1
|
Shearman LP, Sriram S, Weaver DR, Maywood ES, Chaves I, Zheng B, Kume K, Lee CC, van der Horst GT, Hastings MH, Reppert SM. Interacting molecular loops in the mammalian circadian clock. Science 2000; 288:1013-9. [PMID: 10807566 DOI: 10.1126/science.288.5468.1013] [Citation(s) in RCA: 1024] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
We show that, in the mouse, the core mechanism for the master circadian clock consists of interacting positive and negative transcription and translation feedback loops. Analysis of Clock/Clock mutant mice, homozygous Period2(Brdm1) mutants, and Cryptochrome-deficient mice reveals substantially altered Bmal1 rhythms, consistent with a dominant role of PERIOD2 in the positive regulation of the Bmal1 loop. In vitro analysis of CRYPTOCHROME inhibition of CLOCK: BMAL1-mediated transcription shows that the inhibition is through direct protein:protein interactions, independent of the PERIOD and TIMELESS proteins. PERIOD2 is a positive regulator of the Bmal1 loop, and CRYPTOCHROMES are the negative regulators of the Period and Cryptochrome cycles.
Collapse
|
|
25 |
1024 |
2
|
Chaves I, Rudenko G, Dirks-Mulder A, Cross M, Borst P. Control of variant surface glycoprotein gene-expression sites in Trypanosoma brucei. EMBO J 1999; 18:4846-55. [PMID: 10469662 PMCID: PMC1171556 DOI: 10.1093/emboj/18.17.4846] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Trypanosoma brucei has 20 similar telomeric-expression sites for variant surface glycoprotein genes. Expression sites appear to be controlled at the level of transcription initiation, resulting in only one site being active at any time. Switching between expression sites occurs at a low rate. To analyse the switching mechanism, we used trypanosomes with two expression sites tagged with two different drug-resistance genes and selected these on agarose plates containing both drugs. Double-resistant clones arose at a low frequency of 10(-7) per cell, but these behaved as if they rapidly switched between the two tagged expression sites and lost double resistance in the absence of selection. Using in situ hybridization we found that only 10% of the double-resistant cells had two fluorescent spots corresponding to transcribed expression sites. Our results suggest that: (i) a double expressor is not a stable intermediate in expression site switching; (ii) expression sites are not independently switched on and off; and (iii) expression sites can be in a 'pre-active' silent state from which they can be readily activated.
Collapse
|
research-article |
26 |
87 |
3
|
Chaves I, Zomerdijk J, Dirks-Mulder A, Dirks RW, Raap AK, Borst P. Subnuclear localization of the active variant surface glycoprotein gene expression site in Trypanosoma brucei. Proc Natl Acad Sci U S A 1998; 95:12328-33. [PMID: 9770486 PMCID: PMC22831 DOI: 10.1073/pnas.95.21.12328] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In Trypanosoma brucei, transcription by RNA polymerase II and 5' capping of messenger RNA are uncoupled: a capped spliced leader is trans spliced to every RNA. This decoupling makes it possible to have protein-coding gene transcription driven by RNA polymerase I. Indeed, indirect evidence suggests that the genes for the major surface glycoproteins, variant surface glycoproteins (VSGs) in bloodstream-form trypanosomes, are transcribed by RNA polymerase I. In a single trypanosome, only one VSG expression site is maximally transcribed at any one time, and it has been speculated that transcription takes place at a unique site within the nucleus, perhaps in the nucleolus. We tested this by using fluorescence in situ hybridization. With probes that cover about 50 kb of the active 221 expression site, we detected nuclear transcripts of this site in a single fluorescent spot, which did not colocalize with the nucleolus. Analysis of marker gene-tagged active expression site DNA by fluorescent DNA in situ hybridization confirmed the absence of association with the nucleolus. Even an active expression site in which the promoter had been replaced by an rDNA promoter did not colocalize with the nulceolus. As expected, marker genes inserted in the rDNA array predominantly colocalize with the nucleolus, whereas the tubulin gene arrays do not. We conclude that transcription of the active VSG expression site does not take place in the nucleolus.
Collapse
|
research-article |
27 |
66 |
4
|
Borst P, Bitter W, Blundell PA, Chaves I, Cross M, Gerrits H, van Leeuwen F, McCulloch R, Taylor M, Rudenko G. Control of VSG gene expression sites in Trypanosoma brucei. Mol Biochem Parasitol 1998; 91:67-76. [PMID: 9574926 DOI: 10.1016/s0166-6851(97)00184-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Antigenic variation in African trypanosomes continues to be one of the most elaborate and intriguing strategies ever devised by a protozoan parasite to avoid complete destruction by the immune defense of its mammalian host. Here we review some of the recent advances in our understanding of this strategy, concentrating on (unpublished) work from our laboratory.
