1
|
Wang YY, Attané C, Milhas D, Dirat B, Dauvillier S, Guerard A, Gilhodes J, Lazar I, Alet N, Laurent V, Le Gonidec S, Biard D, Hervé C, Bost F, Ren GS, Bono F, Escourrou G, Prentki M, Nieto L, Valet P, Muller C. Mammary adipocytes stimulate breast cancer invasion through metabolic remodeling of tumor cells. JCI Insight 2017; 2:e87489. [PMID: 28239646 DOI: 10.1172/jci.insight.87489] [Citation(s) in RCA: 326] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In breast cancer, a key feature of peritumoral adipocytes is their loss of lipid content observed both in vitro and in human tumors. The free fatty acids (FFAs), released by adipocytes after lipolysis induced by tumor secretions, are transferred and stored in tumor cells as triglycerides in lipid droplets. In tumor cell lines, we demonstrate that FFAs can be released over time from lipid droplets through an adipose triglyceride lipase-dependent (ATGL-dependent) lipolytic pathway. In vivo, ATGL is expressed in human tumors where its expression correlates with tumor aggressiveness and is upregulated by contact with adipocytes. The released FFAs are then used for fatty acid β-oxidation (FAO), an active process in cancer but not normal breast epithelial cells, and regulated by coculture with adipocytes. However, in cocultivated cells, FAO is uncoupled from ATP production, leading to AMPK/acetyl-CoA carboxylase activation, a circle that maintains this state of metabolic remodeling. The increased invasive capacities of tumor cells induced by coculture are completely abrogated by inhibition of the coupled ATGL-dependent lipolysis/FAO pathways. These results show a complex metabolic symbiosis between tumor-surrounding adipocytes and cancer cells that stimulate their invasiveness, highlighting ATGL as a potential therapeutic target to impede breast cancer progression.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
326 |
2
|
Lazar I, Clement E, Dauvillier S, Milhas D, Ducoux-Petit M, LeGonidec S, Moro C, Soldan V, Dalle S, Balor S, Golzio M, Burlet-Schiltz O, Valet P, Muller C, Nieto L. Adipocyte Exosomes Promote Melanoma Aggressiveness through Fatty Acid Oxidation: A Novel Mechanism Linking Obesity and Cancer. Cancer Res 2016; 76:4051-7. [PMID: 27216185 DOI: 10.1158/0008-5472.can-16-0651] [Citation(s) in RCA: 263] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 05/18/2016] [Indexed: 11/16/2022]
Abstract
Malignant progression results from a dynamic cross-talk between stromal and cancer cells. Recent evidence suggests that this cross-talk is mediated to a significant extent by exosomes, nanovesicles secreted by most cell types and which allow the transfer of proteins, lipids, and nucleic acids between cells. Adipocytes are a major component of several tumor microenvironments, including that of invasive melanoma, where cells have migrated to the adipocyte-rich hypodermic layer of the skin. We show that adipocytes secrete exosomes in abundance, which are then taken up by tumor cells, leading to increased migration and invasion. Using mass spectrometry, we analyzed the proteome of adipocyte exosomes. Interestingly, these vesicles carry proteins implicated in fatty acid oxidation (FAO), a feature highly specific to adipocyte exosomes. We further show that, in the presence of adipocyte exosomes, FAO is increased in melanoma cells. Inhibition of this metabolic pathway completely abrogates the exosome-mediated increase in migration. Moreover, in obese mice and humans, both the number of exosomes secreted by adipocytes as well as their effect on FAO-dependent cell migration are amplified. These observations might in part explain why obese melanoma patients have a poorer prognosis than their nonobese counterparts. Cancer Res; 76(14); 4051-7. ©2016 AACR.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
263 |
3
|
Clement E, Lazar I, Attané C, Carrié L, Dauvillier S, Ducoux-Petit M, Esteve D, Menneteau T, Moutahir M, Le Gonidec S, Dalle S, Valet P, Burlet-Schiltz O, Muller C, Nieto L. Adipocyte extracellular vesicles carry enzymes and fatty acids that stimulate mitochondrial metabolism and remodeling in tumor cells. EMBO J 2020; 39:e102525. [PMID: 31919869 DOI: 10.15252/embj.2019102525] [Citation(s) in RCA: 193] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 11/20/2019] [Accepted: 12/02/2019] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles are emerging key actors in adipocyte communication. Notably, small extracellular vesicles shed by adipocytes stimulate fatty acid oxidation and migration in melanoma cells and these effects are enhanced in obesity. However, the vesicular actors and