1
|
Fossi MC, Marsili L, Baini M, Giannetti M, Coppola D, Guerranti C, Caliani I, Minutoli R, Lauriano G, Finoia MG, Rubegni F, Panigada S, Bérubé M, Urbán Ramírez J, Panti C. Fin whales and microplastics: The Mediterranean Sea and the Sea of Cortez scenarios. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 209:68-78. [PMID: 26637933 DOI: 10.1016/j.envpol.2015.11.022] [Citation(s) in RCA: 219] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 11/13/2015] [Accepted: 11/15/2015] [Indexed: 05/26/2023]
Abstract
The impact that microplastics have on baleen whales is a question that remains largely unexplored. This study examined the interaction between free-ranging fin whales (Balaenoptera physalus) and microplastics by comparing populations living in two semi-enclosed basins, the Mediterranean Sea and the Sea of Cortez (Gulf of California, Mexico). The results indicate that a considerable abundance of microplastics and plastic additives exists in the neustonic samples from Pelagos Sanctuary of the Mediterranean Sea, and that pelagic areas containing high densities of microplastics overlap with whale feeding grounds, suggesting that whales are exposed to microplastics during foraging; this was confirmed by the observation of a temporal increase in toxicological stress in whales. Given the abundance of microplastics in the Mediterranean environment, along with the high concentrations of Persistent Bioaccumulative and Toxic (PBT) chemicals, plastic additives and biomarker responses detected in the biopsies of Mediterranean whales as compared to those in whales inhabiting the Sea of Cortez, we believe that exposure to microplastics because of direct ingestion and consumption of contaminated prey poses a major threat to the health of fin whales in the Mediterranean Sea.
Collapse
|
|
9 |
219 |
2
|
Fossi MC, Pedà C, Compa M, Tsangaris C, Alomar C, Claro F, Ioakeimidis C, Galgani F, Hema T, Deudero S, Romeo T, Battaglia P, Andaloro F, Caliani I, Casini S, Panti C, Baini M. Bioindicators for monitoring marine litter ingestion and its impacts on Mediterranean biodiversity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 237:1023-1040. [PMID: 29153726 DOI: 10.1016/j.envpol.2017.11.019] [Citation(s) in RCA: 201] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 11/03/2017] [Accepted: 11/05/2017] [Indexed: 05/18/2023]
Abstract
The Mediterranean Sea has been described as one of the most affected areas by marine litter in the world. Although effects on organisms from marine plastic litter ingestion have been investigated in several oceanic areas, there is still a lack of information from the Mediterranean Sea. The main objectives of this paper are to review current knowledge on the impact of marine litter on Mediterranean biodiversity, to define selection criteria for choosing marine organisms suitable for use as bioindicator species, and to propose a methodological approach to assessing the harm related to marine litter ingestion in several Mediterranean habitats and sub-regions. A new integrated monitoring tool that would provide the information necessary to design and implement future mitigation actions in the Mediterranean basin is proposed. According to bibliographic research and statistical analysis on current knowledge of marine litter ingestion, the area of the Mediterranean most studied, in terms of number of species and papers in the Mediterranean Sea is the western sub-area as well as demersal (32.9%) and pelagic (27.7%) amongst habitats. Applying ecological and biological criteria to the most threatened species obtained by statistical analysis, bioindicator species for different habitats and monitoring scale were selected. A threefold approach, simultaneously measuring the presence and effects of plastic, can provide the actual harm and sub-lethal effects to organisms caused by marine litter ingestion. The research revealed gaps in knowledge, and this paper suggests measures to close the gap. This and the selection of appropriate bioindicator species would represent a step forward for marine litter risk assessment, and the implementation of future actions and mitigation measures for specific Mediterranean areas, habitats and species affected by marine litter ingestion.