Collapse
|
Review |
27 |
61 |
5
|
Dooijes D, Chaves I, Kieft R, Dirks-Mulder A, Martin W, Borst P. Base J originally found in kinetoplastida is also a minor constituent of nuclear DNA of Euglena gracilis. Nucleic Acids Res 2000; 28:3017-21. [PMID: 10931915 PMCID: PMC108458 DOI: 10.1093/nar/28.16.3017] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2000] [Accepted: 07/04/2000] [Indexed: 01/20/2023] Open
Abstract
We have analyzed DNA of EUGLENA: gracilis for the presence of the unusual minor base beta-D-glucosyl-hydroxymethyluracil or J, thus far only found in kinetoplastid flagellates and in DIPLONEMA: Using antibodies specific for J and post-labeling of DNA digests followed by two-dimensional thin-layer chromatography of labeled nucleotides, we show that approximately 0.2 mole percent of EUGLENA: DNA consists of J, an amount similar to that found in DNA of Trypanosoma brucei. By staining permeabilized EUGLENA: cells with anti-J antibodies, we show that J is rather uniformly distributed in the EUGLENA: nucleus, and does not co-localize to a substantial extent with (GGGTTA)(n) repeats, the putative telomeric repeats of EUGLENA: Hence, most of J in EUGLENA: appears to be non-telomeric. Our results add to the existing evidence for a close phylogenetic relation between kinetoplastids and euglenids.
Collapse
|
Comparative Study |
25 |
56 |
6
|
Rudenko G, Chaves I, Dirks-Mulder A, Borst P. Selection for activation of a new variant surface glycoprotein gene expression site in Trypanosoma brucei can result in deletion of the old one. Mol Biochem Parasitol 1998; 95:97-109. [PMID: 9763292 DOI: 10.1016/s0166-6851(98)00099-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The African trypanosome Trypanosoma brucei expresses the active variant surface glycoprotein (VSG) gene in a telomeric VSG gene expression site. We have generated trypanosomes with a neomycin resistance gene inserted behind an active VSG gene expression site promoter, and a hygromycin resistance gene behind a silent one. By alternating drug selection, we could select for trypanosomes that had switched between the two marked VSG gene expression sites. Surprisingly, trypanosomes that had activated a new VSG gene expression site had often lost the old one. Using polymerase chain reaction (PCR), we screened large numbers of switched trypanosomes and found that sequences lost invariably included the drug marker near the promoter, as well as the telomeric VSG gene many tens of kilobases away. We postulate that stable activation of a new expression site requires silencing of the old one. If silencing does not occur at a sufficient rate by normal switch-off, stable activation of the new site can only occur if the old site is lost in random deletion events. The fact that we pick up these normally infrequent deletions, indicates that inactivation of the old VSG expression site could be rate limiting during switching in our strain of T. brucei.
Collapse
|
|
27 |
45 |
7
|
Eker APM, Quayle C, Chaves I, van der Horst GTJ. DNA repair in mammalian cells: Direct DNA damage reversal: elegant solutions for nasty problems. Cell Mol Life Sci 2009; 66:968-80. [PMID: 19153659 PMCID: PMC11131552 DOI: 10.1007/s00018-009-8735-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The genomic integrity of all living organisms is constantly jeopardized by physical [e.g. ultraviolet (UV) light, ionizing radiation] and chemical (e.g. environmental pollutants, endogenously produced reactive metabolites) agents that damage the DNA. To overcome the deleterious effects of DNA lesions, nature evolved a number of complex multi-protein repair processes with broad, partially overlapping substrate specificity. In marked contrast, cells may use very simple repair systems, referred to as direct DNA damage reversal, that rely on a single protein, remove lesions in a basically error-free manner, show high substrate specificity, and do not involve incision of the sugar-phosphate backbone or base excision. This concise review deals with two types of direct DNA damage reversal: (i) the repair of alkylating damage by alkyltransferases and dioxygenases, and (ii) the repair of UV-induced damage by spore photoproduct lyases and photolyases. (Part of a Multi-author Review).
