in conscious rabbits. Circ Res 1999; 84:1095-109. [PMID: 10325247 DOI: 10.1161/01.res.84.9.1095] [Citation(s) in RCA: 228] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although it is recognized that late preconditioning (PC) results from upregulation of cardioprotective genes, the specific transcription factor(s) that govern this genetic adaptation remains unknown. The aim of this study was to test the hypothesis that the development of late PC is mediated by nuclear factor-kappaB (NF-kappaB) and to elucidate the mechanisms that control the activation of NF-kappaB after an ischemic stimulus in vivo. A total of 152 chronically instrumented, conscious rabbits were used. A sequence of six 4-minute coronary occlusion/4-minute reperfusion cycles, which elicits late PC, induced rapid activation of NF-kappaB, as evidenced by a marked increase in p65 content (+164%; Western immunoblotting) and NF-kappaB DNA binding activity (+306%; electrophoretic mobility shift assay) in nuclear extracts isolated 30 minutes after the last reperfusion. These changes were attenuated 2 hours after ischemic PC and resolved by 4 hours. Competition and supershift assays confirmed the specificity of the NF-kappaB DNA complex signals. The mobility of the NF-kappaB DNA complex was shifted by anti-p65 and anti-p50 antibodies but not by anti-c-Rel antibodies, indicating that the subunits of NF-kappaB involved in gene activation after ischemic PC consist of p65-p50 heterodimers. Pretreatment with the NF-kappaB inhibitor diethyldithiocarbamate (DDTC; 150 mg/kg IP 15 minutes before ischemic PC) completely blocked the nuclear translocation and increased DNA binding activity of NF-kappaB. The same dose of DDTC completely blocked the cardioprotective effects of late PC against both myocardial stunning and myocardial infarction, indicating that NF-kappaB activation is essential for the development of this phenomenon in vivo. The ischemic PC-induced activation of NF-kappaB was also blocked by pretreatment with Nomega-nitro-L-arginine (L-NA), a nitric oxide synthase (NOS) inhibitor, N-2-mercaptopropionyl glycine (MPG), a reactive oxygen species (ROS) scavenger, chelerythrine, a protein kinase C (PKC) inhibitor, and lavendustin A, a tyrosine kinase inhibitor (all given at doses previously shown to block late PC), indicating that ischemic PC activates NF-kappaB via formation of NO and ROS and activation of PKC- and tyrosine kinase-dependent signaling pathways. A subcellular redistribution and increased DNA binding activity of NF-kappaB quantitatively similar to those induced by ischemic PC could be reproduced pharmacologically by giving the NO donor diethylenetriamine/NO (DETA/NO) (at a dose previously shown to elicit late PC), demonstrating that NO in itself can activate NF-kappaB in the heart. Taken together, these results provide direct evidence that activation of NF-kappaB is a critical step in the signal transduction pathway that underlies the development of the late phase of ischemic PC in conscious rabbits. The finding that four different pharmacological manipulations (L-NA, MPG, chelerythrine, and lavendustin A) produced similar inhibition of NF-kappaB suggests that this transcription factor is a common downstream pathway through which multiple signals elicited by ischemic stress (NO, ROS, PKC, tyrosine kinases) act to induce gene expression. To our knowledge, this is the first demonstration that NO can promote NF-kappaB activation in the heart, a finding that identifies a new biological function of NO and may have important implications for various pathophysiological conditions in which NO is involved and for nitrate therapy.