cellular processes involved remain largely unknown. Here, we elucidate the mechanisms linking adipocyte extracellular vesicles to metabolic remodeling and cell migration. We show that adipocyte vesicles stimulate melanoma fatty acid oxidation by providing both enzymes and substrates. In obesity, the heightened effect of extracellular vesicles depends on increased transport of fatty acids, not fatty acid oxidation-related enzymes. These fatty acids, stored within lipid droplets in cancer cells, drive fatty acid oxidation upon being released by lipophagy. This increase in mitochondrial activity redistributes mitochondria to membrane protrusions of migrating cells, which is necessary to increase cell migration in the presence of adipocyte vesicles. Our results provide key insights into the role of extracellular vesicles in the metabolic cooperation that takes place between adipocytes and tumors with particular relevance to obesity.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
193 |
4
|
Carayon K, Chaoui K, Ronzier E, Lazar I, Bertrand-Michel J, Roques V, Balor S, Terce F, Lopez A, Salomé L, Joly E. Proteolipidic composition of exosomes changes during reticulocyte maturation. J Biol Chem 2011; 286:34426-39. [PMID: 21828046 DOI: 10.1074/jbc.m111.257444] [Citation(s) in RCA: 146] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During the orchestrated process leading to mature erythrocytes, reticulocytes must synthesize large amounts of hemoglobin, while eliminating numerous cellular components. Exosomes are small secreted vesicles that play an important role in this process of specific elimination. To understand the mechanisms of proteolipidic sorting leading to their biogenesis, we have explored changes in the composition of exosomes released by reticulocytes during their differentiation, in parallel to their physical properties. By combining proteomic and lipidomic approaches, we found dramatic alterations in the composition of the exosomes retrieved over the course of a 7-day in vitro differentiation protocol. Our data support a previously proposed model, whereby in reticulocytes the biogenesis of exosomes involves several distinct mechanisms for the preferential recruitment of particular proteins and lipids and suggest that the respective prominence of those pathways changes over the course of the differentiation process.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
146 |
5
|
Lazar I, Clement E, Ducoux-Petit M, Denat L, Soldan V, Dauvillier S, Balor S, Burlet-Schiltz O, Larue L, Muller C, Nieto L. Proteome characterization of melanoma exosomes reveals a specific signature for metastatic cell lines. Pigment Cell Melanoma Res 2015; 28:464-75. [PMID: 25950383 DOI: 10.1111/pcmr.12380] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 05/05/2015] [Indexed: 01/19/2023]
Abstract
Exosomes are important mediators in cell-to-cell communication and, recently, their role in melanoma progression has been brought to light. Here, we characterized exosomes secreted by seven melanoma cell lines with varying degrees of aggressivity. Extensive proteomic analysis of their exosomes confirmed the presence of characteristic exosomal markers as well as melanoma-specific antigens and oncogenic proteins. Importantly, the protein composition differed among exosomes from different lines. Exosomes from aggressive cells contained specific proteins involved in cell motility, angiogenesis, and immune response, while these proteins were less abundant or absent in exosomes from less aggressive cells. Interestingly, when exposed to exosomes from metastatic lines, less aggressive cells increased their migratory capacities, likely due to transfer of pro-migratory exosomal proteins to recipient cells. Hence, this study shows that the specific protein composition of melanoma exosomes depends on the cells' aggressivity and suggests that exosomes influence the behavior of other tumor cells and their microenvironment.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
117 |
6
|
Darlington RB, Royce JM, Snipper AS, Murray HW, Lazar I. Preschool Programs and Later School Competence of Children from Low-Income Families. Science 1980; 208:202-4. [PMID: 17745540 DOI: 10.1126/science.208.4440.202] [Citation(s) in RCA: 103] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
At follow-up in 1976, low-income children who had attended infant and preschool programs in the 1960's had significantly higher rates of meeting school requirements than did controls, as measured by lower frequency of placement in special education classes and of being retained in grade (held back).
