1
|
Jiang J, Kurnikov I, Belikova NA, Xiao J, Zhao Q, Amoscato AA, Braslau R, Studer A, Fink MP, Greenberger JS, Wipf P, Kagan VE. Structural requirements for optimized delivery, inhibition of oxidative stress, and antiapoptotic activity of targeted nitroxides. J Pharmacol Exp Ther 2007; 320:1050-60. [PMID: 17179468 DOI: 10.1124/jpet.106.114769] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Suppression of mitochondrial production of reactive oxygen species is a promising strategy against intrinsic apoptosis typical of degenerative diseases. Stable nitroxide radicals such as 4-hydroxy-2,2,6,6-tetramethyl piperidine-1-oxyl (TEMPOL) and its analogs combine several important features, including recycleability, electron acceptance from respiratory complexes, superoxide dismutase mimicry, and radical scavenging. Although successful in antioxidant protection, their effective concentrations are too high for successful in vivo applications. Recently (J Am Chem Soc 127:12460, 2005), we reported that 4-amino 2,2,6,6-tetramethyl-1-piperidinyloxy, covalently conjugated to a five-residue segment of gramicidin S (GS), was integrated into mitochondria and blocked actinomycin D (ActD)-induced superoxide generation and apoptosis. Using a model of ActD-induced apoptosis in mouse embryonic cells, we screened a library of nitroxides to explore structure-activity relationships between their antioxidant/antiapoptotic properties and chemical composition and three-dimensional (3D) structure. High hydrophobicity and effective mitochondrial integration are necessary but not sufficient for high antiapoptotic/antioxidant activity of a nitroxide conjugate. By designing conformationally preorganized peptidyl nitroxide conjugates and characterizing their 3D structure experimentally (circular dichroism and NMR) and theoretically (molecular dynamics), we established that the presence of the beta-turn/beta-sheet secondary structure is essential for the desired activity. Monte Carlo simulations in model lipid membranes confirmed that the conservation of the d-Phe-Pro reverse turn in hemi-GS analogs ensures the specific positioning of the nitroxide moiety at the mitochondrial membrane interface and maximizes their protective effects. These new insights into the structure-activity relationships of nitroxide-peptide and -peptide isostere conjugates are instrumental for development of new mechanism-based therapeutically effective agents.
Collapse
|
Research Support, N.I.H., Extramural |
18 |
69 |
2
|
Liao HJ, Li J, Huang JL, Davidson M, Kurnikov I, Lin TS, Lee JL, Kurnikova M, Guo Y, Chan NL, Chang WC. Insights into the Desaturation of Cyclopeptin and its C3 Epimer Catalyzed by a non-Heme Iron Enzyme: Structural Characterization and Mechanism Elucidation. Angew Chem Int Ed Engl 2018; 57:1831-1835. [PMID: 29314482 DOI: 10.1002/anie.201710567] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 12/04/2017] [Indexed: 11/08/2022]
Abstract
AsqJ, an iron(II)- and 2-oxoglutarate-dependent enzyme found in viridicatin-type alkaloid biosynthetic pathways, catalyzes sequential desaturation and epoxidation to produce cyclopenins. Crystal structures of AsqJ bound to cyclopeptin and its C3 epimer are reported. Meanwhile, a detailed mechanistic study was carried out to decipher the desaturation mechanism. These findings suggest that a pathway involving hydrogen atom abstraction at the C10 position of the substrate by a short-lived FeIV -oxo species and the subsequent formation of a carbocation or a hydroxylated intermediate is preferred during AsqJ-catalyzed desaturation.
Collapse
|
|
7 |
40 |
3
|
Pereyaslavets L, Kurnikov I, Kamath G, Butin O, Illarionov A, Leontyev I, Olevanov M, Levitt M, Kornberg RD, Fain B. On the importance of accounting for nuclear quantum effects in ab initio calibrated force fields in biological simulations. Proc Natl Acad Sci U S A 2018; 115:8878-8882. [PMID: 30127031 PMCID: PMC6130346 DOI: 10.1073/pnas.1806064115] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
In many important processes in chemistry, physics, and biology the nuclear degrees of freedom cannot be described using the laws of classical mechanics. At the same time, the vast majority of molecular simulations that employ wide-coverage force fields treat atomic motion classically. In light of the increasing desire for and accelerated development of quantum mechanics (QM)-parameterized interaction models, we reexamine whether the classical treatment is sufficient for a simple but crucial chemical species: alkanes. We show that when using an interaction model or force field in excellent agreement with the "gold standard" QM data, even very basic simulated properties of liquid alkanes, such as densities and heats of vaporization, deviate significantly from experimental values. Inclusion of nuclear quantum effects via techniques that treat nuclear degrees of freedom using the laws of classical mechanics brings the simulated properties much closer to reality.