Collapse
|
|
26 |
228 |
11
|
Xuan YT, Guo Y, Han H, Zhu Y, Bolli R. An essential role of the JAK-STAT pathway in ischemic preconditioning. Proc Natl Acad Sci U S A 2001; 98:9050-5. [PMID: 11481471 PMCID: PMC55371 DOI: 10.1073/pnas.161283798] [Citation(s) in RCA: 218] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The goal of this study was to determine the role of the Janus tyrosine kinase (JAK)-signal transducers and activators of transcription (STAT) pathway in the late phase of ischemic preconditioning (PC). A total of 230 mice were used. At 5 min after ischemic PC (induced with six cycles of 4-min coronary occlusion/4-min reperfusion), immunoprecipitation with anti-phosphotyrosine (anti-pTyr) antibodies followed by immunoblotting with anti-JAK antibodies revealed increased tyrosine phosphorylation of JAK1 (+257 +/- 53%) and JAK2 (+238 +/- 35%), indicating rapid activation of these two kinases. Similar results were obtained by immunoblotting with anti-pTyr-JAK1 and anti-pTyr-JAK2 antibodies. Western analysis with anti-pTyr-STAT antibodies demonstrated a marked increase in nuclear pTyr-STAT1 (+301 +/- 61%) and pTyr-STAT3 (+253 +/- 60%) 30 min after ischemic PC, which was associated with redistribution of STAT1 and STAT3 from the cytosolic to the nuclear fraction and with an increase in STAT1 and STAT3 gamma-IFN activation site DNA-binding activity (+606 +/- 64%), indicating activation of STAT1 and STAT3. No nuclear translocation or tyrosine phosphorylation of STAT2, STAT4, STAT5A, STAT5B, or STAT6 was observed. Pretreatment with the JAK inhibitor AG-490 20 min before the six occlusion/reperfusion cycles blocked the enhanced tyrosine phosphorylation of JAK1 and JAK2 and the increased tyrosine phosphorylation, nuclear translocation, and enhanced DNA-binding activity of STAT1 and STAT3. The same dose of AG-490 abrogated the protection against myocardial infarction and the concomitant up-regulation of inducible NO synthase (iNOS) protein and activity observed 24 h after ischemic PC. Taken together, these results demonstrate that ischemic PC induces isoform-selective activation of JAK1, JAK2, STAT1, and STAT3, and that ablation of this response impedes the up-regulation of iNOS and the concurrent acquisition of ischemic tolerance. This study demonstrates that the JAK-STAT pathway plays an essential role in the development of late PC. The results reveal a signaling mechanism that underlies the transcriptional up-regulation of the cardiac iNOS gene and the adaptation of the heart to ischemic stress.
Collapse
|
research-article |
24 |
218 |
12
|
Han H, Weinreb PH, Lansbury PT. The core Alzheimer's peptide NAC forms amyloid fibrils which seed and are seeded by beta-amyloid: is NAC a common trigger or target in neurodegenerative disease? CHEMISTRY & BIOLOGY 1995; 2:163-9. [PMID: 9383418 DOI: 10.1016/1074-5521(95)90071-3] [Citation(s) in RCA: 216] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND NAC is a 35-amino-acid peptide which has been isolated from the insoluble core of Alzheimer's disease (AD) amyloid plaque. It is a fragment of alpha-synuclein (or NACP), a neuronal protein of unknown function. We noted a striking sequence similarity between NAC, the carboxyl terminus of the beta-amyloid protein, and a region of the scrapie prion protein (PrP) which has been implicated in amyloid formation. RESULTS NAC was prepared by chemical synthesis and was found to form amyloid fibrils via a nucleation-dependent polymerization mechanism. NAC amyloid fibrils effectively seed beta 1-40 amyloid formation. Amyloid fibrils comprising peptide models of the homologous beta and PrP sequences were also found to seed amyloid formation by NAC. CONCLUSIONS The in vitro model studies presented here suggest that seeding of NAC amyloid formation by the beta-amyloid protein, or seeding of amyloid fibrils of the beta-amyloid protein by NAC, may occur in vivo. Accumulation of ordered NAC aggregates in the synapse may be responsible for the neurodegeneration observed in AD and the prion disorders. Alternatively, neurodegeneration may be caused by the loss of alpha-synuclein (NACP) function.