Collapse
|
|
45 |
103 |
7
|
Lehuédé C, Li X, Dauvillier S, Vaysse C, Franchet C, Clement E, Esteve D, Longué M, Chaltiel L, Le Gonidec S, Lazar I, Geneste A, Dumontet C, Valet P, Nieto L, Fallone F, Muller C. Adipocytes promote breast cancer resistance to chemotherapy, a process amplified by obesity: role of the major vault protein (MVP). Breast Cancer Res 2019; 21:7. [PMID: 30654824 PMCID: PMC6337862 DOI: 10.1186/s13058-018-1088-6] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 12/18/2018] [Indexed: 01/01/2023] Open
Abstract
Introduction Clinical studies suggest that obesity, in addition to promoting breast cancer aggressiveness, is associated with a decrease in chemotherapy efficacy, although the mechanisms involved remain elusive. As chemotherapy is one of the main treatments for aggressive or metastatic breast cancer, we investigated whether adipocytes can mediate resistance to doxorubicin (DOX), one of the main drugs used to treat breast cancer, and the mechanisms associated. Methods We used a coculture system to grow breast cancer cells with in vitro differentiated adipocytes as well as primary mammary adipocytes isolated from lean and obese patients. Drug cellular accumulation, distribution, and efflux were studied by immunofluorescence, flow cytometry, and analysis of extracellular vesicles. Results were validated by immunohistochemistry in a series of lean and obese patients with cancer. Results Adipocytes differentiated in vitro promote DOX resistance (with cross-resistance to paclitaxel and 5-fluorouracil) in a large panel of human and murine breast cancer cell lines independently of their subtype. Subcellular distribution of DOX was altered in cocultivated cells with decreased nuclear accumulation of the drug associated with a localized accumulation in cytoplasmic vesicles, which then are expelled into the extracellular medium. The transport-associated major vault protein (MVP), whose expression was upregulated by adipocytes, mediated both processes. Coculture with human mammary adipocytes also induced chemoresistance in breast cancer cells (as well as the related MVP-induced DOX efflux) and their effect was amplified by obesity. Finally, in a series of human breast tumors, we observed a gradient of MVP expression, which was higher at the invasive front, where tumor cells are at close proximity to adipocytes, than in the tumor center, highlighting the clinical relevance of our results. High expression of MVP in these tumor cells is of particular interest since they are more likely to disseminate to give rise to chemoresistant metastases. Conclusions Collectively, our study shows that adipocytes induce an MVP-related multidrug-resistant phenotype in breast cancer cells, which could contribute to obesity-related chemoresistance. Electronic supplementary material The online version of this article (10.1186/s13058-018-1088-6) contains supplementary material, which is available to authorized users.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
91 |
8
|
Oh MS, Uribarri J, Alveranga D, Lazar I, Bazilinski N, Carroll HJ. Metabolic utilization and renal handling of D-lactate in men. Metabolism 1985; 34:621-5. [PMID: 4010522 DOI: 10.1016/0026-0495(85)90088-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
This study was carried out to investigate the renal handling of d- and l-lactate and the extent of their metabolism in men. Ten healthy male subjects were given an intravenous (IV) infusion of a racemic mixture of d- and l-lactate. At an infusion rate of 1.0 to 1.3 meq/kg body weight of each isomer, d-lactate achieved a concentration in plasma of 1.7 to 3.0 meq/L, and l-lactate 2.8 to 4.2 meq/L. At these levels, fractional excretion of d-lactate ranged from 40% to 65%, while fractional excretion of l-lactate was always less than 5%. At a higher infusion rate, 1.8 to 2.0 meq/kg/h, plasma concentrations of d- and l-lactate reached 4.5 to 6.0 meq/L, and 4.0 to 6.7 meq/L, respectively. Fractional excretion of d-lactate then ranged from 61% to 100%, while that of l-lactate ranged from 9% to 30%. At plasma concentrations of d-lactate less than 3.0 meq/L, reabsorption of l-lactate was nearly complete, but when plasma d-lactate exceeded 3.0 meq/L, reabsorption of l-lactate was considerably impaired. Similarly, for a given concentration of plasma d-lactate, its reabsorption was more efficient when the plasma l-lactate concentration and fractional excretion of l-lactate were low than when they were high. At an infusion rate of d-lactate of 1.0 to 1.3 meq/L, about 90% of the infused lactate was metabolized, and at a higher infusion rate, still more than 75% of the infused lactate was metabolized.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
|
40 |
72 |
9
|
Bansal N, Germann MJ, Lazar I, Malloy CR, Sherry AD. In vivo Na-23 MR imaging and spectroscopy of rat brain during TmDOTP5- infusion. J Magn Reson Imaging 1992; 2:385-91. [PMID: 1633390 DOI: 10.1002/jmri.1880020405] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In vivo sodium-23 and hydrogen-1 magnetic resonance (MR) imaging and spectroscopy of the rat brain during infusion of the shift reagent thulium DOTP5- (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetra[methylene phosphonate] was performed to assign the various peaks observed during infusion and to evaluate the shift reagent in discriminating tissue compartments. Na-23 spectra collected during the infusion showed two shifted peaks that were assigned to intravascular Na+ and extracellular muscle Na+, respectively, and one unshifted peak assigned to intra- and extracellular brain Na+ and cerebrospinal fluid Na+. These assignments were validated with H-1 and Na-23 MR imaging and Na-23 chemical shift imaging (CSI). The H-1 and Na-23 images showed that a surface coil placed on a rat head can detect a substantial amount of signal from muscle surrounding the skull. Na-23 CSI spectra from successive 1-mm-thick coronal sections indicated that the shift reagent did not cross the blood-brain barrier. The study also showed that bulk susceptibility shifts are quite small with Tm-DOTP5-. This reagent may be useful in determining compartmental Na+ concentrations and blood flow kinetics in brain and in examining the integrity of the blood-brain barrier.