Collapse
|
research-article |
7 |
28 |
4
|
Pereyaslavets L, Kamath G, Butin O, Illarionov A, Olevanov M, Kurnikov I, Sakipov S, Leontyev I, Voronina E, Gannon T, Nawrocki G, Darkhovskiy M, Ivahnenko I, Kostikov A, Scaranto J, Kurnikova MG, Banik S, Chan H, Sternberg MG, Sankaranarayanan SKRS, Crawford B, Potoff J, Levitt M, Kornberg RD, Fain B. Accurate determination of solvation free energies of neutral organic compounds from first principles. Nat Commun 2022; 13:414. [PMID: 35058472 PMCID: PMC8776904 DOI: 10.1038/s41467-022-28041-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 01/03/2022] [Indexed: 12/28/2022] Open
Abstract
The main goal of molecular simulation is to accurately predict experimental observables of molecular systems. Another long-standing goal is to devise models for arbitrary neutral organic molecules with little or no reliance on experimental data. While separately these goals have been met to various degrees, for an arbitrary system of molecules they have not been achieved simultaneously. For biophysical ensembles that exist at room temperature and pressure, and where the entropic contributions are on par with interaction strengths, it is the free energies that are both most important and most difficult to predict. We compute the free energies of solvation for a diverse set of neutral organic compounds using a polarizable force field fitted entirely to ab initio calculations. The mean absolute errors (MAE) of hydration, cyclohexane solvation, and corresponding partition coefficients are 0.2 kcal/mol, 0.3 kcal/mol and 0.22 log units, i.e. within chemical accuracy. The model (ARROW FF) is multipolar, polarizable, and its accompanying simulation stack includes nuclear quantum effects (NQE). The simulation tools' computational efficiency is on a par with current state-of-the-art packages. The construction of a wide-coverage molecular modelling toolset from first principles, together with its excellent predictive ability in the liquid phase is a major advance in biomolecular simulation.
Collapse
|
research-article |
3 |
19 |
5
|
Dahan A, Ben-Shabat S, Cohen N, Keinan S, Kurnikov I, Aponick A, M. Zimmermann E. Phospholipid-Based Prodrugs for Drug Targeting in Inflammatory Bowel Disease: Computational Optimization and In-Vitro Correlation. Curr Top Med Chem 2016; 16:2543-8. [DOI: 10.2174/1568026616666160414122913] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 01/28/2016] [Accepted: 02/04/2016] [Indexed: 11/22/2022]
|
|
9 |
18 |
6
|
Mahon BP, Ambadapadi S, Yaron JR, Lomelino CL, Pinard MA, Keinan S, Kurnikov I, Macaulay C, Zhang L, Reeves W, McFadden G, Tibbetts S, McKenna R, Lucas AR. Crystal Structure of Cleaved Serp-1, a Myxomavirus-Derived Immune Modulating Serpin: Structural Design of Serpin Reactive Center Loop Peptides with Improved Therapeutic Function. Biochemistry 2018; 57:1096-1107. [PMID: 29227673 DOI: 10.1021/acs.biochem.7b01171] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Myxomavirus-derived protein Serp-1 has potent anti-inflammatory activity in models of vasculitis, lupus, viral sepsis, and transplant. Serp-1 has also been tested successfully in a Phase IIa clinical trial in unstable angina, representing a "first-in-class" therapeutic. Recently, peptides derived from the reactive center loop (RCL) have been developed as stand-alone therapeutics for reducing vasculitis and improving survival in MHV68-infected mice. However, both Serp-1 and the RCL peptides lose activity in MHV68-infected mice after antibiotic suppression of intestinal microbiota. Here, we utilize a structure-guided approach to design and test a series of next-generation RCL peptides with improved therapeutic potential that is not reduced when the peptides are combined with antibiotic treatments. The crystal structure of cleaved Serp-1 was determined to 2.5 Å resolution and reveals a classical serpin structure with potential for serpin-derived RCL peptides to bind and inhibit mammalian serpins, plasminogen activator inhibitor 1 (PAI-1), anti-thrombin III (ATIII), and α-1 antitrypsin (A1AT), and target proteases. Using in silico modeling of the Serp-1 RCL peptide, S-7, we designed several modified RCL peptides that were predicted to have stronger interactions with human serpins because of the larger number of stabilizing hydrogen bonds. Two of these peptides (MPS7-8 and -9) displayed extended activity, improving survival where activity was previously lost in antibiotic-treated MHV68-infected mice (P < 0.0001). Mass spectrometry and kinetic assays suggest interaction of the peptides with ATIII, A1AT, and target proteases in mouse and human plasma. In summary, we present the next step toward the development of a promising new class of anti-inflammatory serpin-based therapeutics.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
17 |
7
|
Dahan A, Markovic M, Keinan S, Kurnikov I, Aponick A, Zimmermann EM, Ben-Shabat S. Computational modeling and in-vitro/in-silico correlation of phospholipid-based prodrugs for targeted drug delivery in inflammatory bowel disease. J Comput Aided Mol Des 2017; 31:1021-1028. [PMID: 29101519 DOI: 10.1007/s10822-017-0079-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 10/25/2017] [Indexed: 12/31/2022]