Collapse
|
|
30 |
216 |
13
|
Han H, Hurley LH, Salazar M. A DNA polymerase stop assay for G-quadruplex-interactive compounds. Nucleic Acids Res 1999; 27:537-42. [PMID: 9862977 PMCID: PMC148212 DOI: 10.1093/nar/27.2.537] [Citation(s) in RCA: 191] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have developed and characterized an assay for G-quadruplex-interactive compounds that makes use of the fact that G-rich DNA templates present obstacles to DNA synthesis by DNA polymerases. Using Taq DNA polymerase and the G-quadruplex binding 2, 6-diamidoanthraquinone BSU-1051, we find that BSU-1051 leads to enhanced arrest of DNA synthesis in the presence of K+by stabilizing an intramolecular G-quadruplex structure formed by four repeats of either TTGGGG or TTAGGG in the template strand. The data provide additional evidence that BSU-1051 modulates telomerase activity by stabilization of telomeric G-quadruplex DNA and point to a polymerase arrest assay as a sensitive method for screening for G-quadruplex-interactive agents with potential clinical utility.
Collapse
|
research-article |
26 |
191 |
14
|
Hurley LH, Wheelhouse RT, Sun D, Kerwin SM, Salazar M, Fedoroff OY, Han FX, Han H, Izbicka E, Von Hoff DD. G-quadruplexes as targets for drug design. Pharmacol Ther 2000; 85:141-58. [PMID: 10739869 DOI: 10.1016/s0163-7258(99)00068-6] [Citation(s) in RCA: 178] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
G-quadruplexes are a family of secondary DNA structures formed in the presence of monovalent cations that consist of four-stranded structures in which Hoogsteen base-pairing stabilizes G-tetrad structures. These structures are proposed to exist in vivo, although direct confirmatory evidence is lacking. Guanine-rich regions of DNA capable of forming G-quadruplex structures are found in a variety of chromosomal regions, including telomeres and promoter regions of DNA. In this review, we describe the design of three separate groups of G-quadruplex-interactive compounds and their interaction with G-quadruplex DNA. Using the first group of compounds (anthraquinones), we describe experiments that provide the proof of concept that a G-quadruplex is required for inhibition of telomerase. Using the second group of compounds (perylenes), we describe the structure of a G-quadruplex-ligand complex and its effect on the dynamics of formation and enzymatic unwinding of the quadruplex. For the third group of compounds (porphyrins), we describe the experiments that relate the biological effects to their interactions with G-quadruplexes.
Collapse
|
Review |
25 |
178 |
15
|
Han H, Silverman JF, Santucci TS, Macherey RS, d'Amato TA, Tung MY, Weyant RJ, Landreneau RJ. Vascular endothelial growth factor expression in stage I non-small cell lung cancer correlates with neoangiogenesis and a poor prognosis. Ann Surg Oncol 2001; 8:72-9. [PMID: 11206229 DOI: 10.1007/s10434-001-0072-y] [Citation(s) in RCA: 174] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Vascular endothelial growth factor (VEGF) plays an important role in tumor growth and metastasis. We investigated the prognostic significance of VEGF overexpression, intratumoral microvessel density (MVD), and angiolymphatic invasion in stage Ia-b non-small cell lung cancer (NSCLC). METHODS Eighty-five patients undergoing complete surgical resection of pathologic stage Ia-b NSCLC were evaluated. The mean and median clinical follow-up were 37.1 and 39.0 months (range, 30-44 months), respectively. Paraffin-embedded tumor specimens were stained with VEGF and CD31 (a specific endothelial marker) using immunohistochemical methods. VEGF staining was evaluated, by combining both percentage of positive tumor cells and staining intensity, as low (negative and < 20% of tumor cells showing weak positivity), or high (> 20% of tumor cells showing strong positivity). CD31 staining was expressed as MVD per high power field at 400x magnification. Angiolymphatic invasion was expressed as either presence or absence. RESULTS Low VEGF expression was seen in 25 (29%) patients, and high VEGF expression was seen in 60 (71%) patients. The survival rate in patients with low VEGF expression was significantly higher (80%) than that in those with high VEGF expression (48%, P = .018). The mean MVD in the low VEGF group was 23.7 +/- 5.7 vs. 34.4 +/- 9.3 in the high VEGF group (P = .001). Patients with high MVD also had a significantly lower survival rate than did those with low MVD count (46% vs. 73%, P = .0053). Age, sex, tumor type, and tumor differentiation were not found to be associated with overall survival. The presence of angiolymphatic invasion and T2 stage (i.e., tumor size > 3 cm) were associated with decreased survival. High VEGF expression, tumor size, and angiolymphatic invasion emerged as three independent factors predicting worsening prognosis using multivariate analysis. CONCLUSION High VEGF expression within stage I NSCLC is closely associated with high intratumoral angiogenesis and poor prognosis. Immunohistochemical evaluation of T stage and VEGF expression along with examination of angiolymphatic invasion perioperatively may aid in predicting prognosis. Adjuvant therapies aimed at retarding tumor angiogenesis may be considered for stage I NSCLC patients with high VEGF levels.