Collapse
|
|
33 |
54 |
10
|
Clement E, Lazar I, Muller C, Nieto L. Obesity and melanoma: could fat be fueling malignancy? Pigment Cell Melanoma Res 2017; 30:294-306. [PMID: 28222242 DOI: 10.1111/pcmr.12584] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 02/13/2017] [Indexed: 01/01/2023]
Abstract
Over the last decade, it has become increasingly clear that adipose tissue, and particularly adipocytes, contributes to tumor progression. Obesity, an ever-increasing worldwide phenomenon, exacerbates this effect. The influence of obesity on melanoma remains poorly studied, although recent data do underline an association between the two diseases in both humans and murine models. Herein, we review the impact of obesity on melanoma incidence and progression and discuss the underlying mechanisms known to be involved. Adipose tissue favors the proliferation and aggressiveness of melanoma cells through a direct dialog, mediated by soluble factors and by exosomes, and through remodeling of the tumor microenvironment. This knowledge could, in the future, help to design new personalized therapeutic options for obese melanoma patients.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
37 |
11
|
Khateb A, Deshpande A, Feng Y, Finlay D, Lee JS, Lazar I, Fabre B, Li Y, Fujita Y, Zhang T, Yin J, Pass I, Livneh I, Jeremias I, Burian C, Mason JR, Almog R, Horesh N, Ofran Y, Brown K, Vuori K, Jackson M, Ruppin E, Deshpande AJ, Ronai ZA. The ubiquitin ligase RNF5 determines acute myeloid leukemia growth and susceptibility to histone deacetylase inhibitors. Nat Commun 2021; 12:5397. [PMID: 34518534 PMCID: PMC8437979 DOI: 10.1038/s41467-021-25664-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 08/18/2021] [Indexed: 12/12/2022] Open
Abstract
Acute myeloid leukemia (AML) remains incurable, largely due to its resistance to conventional treatments. Here, we find that increased abundance of the ubiquitin ligase RNF5 contributes to AML development and survival. High RNF5 expression in AML patient specimens correlates with poor prognosis. RNF5 inhibition decreases AML cell growth in culture, in patient-derived xenograft (PDX) samples and in vivo, and delays development of MLL-AF9-driven leukemogenesis in mice, prolonging their survival. RNF5 inhibition causes transcriptional changes that overlap with those seen upon histone deacetylase (HDAC)1 inhibition. RNF5 induces the formation of K29 ubiquitin chains on the histone-binding protein RBBP4, promoting its recruitment to and subsequent epigenetic regulation of genes involved in AML maintenance. Correspondingly, RNF5 or RBBP4 knockdown enhances AML cell sensitivity to HDAC inhibitors. Notably, low expression of both RNF5 and HDAC coincides with a favorable prognosis. Our studies identify an ERAD-independent role for RNF5, demonstrating that its control of RBBP4 constitutes an epigenetic pathway that drives AML, and highlight RNF5/RBBP4 as markers useful to stratify patients for treatment with HDAC inhibitors.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
30 |
12
|
Lazar I, Clement E, Attane C, Muller C, Nieto L. A new role for extracellular vesicles: how small vesicles can feed tumors' big appetite. J Lipid Res 2018; 59:1793-1804. [PMID: 29678957 DOI: 10.1194/jlr.r083725] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/06/2018] [Indexed: 12/13/2022] Open
Abstract
Cancer cells must adapt their metabolism in order to meet the energy requirements for cell proliferation, survival in nutrient-deprived environments, and dissemination. In particular, FA metabolism is emerging as a critical process for tumors. FA metabolism can be modulated through intrinsic changes in gene expression or signaling between tumor cells and also in response to signals from the surrounding microenvironment. Among these signals, extracellular vesicles (EVs) could play an important role in FA metabolism remodeling. In this review, we will present the role of EVs in tumor progression and especially in metabolic reprogramming. Particular attention will be granted to adipocytes. These cells, which are specialized in storing and releasing FAs, are able to shift tumor metabolism toward the use of FAs and, subsequently, increase tumor aggressiveness. Recent work demonstrates the involvement of EVs in this metabolic symbiosis.