Collapse
|
Review |
16 |
42 |
8
|
Regalado AP, Pinheiro C, Vidal S, Chaves I, Ricardo CP, Rodrigues-Pousada C. The Lupinus albus class-III chitinase gene, IF3, is constitutively expressed in vegetative organs and developing seeds. PLANTA 2000; 210:543-550. [PMID: 10787047 DOI: 10.1007/s004250050043] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A cDNA fragment encoding a Lupinus albus. L. class-III chitinase, IF3, was isolated, using a cDNA probe from Cucumis sativus L., by in-situ plaque hybridization from a cDNA library constructed in the Uni-ZAP XR vector, with mRNAs isolated from mature lupin leaves. The cDNA had a coding sequence of 293 amino acids including a 27-residue N-terminal signal peptide. A class-III chitinase gene was detected by Southern analysis in the L. albus genome. Western blotting experiments showed that the IF3 protein was constitutively present during seed development and in all the studied vegetative lupin organs (i.e., roots, hypocotyls and leaves) at two growth stages (7- and 20-d-old plants). Accumulation of both the IF3 mRNA and IF3 protein was triggered by salicylic acid treatment as well as by abiotic (UV-C light and wounding) and biotic stress conditions (Colletotrichum gloeosporioides infection). In necrotic leaves, IF3 chitinase mRNA was present at a higher level than that of another mRNA encoding a pathogenesis-related (PR) protein from L. albus (a PR-10) and that of the rRNAs. We suggest that one role of the IF3 chitinase could be in the defense of the plant against fungal infection, though our results do not exclude other functions for this protein.
Collapse
|
|
25 |
19 |
9
|
van den Berg CB, Chaves I, Herzog EM, Willemsen SP, van der Horst GTJ, Steegers-Theunissen RPM. Early- and late-onset preeclampsia and the DNA methylation of circadian clock and clock-controlled genes in placental and newborn tissues. Chronobiol Int 2017; 34:921-932. [DOI: 10.1080/07420528.2017.1326125] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
|
8 |
15 |
10
|
Tamanini F, Chaves I, Bajek MI, van der Horst GTJ. Structure function analysis of mammalian cryptochromes. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2007; 72:133-139. [PMID: 18419270 DOI: 10.1101/sqb.2007.72.066] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Members of the photolyase/cryptochrome family are flavoproteins that share an extraordinary conserved core structure (photolyase homology region, PHR), but the presence of a carboxy-terminal extension is limited to the cryptochromes. Photolyases are DNA-repair enzymes that remove UV-light-induced lesions. Cryptochromes of plants and Drosophila act as circadian photoreceptors, involved in light entrainment of the biological clock. Using knockout mouse models, mammalian cryptochromes (mCRY1 and mCRY2) were identified as essential components of the clock machinery. Within the mammalian transcription-translation feedback loop generating rhythmic gene expression, mCRYs potently inhibit the transcription activity of the CLOCK/BMAL1 heterodimer and protect mPER2 from 26S-protesome-mediated degradation. By analyzing a set of mutant mCRY1 proteins and photolyase/mCRY1 chimeric proteins, we found that the carboxyl terminus has a determinant role in mCRY1 function by harboring distinguished domains involved in nuclear import and interactions with other clock proteins. Moreover, the carboxyl terminus must cross-talk with the PHR to establish full transcription repression capacity in mCRY1. We propose that the presence of the carboxyl terminus in cryptochromes, which varies in sequence composition among mammalian, Drosophila, and plant CRYs, is critical for their different functions and possibly contributed to shape the different architecture and biochemistry of the clock machineries in these organisms.
Collapse
|
Review |
18 |
14 |
11
|
Figueiredo H, Tavares A, Ferrás L, Couceiro A, Chaves I. Isolated teratozoospermia and in vitro fertilization. J Assist Reprod Genet 1996; 13:64-8. [PMID: 8825170 DOI: 10.1007/bf02068872] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
PURPOSE To show whether increased amounts of spermatozoa used in insemination of preovulatory oocytes in isolated teratozoospermia according to Kruger's strict criteria gives good fertilization rates. METHODS This study was carried out from September 1993 to November 1994 for a total of 77 cycles, with sperm samples classified according to Kruger's strict classification. Group 1 (C; control) included 37 couples with normal sperm morphology (> 14% normal; SC). Group 2 (GP; good prognosis) included 18 couples (morphology, > or = 4 and < or = 14% normal) and group 3 (T; teratozoospermic) included 11 couples, with isolated teratozoospermia in the male partner (morphology, < 4% normal). RESULTS No statistically significant difference was seen in the three groups regarding age, duration of infertility, aspirated follicles, oocytes collected, and embryos transferred. There is a statistically significantly difference (P < 0.001) in the number of spermatozoa used in insemination in group 3. CONCLUSIONS In conclusion, a morphological classification using strict criteria in the assessment of sperm morphology is still very important, as increasing the sperm number of spermatozoa inseminated per oocyte may improve zona pellucida binding and give better IVF results.