Collapse
|
Review |
7 |
201 |
3
|
de Lucia GA, Caliani I, Marra S, Camedda A, Coppa S, Alcaro L, Campani T, Giannetti M, Coppola D, Cicero AM, Panti C, Baini M, Guerranti C, Marsili L, Massaro G, Fossi MC, Matiddi M. Amount and distribution of neustonic micro-plastic off the western Sardinian coast (Central-Western Mediterranean Sea). MARINE ENVIRONMENTAL RESEARCH 2014; 100:10-6. [PMID: 24776304 DOI: 10.1016/j.marenvres.2014.03.017] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 03/25/2014] [Accepted: 03/27/2014] [Indexed: 05/23/2023]
Abstract
A plethora of different sampling methodologies has been used to document the presence of micro-plastic fragments in sea water. European Marine Strategy suggests to improve standard techniques to make future data comparable. We use Manta Trawl sampling technique to quantify abundance and distribution of micro-plastic fragments in Sardinian Sea (Western Mediterranean), and their relation with phthalates and organoclorine in the neustonic habitat. Our results highlight a quite high average plastic abundance value (0.15 items/m(3)), comparable to the levels detected in other areas of the Mediterranean. "Site" is the only factor that significantly explains the differences observed in micro-plastic densities. Contaminant levels show high spatial and temporal variation. In every station, HCB is the contaminant with the lowest concentration while PCBs shows the highest levels. This work, in line with Marine Strategy directives, represents a preliminary study for the analysis of plastic impact on marine environment of Sardinia.
Collapse
|
|
11 |
123 |
4
|
Baini M, Fossi MC, Galli M, Caliani I, Campani T, Finoia MG, Panti C. Abundance and characterization of microplastics in the coastal waters of Tuscany (Italy): The application of the MSFD monitoring protocol in the Mediterranean Sea. MARINE POLLUTION BULLETIN 2018; 133:543-552. [PMID: 30041348 DOI: 10.1016/j.marpolbul.2018.06.016] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 06/04/2018] [Accepted: 06/06/2018] [Indexed: 05/17/2023]
Abstract
Monitoring efforts are required to understand the sources, distribution and abundance of microplastic pollution. To verify the abundance of microplastics along the Tuscan coastal waters (Italy), water-column and surface samples were collected in two seasons across four transects at different distances to the coast (0.5, 5, 10 and 20 km), within the implementation of the European Marine Strategy Framework Directive. The results show an average concentration of 0.26 items/m3 in the water-column samples and 41.1 g/km2 and 69,161.3 items/km2 of floating microplastics, with an increase with the distance to the coast The seasonality and the sampling area do not affect the abundance of microplastics. The most abundant size class is 1-2.5 mm as fragments and sheets suggesting that fragmentation of larger polyethylene and polypropylene items could be the main source of microplastics. These data represent the application of a harmonized protocol to make the data on microplastics comparable and reliable.
Collapse
|
|
7 |
110 |
5
|
Depledge MH, Galgani F, Panti C, Caliani I, Casini S, Fossi MC. Plastic litter in the sea. MARINE ENVIRONMENTAL RESEARCH 2013; 92:279-81. [PMID: 24157269 DOI: 10.1016/j.marenvres.2013.10.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 09/30/2013] [Accepted: 10/03/2013] [Indexed: 05/20/2023]
Abstract
On June 2013 a workshop at the University of Siena (Italy) was organized to review current knowledge and to clarify what is known, and what remains to be investigated, concerning plastic litter in the sea. The content of the workshop was designed to contribute further to the European Marine Strategy Framework Directive (MSFD) following an inaugural workshop in 2012. Here we report a number of statements relevant to policymakers and scientists that was overwhelming agreement from the participants. Many might view this as already providing sufficient grounds for policy action. At the very least, this early warning of the problems that lie ahead should be taken seriously, and serve as a stimulus for further research.