Collapse
|
Review |
7 |
27 |
13
|
Harangi B, Lazar I, Hajdu A. Automatic exudate detection using active contour model and regionwise classification. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2013; 2012:5951-4. [PMID: 23367284 DOI: 10.1109/embc.2012.6347349] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Diabetic retinopathy is one the most common cause of blindness in the world. Exudates are among the early signs of this disease, so its proper detection is a very important task to prevent consequent effects. In this paper, we propose a novel approach for exudate detection. First, we identify possible regions containing exudates using grayscale morphology. Then, we apply an active contour based method to minimize the Chan-Vese energy to extract accurate borders of the candidates. To remove those false candidates that have sufficient strong borders to pass the active contour method we use a regionwise classifier. Hence, we extract several shape features for each candidate and let a boosted Naïve Bayes classifier eliminate the false candidates. We considered the publicly available DiaretDB1 color fundus image set for testing, where the proposed method outperformed several state-of-the-art exudate detectors.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
21 |
14
|
Steunou AL, Ducoux-Petit M, Lazar I, Monsarrat B, Erard M, Muller C, Clottes E, Burlet-Schiltz O, Nieto L. Identification of the hypoxia-inducible factor 2α nuclear interactome in melanoma cells reveals master proteins involved in melanoma development. Mol Cell Proteomics 2012; 12:736-48. [PMID: 23275444 DOI: 10.1074/mcp.m112.020727] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Hypoxia-inducible factors (HIFs) are heterodimeric transcription factors that play a key role in cellular adaptation to hypoxia. HIF proteins are composed of an α subunit regulated by oxygen pressure (essentially HIF1α or HIF2α) and a constitutively expressed β subunit. These proteins are often overexpressed in cancer cells, and HIF overexpression frequently correlates with poor prognosis, making HIF proteins promising therapeutic targets. HIF proteins are involved in melanoma initiation and progression; however, the specific function of HIF2 in melanoma has not yet been studied comprehensively. Identifying protein complexes is a valuable way to uncover protein function, and affinity purification coupled with mass spectrometry and label-free quantification is a reliable method for this approach. We therefore applied quantitative interaction proteomics to identify exhaustively the nuclear complexes containing HIF2α in a human melanoma cell line, 501mel. We report, for the first time, a high-throughput analysis of the interactome of an HIF subunit. Seventy proteins were identified that interact with HIF2α, including some well-known HIF partners and some new interactors. The new HIF2α partners microphthalmia-associated transcription factor, SOX10, and AP2α, which are master actors of melanoma development, were confirmed via co-immunoprecipitation experiments. Their ability to bind to HIF1α was also tested: microphthalmia-associated transcription factor and SOX10 were confirmed as HIF1α partners, but the transcription factor AP2α was not. AP2α expression correlates with low invasive capacities. Interestingly, we demonstrated that when HIF2α was overexpressed, only cells expressing large amounts of AP2α exhibited decreased invasive capacities in hypoxia relative to normoxia. The simultaneous presence of both transcription factors therefore reduces cells' invasive properties. Knowledge of the HIF2α interactome is thus a useful resource for investigating the general mechanisms of HIF function and regulation, and here we reveal unexpected, distinct roles for the HIF1 and HIF2 isoforms in melanoma progression.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
18 |
15
|
Gruzelier J, Clow A, Evans P, Lazar I, Walker L. Mind-body influences on immunity: lateralized control, stress, individual differences predictors, and prophylaxis. Ann N Y Acad Sci 1998; 851:487-94. [PMID: 9668642 DOI: 10.1111/j.1749-6632.1998.tb09027.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
Review |
27 |
17 |
16
|
Even-Bendahan G, Lazar I, Erez I, Guttermacher M, Verner M, Konen O, Rathaus V, Freud E. Role of imaging in the diagnosis of acute appendicitis in children. Clin Pediatr (Phila) 2003; 42:23-7. [PMID: 12635978 DOI: 10.1177/000992280304200104] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The aim of the study was to investigate the place of imaging in the diagnosis and treatment of acute appendicitis. The files of 2,427 children with suspected acute appendicitis were reviewed for clinical management and operative findings. The sample was divided into 3 groups at time of admission: (1) before diagnostic imaging was available in our department (1991-1994); (2) after the introduction of imaging studies on a random basis in equivocal cases (1995-1998); and (3) after a policy was formulated for ultrasound use in all equivocal cases followed by computed tomography if necessary (1999-2000). Results showed that the rate of misdiagnosis decreased from 13.2% in group 1 to 6.5% in group 2 and 6.1% in group 3. False-positive findings (normal appendix with positive scan) were noted in 16.7% of group 2 and 25% of group 3; false-negative findings (appendicitis at surgery with negative scan) in 23.8% and 9.5%, respectively. Computed tomography was performed in 8 children and prevented unnecessary surgery in 4 of them. We conclude that in equivocal cases of acute appendicitis, imaging studies performed by skilled operators can improve the accuracy of diagnosis, saving patients unnecessary surgery, and identifying other conditions that mimic appendicitis.