Collapse
|
|
29 |
12 |
12
|
|
Comment |
26 |
6 |
13
|
Van Gilst D, Puchkina AV, Roelants JA, Kervezee L, Dudink J, Reiss IKM, Van Der Horst GTJ, Vermeulen MJ, Chaves I. Effects of the neonatal intensive care environment on circadian health and development of preterm infants. Front Physiol 2023; 14:1243162. [PMID: 37719464 PMCID: PMC10500197 DOI: 10.3389/fphys.2023.1243162] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/18/2023] [Indexed: 09/19/2023] Open
Abstract
The circadian system in mammals ensures adaptation to the light-dark cycle on Earth and imposes 24-h rhythmicity on metabolic, physiological and behavioral processes. The central circadian pacemaker is located in the brain and is entrained by environmental signals called Zeitgebers. From here, neural, humoral and systemic signals drive rhythms in peripheral clocks in nearly every mammalian tissue. During pregnancy, disruption of the complex interplay between the mother's rhythmic signals and the fetal developing circadian system can lead to long-term health consequences in the offspring. When an infant is born very preterm, it loses the temporal signals received from the mother prematurely and becomes totally dependent on 24/7 care in the Neonatal Intensive Care Unit (NICU), where day/night rhythmicity is usually blurred. In this literature review, we provide an overview of the fetal and neonatal development of the circadian system, and short-term consequences of disruption of this process as occurs in the NICU environment. Moreover, we provide a theoretical and molecular framework of how this disruption could lead to later-life disease. Finally, we discuss studies that aim to improve health outcomes after preterm birth by studying the effects of enhancing rhythmicity in light and noise exposure.
Collapse
|
Review |
2 |
2 |
14
|
Figueiredo H, Tavares A, Ferras L, Couceiro A, Chaves I. R-029. Effect of low hypo-osmotic swelling test scores on fertilization and pregnancy rates after IVF and embryo transfer. Hum Reprod 1997. [DOI: 10.1093/humrep/12.suppl_2.249-a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
|
28 |
|
15
|
Rossi L, Santos KBS, Mota BIS, Pimenta J, Oliveira B, Machado CA, Fernandes HB, Barbosa LA, Rodrigues HA, Teixeira GHM, Gomes-Martins GA, Chaimowicz GF, Queiroz-Junior CM, Chaves I, Tapia JC, Teixeira MM, Costa VV, Miranda AS, Guatimosim C. Neuromuscular defects after infection with a beta coronavirus in mice. Neurochem Int 2023; 169:105567. [PMID: 37348761 PMCID: PMC10281698 DOI: 10.1016/j.neuint.2023.105567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023]
Abstract
COVID-19 affects primarily the lung. However, several other systemic alterations, including muscle weakness, fatigue and myalgia have been reported and may contribute to the disease outcome. We hypothesize that changes in the neuromuscular system may contribute to the latter symptoms observed in COVID-19 patients. Here, we showed that C57BL/6J mice inoculated intranasally with the murine betacoronavirus hepatitis coronavirus 3 (MHV-3), a model for studying COVID-19 in BSL-2 conditions that emulates severe COVID-19, developed robust motor alterations in muscle strength and locomotor activity. The latter changes were accompanied by degeneration and loss of motoneurons that were associated with the presence of virus-like particles inside the motoneuron. At the neuromuscular junction level, there were signs of atrophy and fragmentation in synaptic elements of MHV-3-infected mice. Furthermore, there was muscle atrophy and fiber type switch with alteration in myokines levels in muscles of MHV-3-infected mice. Collectively, our results show that acute infection with a betacoronavirus leads to robust motor impairment accompanied by neuromuscular system alteration.
Collapse
|
research-article |
2 |
|
16
|
Gumowski P, Lech B, Chaves I, Girard JP. Chronic asthma and rhinitis due to Candida albicans, epidermophyton, and trichophyton. ANNALS OF ALLERGY 1987; 59:48-51. [PMID: 3605797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Asthma and rhinitis due to Candida albicans is well known. Trichophyton and Epidermophyton are not usually considered as causal agents for these diseases. During the years 1982 and 1983 all of the cases of chronic asthma or rhinitis exhibiting a positive immediate skin response (greater than or equal to 10 mm) to one of these three antigens were selected for this study (60 asthma and 75 rhinitis). They all went through nasal and bronchial provocation tests with the specific antigen. Late reactions were also registered. A RAST was performed in some of the patients reacting to Candida albicans. Following inhalation challenge with antigens, an immediate response was obtained in 91 cases (asthma 30, rhinitis 51). A dual response was observed in 17 cases of asthma and in 13 cases of rhinitis. A RAST-Candida albicans was done in 64 cases. Results were positive in 52 patients. In 46 cases there was a correlation between the RAST and the provocation tests. Hyposensitization treatment was given to 92 patients. After 2 years of treatment, a good to excellent response could be observed in almost 60% of the treated cases. A rough estimation of the incidence of immediate bronchial and nasal hypersensitivity among patients with chronic asthma and rhinitis to the three yeasts gives the approximate figure of 8% to 10%.
Collapse
|
|
38 |
|