Collapse
|
Congress |
12 |
53 |
6
|
Caliani I, Campani T, Conti B, Cosci F, Bedini S, D'Agostino A, Ammendola A, Di Noi A, Gori A, Casini S. Multi-biomarker approach and IBR index to evaluate the effects of different contaminants on the ecotoxicological status of Apis mellifera. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111486. [PMID: 33130481 DOI: 10.1016/j.ecoenv.2020.111486] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 05/21/2023]
Abstract
The honeybee, Apis mellifera L. (Hymenoptera: Apidae), a keystone pollinator of wild plant species and agricultural crops, is disappearing globally due to parasites and diseases, habitat loss, genetic constraints, beekeeper management issues and to the widespread use of pesticides. Besides insecticides, widely studied in this species, honeybees are also exposed to herbicides and fungicides and heavy metals whose lethal and sublethal effects need to be investigated. In this context, our study aimed to evaluate the effects of fungicides and of heavy metals on honeybees and to develop and apply a multi-biomarker approach that include an Integrated Biological Index (IBRv2) to assess the toxicological status of this species. Biomarkers of neurotoxicity (AChE and CaE), metabolic alteration (ALP, and GST) and immune system (LYS, granulocytes) were measured, following honeybees' exposure to cadmium or to a crop fungicide, using the genotoxic compound EMS as positive control. A biomarker of genotoxicity (NA assay) was developed and applied for the first time in honeybees. At the doses tested, all the contaminants showed sublethal toxicity to the bees, highlighting in particular genotoxic effects. The data collected were analyzed by an IBRv2 index, which integrated the seven biomarkers used in this study. IBRv2 index increased with increasing cadmium or fungicide concentrations. The IBRv2 represents a simple tool for a general description of honeybees ecotoxicological health status. Results highlight the need for more in-depth investigations on the effects of fungicides on non-target organisms, such as honeybees, using sensitive methods for the determination of sublethal effects. This study contributes to the development of a multi-biomarker approach to be used for a more accurate ecotoxicological environmental monitoring of these animals.
Collapse
|
|
4 |
40 |
7
|
Caliani I, Porcelloni S, Mori G, Frenzilli G, Ferraro M, Marsili L, Casini S, Fossi MC. Genotoxic effects of produced waters in mosquito fish (Gambusia affinis). ECOTOXICOLOGY (LONDON, ENGLAND) 2009; 18:75-80. [PMID: 18763036 DOI: 10.1007/s10646-008-0259-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Accepted: 08/12/2008] [Indexed: 05/26/2023]
Abstract
The aim of this study was to assess the potential genotoxic effects of produced water (PW) from an Italian on-shore oil plant. Produced water is a complex mixture containing residual hydrocarbons, trace elements, naturally occurring radioactive material and potentially toxic treatment chemicals such as biocides, dispersants, detergents and scale inhibitors used in oil production. The test organism, mosquito fish (Gambusia affinis), was divided into male and female groups and exposed for 8 days in the laboratory to 50% concentrations of different produced waters: PW before treatment and after settling treatment. The fish were also exposed to lower concentrations (10%) of the same PW for 30 days. DNA damage was evaluated in erythrocytes by single cell gel electrophoresis (Comet assay) and micronucleus test, while an oxidative stress biomarker, was assessed. Polycyclic aromatic hydrocarbons (PAH) metabolites in bile were also evaluated. A higher sensitivity in biomarker responses was found in females in comparison to males. An increase in DNA strand breaks was observed in both genders after 30 days exposure and a statistically significant increase of micronucleated cells was found in females after 8 days exposure. A positive correlation between presence of micronucleated cells and PAH metabolites in bile was also observed.
Collapse
|
|
16 |
29 |
8
|
Fossi MC, Casini S, Caliani I, Panti C, Marsili L, Viarengo A, Giangreco R, Notarbartolo di Sciara G, Serena F, Ouerghi A, Depledge MH. The role of large marine vertebrates in the assessment of the quality of pelagic marine ecosystems. MARINE ENVIRONMENTAL RESEARCH 2012; 77:156-158. [PMID: 22494853 DOI: 10.1016/j.marenvres.2012.03.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 03/13/2012] [Indexed: 05/31/2023]
Abstract
The Marine Strategy Framework Directive (MSFD) establishing a framework for community action in the field of marine environmental policy has been developed and is being implemented, with the objective to deliver "Good Environmental Status" by 2020. A pragmatic way forward has been achieved through the development of 11 "qualitative descriptors". In an attempt to identify gaps in MSFD, regarding the data on large marine vertebrates, the SETAC--Italian Branch organised a workshop in Siena (IT). Particular attention was paid to the qualitative descriptors 8 (contaminants and pollution effects) and 10 (marine litter). The specific remit was to discuss the potential use of large marine vertebrates (from large pelagic fish, sea turtles, sea birds and cetaceans) in determining the environmental status of pelagic marine ecosystems. During the workshop it emerged that large pelagic fish may be especially useful for monitoring short- to medium-term changes in pelagic ecosystems, while cetaceans provided a more integrated view over the long-term. A theme that strongly emerged was the broad recognition that biomarkers offer real potential for the determination of good ecological status detecting the "undesirable biological effects" (indicator for descriptor 8).