Abstract
Targeting drugs to the inflamed intestinal tissue(s) represents a major advancement in the treatment of inflammatory bowel disease (IBD). In this work we present a powerful in-silico modeling approach to guide the molecular design of novel prodrugs targeting the enzyme PLA2, which is overexpressed in the inflamed tissues of IBD patients. The prodrug consists of the drug moiety bound to the sn-2 position of phospholipid (PL) through a carbonic linker, aiming to allow PLA2 to release the free drug. The linker length dictates the affinity of the PL-drug conjugate to PLA2, and the optimal linker will enable maximal PLA2-mediated activation. Thermodynamic integration and Weighted Histogram Analysis Method (WHAM)/Umbrella Sampling method were used to compute the changes in PLA2 transition state binding free energy of the prodrug molecule (∆∆Gtr) associated with decreasing/increasing linker length. The simulations revealed that 6-carbons linker is the optimal one, whereas shorter or longer linkers resulted in decreased PLA2-mediated activation. These in-silico results were shown to be in excellent correlation with experimental in-vitro data. Overall, this modern computational approach enables optimization of the molecular design of novel prodrugs, which may allow targeting the free drug specifically to the diseased intestinal tissue of IBD patients.
Collapse
|
Journal Article |
8 |
14 |
8
|
Kamath G, Kurnikov I, Fain B, Leontyev I, Illarionov A, Butin O, Olevanov M, Pereyaslavets L. Prediction of cyclohexane-water distribution coefficient for SAMPL5 drug-like compounds with the QMPFF3 and ARROW polarizable force fields. J Comput Aided Mol Des 2016; 30:977-988. [PMID: 27585472 DOI: 10.1007/s10822-016-9958-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 08/26/2016] [Indexed: 10/21/2022]
Abstract
We present the performance of blind predictions of water-cyclohexane distribution coefficients for 53 drug-like compounds in the SAMPL5 challenge by three methods currently in use within our group. Two of them utilize QMPFF3 and ARROW, polarizable force-fields of varying complexity, and the third uses the General Amber Force-Field (GAFF). The polarizable FF's are implemented in an in-house MD package, Arbalest. We find that when we had time to parametrize the functional groups with care (batch 0), the polarizable force-fields outperformed the non-polarizable one. Conversely, on the full set of 53 compounds, GAFF performed better than both QMPFF3 and ARROW. We also describe the torsion-restrain method we used to improve sampling of molecular conformational space and thus the overall accuracy of prediction. The SAMPL5 challenge highlighted several drawbacks of our force-fields, such as our significant systematic over-estimation of hydrophobic interactions, specifically for alkanes and aromatic rings.
Collapse
|
Journal Article |
9 |
11 |
9
|
Nawrocki G, Leontyev I, Sakipov S, Darkhovskiy M, Kurnikov I, Pereyaslavets L, Kamath G, Voronina E, Butin O, Illarionov A, Olevanov M, Kostikov A, Ivahnenko I, Patel DS, Sankaranarayanan SKRS, Kurnikova MG, Lock C, Crooks GE, Levitt M, Kornberg RD, Fain B. Protein-Ligand Binding Free-Energy Calculations with ARROW─A Purely First-Principles Parameterized Polarizable Force Field. J Chem Theory Comput 2022; 18:7751-7763. [PMID: 36459593 PMCID: PMC9753910 DOI: 10.1021/acs.jctc.2c00930] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Indexed: 12/03/2022]
Abstract
Protein-ligand binding free-energy calculations using molecular dynamics (MD) simulations have emerged as a powerful tool for in silico drug design. Here, we present results obtained with the ARROW force field (FF)─a multipolar polarizable and physics-based model with all parameters fitted entirely to high-level ab initio quantum mechanical (QM) calculations. ARROW has already proven its ability to determine solvation free energy of arbitrary neutral compounds with unprecedented accuracy. The ARROW FF parameterization is now extended to include coverage of all amino acids including charged groups, allowing molecular simulations of a series of protein-ligand systems and prediction of their relative binding free energies. We ensure adequate sampling by applying a novel technique that is based on coupling the Hamiltonian Replica exchange (HREX) with a conformation reservoir generated via potential softening and nonequilibrium MD. ARROW provides predictions with near chemical accuracy (mean absolute error of ∼0.5 kcal/mol) for two of the three protein systems studied here (MCL1 and Thrombin). The third protein system (CDK2) reveals the difficulty in accurately describing dimer interaction energies involving polar and charged species. Overall, for all of the three protein systems studied here, ARROW FF predicts relative binding free energies of ligands with a similar accuracy level as leading nonpolarizable force fields.