Collapse
|
Comparative Study |
22 |
16 |
17
|
Butwell NB, Ramasamy R, Lazar I, Sherry AD, Malloy CR. Effect of lidocaine on contracture, intracellular sodium, and pH in ischemic rat hearts. THE AMERICAN JOURNAL OF PHYSIOLOGY 1993; 264:H1884-9. [PMID: 8322918 DOI: 10.1152/ajpheart.1993.264.6.h1884] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The relationships among intracellular Na concentration ([Na+]i), intracellular pH, [ATP], and contracture during global ischemia were studied in isolated, perfused rat hearts. Intracellular Na was monitored by 23Na nuclear magnetic resonance (NMR) spectroscopy using thulium 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetra(methylene phosphonate) (TmDOTP5-) as the paramagnetic shift reagent. High-energy phosphates and pH were monitored under the same conditions using 31P-NMR spectroscopy. Lidocaine (130 microM), a class IB fast Na channel blocker known to protect ischemic myocardium, prolonged the time to contracture in both unpaced and paced hearts (240 beats/min). After 10 min of global ischemia in paced hearts, [Na+]i was lower in the lidocaine-treated group compared with untreated hearts. The addition of lidocaine also significantly attenuated the depletion of ATP as well as development of intracellular acidosis. At the time of contracture, however, there was no difference in [Na+]i or pH between the two groups. Interestingly, the effect of lidocaine on Na+i accumulation during ischemia was manifested during the first 5-10 min of ischemia, while its effect on pH occurred after 9 min. This finding suggests that a mechanism other than the Na-H exchanger may play a role in the accumulation of Na+i early in the course of ischemia.
Collapse
|
|
32 |
15 |
18
|
Lazar I. Ch. A-1 MEOR Field Trials Carried Out Over the World During the Last 35 Years. MICROBIAL ENHANCEMENT OF OIL RECOVERY—RECENT ADVANCES, PROCEEDINGS OF THE 1990 INTERNATIONAL CONFERENCE ON MICROBIAL ENHANCEMENT OF OIL RECOVERY 1991. [DOI: 10.1016/s0376-7361(09)70181-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
|
34 |
14 |
19
|
Avitan-Hersh E, Feng Y, Oknin Vaisman A, Abu Ahmad Y, Zohar Y, Zhang T, Lee JS, Lazar I, Sheikh Khalil S, Feiler Y, Kluger H, Kahana C, Brown K, Ruppin E, Ronai ZA, Orian A. Regulation of eIF2α by RNF4 Promotes Melanoma Tumorigenesis and Therapy Resistance. J Invest Dermatol 2020; 140:2466-2477. [PMID: 32360601 DOI: 10.1016/j.jid.2020.04.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/24/2020] [Accepted: 04/06/2020] [Indexed: 01/07/2023]
Abstract
Among the hallmarks of melanoma are impaired proteostasis and rapid development of resistance to targeted therapy that represent a major clinical challenge. However, the molecular machinery that links these processes is unknown. Here we describe that by stabilizing key melanoma oncoproteins, the ubiquitin ligase RNF4 promotes tumorigenesis and confers resistance to targeted therapy in melanoma cells, xenograft mouse models, and patient samples. In patients, RNF4 protein and mRNA levels correlate with poor prognosis and with resistance to MAPK inhibitors. Remarkably, RNF4 tumorigenic properties, including therapy resistance, require the translation initiation factor initiation elongation factor alpha (eIF2α). RNF4 binds, ubiquitinates, and stabilizes the phosphorylated eIF2α (p-eIF2α) but not activating transcription factor 4 or C/EBP homologous protein that mediates the eIF2α-dependent integrated stress response. In accordance, p-eIF2α levels were significantly elevated in high-RNF4 patient-derived melanomas. Thus, RNF4 and p-eIF2α establish a positive feed-forward loop connecting oncogenic translation and ubiquitin-dependent protein stabilization in melanoma.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
13 |
20
|