Collapse
|
|
24 |
174 |
16
|
Bhunia AK, Han H, Snowden A, Chatterjee S. Redox-regulated signaling by lactosylceramide in the proliferation of human aortic smooth muscle cells. J Biol Chem 1997; 272:15642-9. [PMID: 9188453 DOI: 10.1074/jbc.272.25.15642] [Citation(s) in RCA: 172] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Previously, our laboratory reported that lactosylceramide (LacCer) stimulated human aortic smooth muscle cell proliferation via specific activation of p44 mitogen-activated protein kinase (MAPK) in the p21(ras)/Raf-1/MEK2 pathway and induced expression of the transcription factor c-fos downstream to the p44 MAPK signaling cascade (Bhunia A. K., Han, H., Snowden, A., and Chatterjee S. (1996) J. Biol. Chem. 271, 10660-10666). In the present study, we explored the role of free oxygen radicals in LacCer-mediated induction of cell proliferation. Superoxide levels were measured by the lucigenin chemiluminescence method, MAPK activity was measured by immunocomplex kinase assays, and Western blot analysis and c-fos expression were measured by Northern blot assay. We found that LacCer (10 microM) stimulates endogenous superoxide production (7-fold compared with control) in human aortic smooth muscle cells specifically by activating membrane-associated NADPH oxidase, but not NADH or xanthine oxidase. This process was inhibited by an inhibitor of NADPH oxidase, diphenylene iodonium (DPI), and by antioxidants, N-acetyl-L-cysteine (NAC) or pyrrolidine dithiocarbamate. NAC and DPI both abrogated individual steps in the signaling pathway leading to cell proliferation. For example, the p21(ras).GTP loading, p44 MAPK activity, and induction of transcription factor c-fos all were inhibited by NAC and DPI as well as an antioxidant pyrrolidine dithiocarbamate or reduced glutathione (GSH). In contrast, depletion of GSH by L-buthionine (S, R)-sulfoximine up-regulated the above described signaling cascade. In sum, LacCer, by virtue of activating NADPH oxidase, produces superoxide (a redox stress signaling molecule), which mediates cell proliferation via activation of the kinase cascade. Our findings may explain the potential role of LacCer in the pathogenesis of atherosclerosis involving the proliferation of aortic smooth muscle cells.
Collapse
|
|
28 |
172 |
17
|
Zhang Y, Han H, Elmquist WF, Miller DW. Expression of various multidrug resistance-associated protein (MRP) homologues in brain microvessel endothelial cells. Brain Res 2000; 876:148-53. [PMID: 10973603 DOI: 10.1016/s0006-8993(00)02628-7] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Multidrug resistance-associated protein (MRP) actively transports a broad range of anionic compounds out of the cell. To date, six different homologues of MRP (i.e. MRP1-MRP6) have been identified. The current study examines the expression of the various MRP homologues in both primary cultured bovine brain microvessel endothelial cells (BBMEC) and the capillary-enriched fraction from bovine brain homogenates. RT-PCR analysis demonstrated the presence of MRP1, MRP4, MRP5 and MRP6 in both BBMEC and the capillary-enriched fractions of brain homogenates. While low levels of MRP3 were detected in the BBMEC, it was not observed in the capillary-enriched fraction. In addition, RT-PCR and Western blot studies indicated an absence of MRP2 expression in both blood-brain barrier preparations. The presence of several different MRP homologues in the brain microvessel endothelial cells may be important in controlling the permeability of the blood-brain barrier to organic anions.