Collapse
|
research-article |
3 |
10 |
10
|
Markovic M, Dahan A, Keinan S, Kurnikov I, Aponick A, Zimmermann EM, Ben-Shabat S. Phospholipid-Based Prodrugs for Colon-Targeted Drug Delivery: Experimental Study and In-Silico Simulations. Pharmaceutics 2019; 11:pharmaceutics11040186. [PMID: 30995772 PMCID: PMC6523355 DOI: 10.3390/pharmaceutics11040186] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/07/2019] [Accepted: 04/08/2019] [Indexed: 12/23/2022] Open
Abstract
In ulcerative colitis (UC), the inflammation is localized in the colon, and one of the successful strategies for colon-targeting drug delivery is the prodrug approach. In this work, we present a novel phospholipid (PL)-based prodrug approach, as a tool for colonic drug targeting in UC. We aim to use the phospholipase A2 (PLA2), an enzyme that is overexpressed in the inflamed colonic tissues of UC patients, as the PL-prodrug activating enzyme, to accomplish the liberation of the parent drug from the prodrug complex at the specific diseased tissue(s). Different linker lengths between the PL and the drug moiety can dictate the rate of activation by PLA2, and subsequently determine the amount of free drugs at the site of action. The feasibility of this approach was studied with newly synthesized PL-Fmoc (fluorenylmethyloxycarbonyl) conjugates, using Fmoc as a model compound for testing our hypothesis. In vitro incubation with bee venom PLA2 demonstrated that a 7-carbon linker between the PL and Fmoc has higher activation rate than a 5-carbon linker. 4-fold higher colonic expression of PLA2 was demonstrated in colonic mucosa of colitis-induced rats when compared to healthy animals, validating our hypothesis of a colitis-targeting prodrug approach. Next, a novel molecular dynamics (MD) simulation was developed for PL-based prodrugs containing clinically relevant drugs. PL-methotrexate conjugate with 6-carbon linker showed the highest extent of PLA2-mediated activation, whereas shorter linkers were activated to a lower extent. In conclusion, this work demonstrates that for carefully designed PL-drug conjugates, PLA2 overexpression in inflamed colonic tissues can be used as prodrug-activating enzyme and drug targeting strategy, including insights into the activation mechanisms in a PLA2 binding site.
Collapse
|
Journal Article |
6 |
10 |
11
|
Nevernov I, Kurnikov I, Nicolini C. Mechanical interactions in STM imaging of large insulating adsorbates. Ultramicroscopy 1995. [DOI: 10.1016/0304-3991(95)00052-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
|
30 |
3 |
12
|
Liao HJ, Li J, Huang JL, Davidson M, Kurnikov I, Lin TS, Lee JL, Kurnikova M, Guo Y, Chan NL, Chang WC. Insights into the Desaturation of Cyclopeptin and its C3 Epimer Catalyzed by a non-Heme Iron Enzyme: Structural Characterization and Mechanism Elucidation. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201710567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
|
7 |
2 |
13
|
Flores-Canales JC, Kurnikov I, Simakov N, Kyrychenko A, Rodnin MV, Ladokhin AS, Kurnikova M. Mechanism of the pH-Triggered Formation of Membrane-Competent State of the Diphtheria Toxin Translocation Domain Revealed by Simulations and Experiment. Biophys J 2011. [DOI: 10.1016/j.bpj.2010.12.1336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
|
14 |
|
14
|
Veras L, Younkunas M, Hwang J, Kallenbach E, Kurnikov I, Johnson JW, Kurnikova M. Molecular Mechanisms of Ca2+ Selectivity and Mg2+ Block of NMDA Receptors. Biophys J 2011. [DOI: 10.1016/j.bpj.2010.12.1680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
|
14 |
|
15
|
Flores JC, Kurnikov I, Kurnikova M. An Empirical Scoring Function for the Transmembrane Helical Protein Assembly. Biophys J 2012. [DOI: 10.1016/j.bpj.2011.11.2576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
|
13 |
|