Collapse
|
|
13 |
24 |
9
|
Caliani I, Campani T, Giannetti M, Marsili L, Casini S, Fossi MC. First application of comet assay in blood cells of Mediterranean loggerhead sea turtle (Caretta caretta). MARINE ENVIRONMENTAL RESEARCH 2014; 96:68-72. [PMID: 24112743 DOI: 10.1016/j.marenvres.2013.09.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 09/10/2013] [Accepted: 09/12/2013] [Indexed: 06/02/2023]
Abstract
The aim of this study was to validate the comet assay in erythrocytes of Caretta caretta, a species never investigated for genotoxicity. We studied 31 loggerhead sea turtles from three Italian marine rescue centres. Peripheral blood samples were collected from all the animals and the comet assay applied. All comet cells were analysed using two methods: visual scoring and computer image analysis. The % DNA in tail mean value ± SD and Damage Index were 21.56 ± 15.41 and 134.83 ± 94.12, respectively. A strong and statistically significant statistically correlation between the two analytical methods was observed (r = 0.95; p < 0.05). These results demonstrate that the comet assay is a useful method to detect the possible effects of genotoxic agents in loggerhead sea turtle and to increase the knowledge about the ecotoxicological health status of this threatened species.
Collapse
|
Evaluation Study |
11 |
17 |
10
|
Casini S, Marsili L, Fossi MC, Mori G, Bucalossi D, Porcelloni S, Caliani I, Stefanini G, Ferraro M, di Catenaja CA. Use of biomarkers to investigate toxicological effects of produced water treated with conventional and innovative methods. MARINE ENVIRONMENTAL RESEARCH 2006; 62 Suppl:S347-51. [PMID: 16740305 DOI: 10.1016/j.marenvres.2006.04.060] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The aim of this study was to develop and apply a multi-biomarker system to assess the toxicological effects of produced water (PW) from a Mediterranean off-shore oil platform. The selected bioindicator organism, mosquitofish (Gambusia affinis), was exposed in the laboratory to high concentrations of different PW: PW before treatment (BT), after conventional treatment (ACT) and after innovative treatment with zeolites in a prototype system (AIT). A set of biomarkers (benzo(alpha)pyrene monooxygenase, ethoxyresorufin-o-deethylase, vitellogenin, porphyrins, PAH bile metabolites, esterases, catalase, micronuclei) and PAH concentrations were measured in the experimental organism. The methodology proved to be appropriate and biomarker responses (CYP 1A1, PAH bile metabolites, micronuclei, esterases, porphyrins) affected by BT were less affected by ACT. PW treated with zeolites (AIT) had the lowest toxicological impact. The results obtained applying this multi-biomarker approach suggest that the system using zeolites is effective for treating produced water.