Collapse
|
|
25 |
156 |
18
|
Ramamoorthy S, Leibach FH, Mahesh VB, Han H, Yang-Feng T, Blakely RD, Ganapathy V. Functional characterization and chromosomal localization of a cloned taurine transporter from human placenta. Biochem J 1994; 300 ( Pt 3):893-900. [PMID: 8010975 PMCID: PMC1138249 DOI: 10.1042/bj3000893] [Citation(s) in RCA: 154] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A cDNA clone highly related to the rat brain taurine transporter has been isolated from a human placental cDNA library. Transfection of this cDNA into HeLa cells results in a marked elevation of taurine transport activity. The activity of the cDNA-induced transporter is dependent on the presence of Na+ as well as Cl-. The Na+/Cl-/taurine stoichiometry for the cloned transporter is 2:1:1. The transporter is specific for taurine and other beta-amino acids, including beta-alanine, and exhibits high affinity for taurine (Michaelis-Menten constant approximately 6 microM). The clone consists of a coding region 1863 bp long (including the termination codon), flanked by a 376 bp-long 5' non-coding region and a 625 bp-long 3' non-coding region. The nucleotide sequence of the coding region predicts a 620-amino acid protein with a calculated M(r) of 69,853. Northern-blot analysis of poly(A)+ RNA from several human tissues indicates a complex expression pattern differing across tissues. The principal transcript, 6.9 kb in size, is expressed abundantly in placenta and skeletal muscle, at intermediate levels in heart, brain, lung, kidney and pancreas and at low levels in liver. Cultured human cell lines derived from placenta (JAR and BeWo), intestine (HT-29), cervix (HeLa) and retinal pigment epithelium (HRPE), which are known to possess Na(+)- and Cl(-)-coupled taurine transport activity, also contain the 6.9 kb transcript. Somatic cell hybrid and in situ hybridization studies indicate that the cloned taurine transporter is localized to human chromosome 3 p24-->p26.
Collapse
|
research-article |
31 |
154 |
19
|
Taniguchi Y, Furukawa T, Tun T, Han H, Honjo T. LIM protein KyoT2 negatively regulates transcription by association with the RBP-J DNA-binding protein. Mol Cell Biol 1998; 18:644-54. [PMID: 9418910 PMCID: PMC121531 DOI: 10.1128/mcb.18.1.644] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/1997] [Accepted: 09/23/1997] [Indexed: 02/05/2023] Open
Abstract
The RBP-J/Su(H) DNA-binding protein plays a key role in transcriptional regulation by targeting Epstein-Barr virus nuclear antigen 2 (EBNA2) and the intracellular portions of Notch receptors to specific promoters. Using the yeast two-hybrid system, we isolated a LIM-only protein, KyoT, which physically interacts with RBP-J. Differential splicing gave rise to two transcripts of the KyoT gene, KyoT1 and KyoT2, that encoded proteins with four and two LIM domains, respectively. With differential splicing resulting in deletion of an exon, KyoT2 lacked two LIM domains from the C terminus and had a frameshift in the last exon, creating the RBP-J-binding region in the C terminus. KyoT1 had a negligible level of interaction with RBP-J. Strong expression of KyoT mRNAs was detected in skeletal muscle and lung, with a predominance of KyoT1 mRNA. When expressed in F9 embryonal carcinoma cells, KyoT1 and KyoT2 were localized in the cytoplasm and the nucleus, respectively. The binding site of KyoT2 on RBP-J overlaps those of EBNA2 and Notchl but is distinct from that of Hairless, the negative regulator of RBP-J-mediated transcription in Drosophila. KyoT2 but not KyoT1 repressed the RBP-J-mediated transcriptional activation by EBNA2 and Notch1 by competing with them for binding to RBP-J and by dislocating RBP-J from DNA. KyoT2 is a novel negative regulatory molecule for RBP-J-mediated transcription in mammalian systems.