Patel PA, Liang C, Arora A, Vijayan S, Ahuja S, Wagley PK, Settlage R, LaConte LEW, Goodkin HP, Lazar I, Srivastava S, Mukherjee K. Haploinsufficiency of X-linked intellectual disability gene CASK induces post-transcriptional changes in synaptic and cellular metabolic pathways. Exp Neurol 2020; 329:113319. [PMID: 32305418 DOI: 10.1016/j.expneurol.2020.113319] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 04/04/2020] [Accepted: 04/15/2020] [Indexed: 12/17/2022]
Abstract
Heterozygous mutations in the X-linked gene CASK are associated with intellectual disability, microcephaly, pontocerebellar hypoplasia, optic nerve hypoplasia and partially penetrant seizures in girls. The Cask+/- heterozygous knockout female mouse phenocopies the human disorder and exhibits postnatal microencephaly, cerebellar hypoplasia and optic nerve hypoplasia. It is not known if Cask+/- mice also display seizures, nor is known the molecular mechanism by which CASK haploinsufficiency produces the numerous documented phenotypes. 24-h video electroencephalography demonstrates that despite sporadic seizure activity, the overall electrographic patterns remain unaltered in Cask+/- mice. Additionally, seizure threshold to the commonly used kindling agent, pentylenetetrazol, remains unaltered in Cask+/- mice, indicating that even in mice the seizure phenotype is only partially penetrant and may have an indirect mechanism. RNA sequencing experiments on Cask+/- mouse brain uncovers a very limited number of changes, with most differences arising in the transcripts of extracellular matrix proteins and the transcripts of a group of nuclear proteins. In contrast to limited changes at the transcript level, quantitative whole-brain proteomics using iTRAQ quantitative mass-spectrometry reveals major changes in synaptic, metabolic/mitochondrial, cytoskeletal, and protein metabolic pathways. Unbiased protein-protein interaction mapping using affinity chromatography demonstrates that CASK may form complexes with proteins belonging to the same functional groups in which altered protein levels are observed. We discuss the mechanism of the observed changes in the context of known molecular function/s of CASK. Overall, our data indicate that the phenotypic spectrum of female Cask+/- mice includes sporadic seizures and thus closely parallels that of CASK haploinsufficient girls; the Cask+/- mouse is thus a face-validated model for CASK-related pathologies. We therefore surmise that CASK haploinsufficiency is likely to affect brain structure and function due to dysregulation of several cellular pathways including synaptic signaling and cellular metabolism.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
13 |
21
|
Ramasamy R, Lazar I, Brucher E, Sherry AD, Malloy CR. NOTPME: a 31P NMR probe for measurement of divalent cations in biological systems. FEBS Lett 1991; 280:121-4. [PMID: 2009956 DOI: 10.1016/0014-5793(91)80218-r] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
1,4,7-Triazacyclononane-N,N',N''-tris(methylenephosphonate monoethylester) (NOTPME) has been synthesized, characterized and analyzed for use as a 31P NMR indicator of intracellular Mg2+ and Zn2+ ions. The 31P NMR spectrum of this chelate in the presence of metal ions shows characteristic resonances for the free chelate, Mg(NOTPME)-, Zn(NOTPME)-, and Ca(NOTPME)-. The Kd values indicate that this chelate has a 10-fold higher affinity for Mg2+ than for Ca2+ at physiological pH values. In the presence of Mg2+, NOTPME is readily loaded into red blood cells. A 31P NMR spectrum of red cells taken after several washings shows resonances characteristic of entrapped NOTPME and the Mg(NOTPME)- complex, the relative areas of which report an intracellular free Mg2+ concentration of 0.32 mM. The 31P chemical shifts of the free chelate and its metal complexes are far downfield from the typical phosphorus-containing metabolites observed in biological systems, thus making it possible to monitor intracellular cation concentrations and cell energetics simultaneously.