Collapse
|
research-article |
27 |
146 |
20
|
Pang Y, Yu J, Wang L, Hu X, Bao W, Li G, Chen C, Han H, Hu S, Yang H. Sequence analysis of the Spodoptera litura multicapsid nucleopolyhedrovirus genome. Virology 2001; 287:391-404. [PMID: 11531416 DOI: 10.1006/viro.2001.1056] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The complete Spodoptera litura multicapsid nucleopolyhedrovirus (SpltMNPV) genome contained 139,342 bp with a G+C content of 42.7%, and 141 putative open reading frames (ORFs) or genes of 150 nucleotides or greater that showed minimal overlap. Ninety-six ORFs had homologues in Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV), 16 had homologues in other baculoviruses, and 29 were unique to SpltMNPV. The homologues of ubiquitin and gp37 are fused in SpltMNPV. The genome lacked a homologue of the major budded virus glycoprotein gene gp64, but it contained a homologue of ORF130 of Lymantria dispar multicapsid nucleopolyhedrovirus (LdMNPV). There were two homologues of AcMNPV ORF2 (bro gene), and a DnaJ protein gene (SpltORF39) in which the N-terminus showed homologies with the J domain of DnaJ family proteins. Seventeen homologous regions (hrs) were identified, each containing 2-29 palindromic repeats, with an average length of 534 bp and base content (G+C%) of 33.0.
Collapse
|
|
24 |
136 |
21
|
Abstract
A concept termed liquid-phase combinatorial synthesis (LPCS) is described. The central feature of this methodology is that it combines the advantages that classic organic synthesis in solution offers with those that solid-phase synthesis can provide, through the application of a linear homogeneous polymer. To validate this concept two libraries were prepared, one of peptide and the second of nonpeptide origin. The peptide-based library was synthesized by a recursive deconvolution strategy [Erb, E., Janda, K. D. & Brenner, S. (1994) Proc. Natl. Acad. Sci. USA 91, 11422-11426] and several ligands were found within this library to bind a monoclonal antibody elicited against beta-endorphin. The non-peptide molecules synthesized were arylsulfonamides, a class of compounds of known clinical bactericidal efficacy. The results indicate that the reaction scope of LPCS should be general, and its value to multiple, high-throughput screening assays could be of particular merit, since multimilligram quantities of each library member can readily be attained.
Collapse
|
research-article |
30 |
128 |
22
|
Han H, Cliff CL, Hurley LH. Accelerated assembly of G-quadruplex structures by a small molecule. Biochemistry 1999; 38:6981-6. [PMID: 10353809 DOI: 10.1021/bi9905922] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the presence of alkali cations, notably potassium and sodium, DNA oligomers that possess two G-rich repeats associate into either a tetrameric parallel G-quadruplex or a variety of dimeric antiparallel G-quadruplexes. The formation of such structures is normally a very slow process. Some proteins, such as the beta-subunit of the Oxytricha telomere-binding protein, promote the formation of G-quadruplex structures in a chaperone-like manner. In this report, we present data concerning the role of a perylene derivative, PIPER, in the assembly of G-quadruplex structures as the first example of a small ligand behaving as a driver in the assembly of polynucleotide secondary structures. Gel-shift experiments demonstrate that PIPER can dramatically accelerate the association of a DNA oligomer containing two tandem repeats of the human telomeric sequence (TTAGGG) into di- and tetrameric G-quadruplexes. In so doing, PIPER alters the oligomer dimerization kinetics from second to first order. The presence of 10 microM PIPER accelerates the assembly of varied dimeric G-quadruplexes an estimated 100-fold from 2 microM oligomer. These results imply that some biological effects elicited by G-quadruplex-interactive agents, such as the induction of anaphase bridges, may stem from the propensity such compounds have for assembling G-quadruplexes.