Collapse
|
|
34 |
12 |
22
|
Lazar I, Fabre B, Feng Y, Khateb A, Turko P, Martinez Gomez JM, Frederick DT, Levesque MP, Feld L, Zhang G, Zhang T, James B, Shklover J, Avitan-Hersh E, Livneh I, Scortegagna M, Brown K, Larsson O, Topisirovic I, Wolfenson H, Herlyn M, Flaherty K, Dummer R, Ronai ZA. SPANX Control of Lamin A/C Modulates Nuclear Architecture and Promotes Melanoma Growth. Mol Cancer Res 2020; 18:1560-1573. [PMID: 32571981 PMCID: PMC7541784 DOI: 10.1158/1541-7786.mcr-20-0291] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/19/2020] [Accepted: 06/15/2020] [Indexed: 02/06/2023]
Abstract
Mechanisms regulating nuclear organization control fundamental cellular processes, including the cell and chromatin organization. Their disorganization, including aberrant nuclear architecture, has been often implicated in cellular transformation. Here, we identify Lamin A, among proteins essential for nuclear architecture, as SPANX (sperm protein associated with the nucleus on the X chromosome), a cancer testis antigen previously linked to invasive tumor phenotypes, interacting protein in melanoma. SPANX interaction with Lamin A was mapped to the immunoglobulin fold-like domain, a region critical for Lamin A function, which is often mutated in laminopathies. SPANX downregulation in melanoma cell lines perturbed nuclear organization, decreased cell viability, and promoted senescence-associated phenotypes. Moreover, SPANX knockdown (KD) in melanoma cells promoted proliferation arrest, a phenotype mediated in part by IRF3/IL1A signaling. SPANX KD in melanoma cells also prompted the secretion of IL1A, which attenuated the proliferation of naïve melanoma cells. Identification of SPANX as a nuclear architecture complex component provides an unexpected insight into the regulation of Lamin A and its importance in melanoma. IMPLICATIONS: SPANX, a testis protein, interacts with LMNA and controls nuclear architecture and melanoma growth.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
12 |
23
|
Petit P, Lazar I, Chagnaud C, Moulin G, Castellani P, Bartoli JM. Iatrogenic dissection of the portal vein during TIPS procedure. Eur Radiol 2000; 10:930-4. [PMID: 10879705 DOI: 10.1007/s003300051039] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Dissection of the portal vein is a rare entity which has been rarely described during transjugular intrahepatic portosystemic shunt (TIPS) procedure. We report three cases of dissection during this procedure and their complications. One dissection was immediately treated with coaxial stents. The two others were complicated either by a thrombus or by a false aneurysm. In the first case a second parallel stent was used to treat this complication. The patient with the portal vein false aneurysm was transplanted 4 days after this diagnosis. Portal vein dissection in TIPS procedure appeared to be less rare than has been reported and must be considered as a potential cause of TIPS dysfunction.
Collapse
|
Case Reports |
25 |
8 |
24
|
Lazar I, Abukaf H, Sofer S, Peled N, Leibovitz E. Impact of Conversion from an Open Ward Design Paediatric Intensive Care Unit Environment to All Isolated Rooms Environment on Incidence of Bloodstream Infections and Antibiotic Resistance in Southern Israel (2000 to 2008). Anaesth Intensive Care 2015; 43:34-41. [DOI: 10.1177/0310057x1504300106] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We studied the epidemiology, microbiology, clinical aspects and outcome of bloodstream infections (BSI) in a tertiary paediatric intensive care unit. All BSI episodes were prospectively identified and analysed. The paediatric intensive care unit moved in 2006 from an open-plan unit to a new (all single room) unit. Three hundred and fifty-three BSI episodes occurred in 299 of 4162 patients. Overall, BSI incidence was 85 per 1000 hospitalised children. Fewer BSI episodes occurred during the last two years of the study (2007 to 2008), compared with 2000 to 2006 (70 of 1061 admissions, 6.5% versus 283 of 3101 admissions, 9.1%, respectively, P=0.01). There were 127 of 340 (37.4%) community-acquired and 213 of 340 (62.6%) nosocomial BSI episodes (31 of 1000 and 51 of 1000, respectively). Nosocomial BSI episodes decreased during 2007 to 2008 versus 2000 to 2006 (37.7% versus 55.8%, P=0.03). In 448 instances, pathogens were isolated, 231 (52%) Gram-positive and 188 (42%) Gram-negative. Coagulase-negative Staphylococci, S. pneumoniae and S. aureus (41.1%, 19.9% and 11.7%, respectively) were the most common Gram-positive and Enterobacteriaceae spp. the most frequent Gram-negative organisms (45.2%, of them Klebsiella spp. and E. coli 40% and 29.4%, respectively). A significant decrease was recorded during 2007 to 2008 in Enterobacteriaceae resistance to piperacillin, gentamicin and ciprofloxacin. Thirty of 299 (10%, 9 with S. pneumoniae-BSI) patients died. A significant decrease in BSI and nosocomial incidence and Enterobacteriaceae spp. antibiotic resistance was recorded following the conversion of the paediatric intensive care unit from an open ward to an all isolated rooms environment.
Collapse
|
|
10 |
7 |
25
|
Fabre B, Korona D, Lees JG, Lazar I, Livneh I, Brunet M, Orengo CA, Russell S, Lilley KS. Comparison of Drosophila melanogaster Embryo and Adult Proteome by SWATH-MS Reveals Differential Regulation of Protein Synthesis, Degradation Machinery, and Metabolism Modules. J Proteome Res 2019; 18:2525-2534. [DOI: 10.1021/acs.jproteome.9b00076] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
|
6 |
6 |