Collapse
|
|
26 |
124 |
23
|
Han H, Dervan PB. Sequence-specific recognition of double helical RNA and RNA.DNA by triple helix formation. Proc Natl Acad Sci U S A 1993; 90:3806-10. [PMID: 7683407 PMCID: PMC46394 DOI: 10.1073/pnas.90.9.3806] [Citation(s) in RCA: 119] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The stabilities of eight triple helical pyrimidine.purine.pyrimidine structures comprised of identical sequence but different RNA (R) or DNA (D) strand combinations were measured by quantitative affinity cleavage titration. The differences in equilibrium binding affinities reveal the importance of strand composition. For the sequences studied here, the stabilities of complexes containing a pyrimidine third strand D or R and purine.pyrimidine double helical DD, DR, RD, and RR decrease in order: D + DD, R + DD, R + DR, D + DR > R + RD, R + RR >> D + RR, D + RD (pH 7.0, 25 degrees C, 100 mM NaCl/1 mM spermine). These findings suggest that RNA and DNA oligonucleotides will be useful for targeting (i) double helical DNA and (ii) RNA.DNA hybrids if the purine Watson-Crick strand is DNA. However, RNA, but not DNA, oligonucleotides will be useful for sequence-specific binding of (i) double helical RNA and (ii) RNA.DNA hybrids if the purine Watson-Crick strand is RNA. This has implications for the design of artificial ligands targeted to specific sequences of double helical RNA and RNA.DNA hybrids.
Collapse
|
research-article |
32 |
119 |
24
|
Fuortes M, Melchior M, Han H, Lyon GJ, Nathan C. Role of the tyrosine kinase pyk2 in the integrin-dependent activation of human neutrophils by TNF. J Clin Invest 1999; 104:327-35. [PMID: 10430614 PMCID: PMC408415 DOI: 10.1172/jci6018] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Secretion of inflammatory products from neutrophils can be induced by a combination of signals from ligated integrins and receptors for soluble, physiological agonists such as TNF. Here we identify pyk2 in primary human neutrophils; localize it to focal adhesions and podosomes; and demonstrate its tyrosine phosphorylation, activation, and association with paxillin during stimulation of adherent cells by TNF. Tyrphostin A9 emerged as the most potent and selective of 51 tyrosine kinase inhibitors tested against the TNF-induced respiratory burst. Tyrphostin A9 inhibited TNF-induced tyrosine phosphorylation of pyk2 without blocking the cells' bactericidal activity. Wortmannin, an inhibitor of phosphatidylinositol-3-kinase, potently blocked the TNF-induced respiratory burst and selectively inhibited tyrosine phosphorylation of pyk2. Thus, pyk2 appears to play an essential role in the ability of neutrophils to integrate signals from beta(2) integrins and TNF receptors.
Collapse
|
research-article |
26 |
108 |
25
|
Kang KS, Kim SW, Oh YH, Yu JW, Kim KY, Park HK, Song CH, Han H. A 37-year-old spinal cord-injured female patient, transplanted of multipotent stem cells from human UC blood, with improved sensory perception and mobility, both functionally and morphologically: a case study. Cytotherapy 2008; 7:368-73. [PMID: 16162459 DOI: 10.1080/14653240500238160] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
HLA-matched UC blood-derived multipotent stem cells were directly transplanted into the injured spinal cord site of a 37-year-old female patient suffering from spinal cord injury (SPI). In this case, human cord blood (UCB)-derived multipotent stem cells improved sensory perception and movement in the SPI patient's hips and thighs within 41 days of cell transplantation. CT and MRI results also showed regeneration of the spinal cord at the injured site and some of the cauda equina below it. Therefore, it is suggested that UCB multipotent stem cell transplantation could be a good treatment method for SPI patients.
Collapse
|
Journal Article |
17 |
106 |