Collapse
|
|
19 |
17 |
11
|
Pedà C, Romeo T, Panti C, Caliani I, Casini S, Marsili L, Campani T, Baini M, Limonta G, de Rysky E, Caccamo L, Perdichizzi A, Gai F, Maricchiolo G, Consoli P, Fossi MC. Integrated biomarker responses in European seabass Dicentrarchus labrax (Linnaeus, 1758) chronically exposed to PVC microplastics. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129488. [PMID: 35999717 DOI: 10.1016/j.jhazmat.2022.129488] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/04/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
Few studies evaluated long-term effects of polyvinyl chloride (PVC) microplastics (MPs) ingestion in fish. The present study aimed to investigate the integrated biomarker responses in the liver and blood of 162 European seabass, Dicentrarchus labrax, exposed for 90 days to control, virgin and marine incubated PVC enriched diets (0.1 % w/w) under controlled laboratory condition. Enzymatic and tissue alterations, oxidative stress, gene expression alterations and genotoxicity were examined. Additives and environmental contaminants levels in PVC-MPs, control feed matrices and in seabass muscles were also detected. The results showed that the chronic exposure at environmentally realistic PVC-MPs concentrations in seabass, cause early warning signs of toxicological harm in liver by induction of oxidative stress, the histopathological alterations and also by the modulation of the Peroxisome proliferator-activated receptors (PPARs) and Estrogen receptor alpha (ER-α) genes expression. A trend of increase of DNA alterations and the observation of some neoformations attributable to lipomas suggest also genotoxic and cancerogenic effects of PVC. This investigation provides important data to understand the regulatory biological processes affected by PVC-MPs ingestion in marine organisms and may also support the interpretation of results provided by studies on wild species.
Collapse
|
|
3 |
16 |
12
|
Meier S, Karlsen Ø, Le Goff J, Sørensen L, Sørhus E, Pampanin DM, Donald CE, Fjelldal PG, Dunaevskaya E, Romano M, Caliani I, Casini S, Bogevik AS, Olsvik PA, Myers M, Grøsvik BE. DNA damage and health effects in juvenile haddock (Melanogrammus aeglefinus) exposed to PAHs associated with oil-polluted sediment or produced water. PLoS One 2020; 15:e0240307. [PMID: 33091018 PMCID: PMC7580938 DOI: 10.1371/journal.pone.0240307] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 09/23/2020] [Indexed: 01/08/2023] Open
Abstract
The research objective was to study the presence of DNA damages in haddock exposed to petrogenic or pyrogenic polyaromatic hydrocarbons (PAHs) from different sources: 1) extracts of oil produced water (PW), dominated by 2-ring PAHs; 2) distillation fractions of crude oil (representing oil-based drilling mud), dominated by 3-ring PAHs; 3) heavy pyrogenic PAHs, mixture of 4/5/6-ring PAHs. The biological effect of the different PAH sources was studied by feeding juvenile haddock with low doses of PAHs (0.3-0.7 mg PAH/kg fish/day) for two months, followed by a two-months recovery. In addition to the oral exposure, a group of fish was exposed to 12 single compounds of PAHs (4/5/6-ring) via intraperitoneal injection. The main endpoint was the analysis of hepatic and intestinal DNA adducts. In addition, PAH burden in liver, bile metabolites, gene and protein expression of CYP1A, GST activity, lipid peroxidation, skeletal deformities and histopathology of livers were evaluated. Juvenile haddock responded quickly to both intraperitoneal injection and oral exposure of 4/5/6-ring PAHs. High levels of DNA adducts were detected in livers three days after the dose of the single compound exposure. Fish had also high levels of DNA adducts in liver after being fed with extracts dominated by 2-ring PAHs (a PW exposure scenario) and 3-ring PAHs (simulating an oil exposure scenario). Elevated levels of DNA adducts were observed in the liver of all exposed groups after the 2 months of recovery. High levels of DNA adduct were found also in the intestines of individuals exposed to oil or heavy PAHs, but not in the PW or control groups. This suggests that the intestinal barrier is very important for detoxification of orally exposures of PAHs.
Collapse
|
research-article |
5 |
13 |
13
|
Fossi MC, Panti C, Marsili L, Maltese S, Spinsanti G, Casini S, Caliani I, Gaspari S, Muñoz-Arnanz J, Jimenez B, Finoia MG. The Pelagos Sanctuary for Mediterranean marine mammals: Marine Protected Area (MPA) or marine polluted area? The case study of the striped dolphin (Stenella coeruleoalba). MARINE POLLUTION BULLETIN 2013; 70:64-72. [PMID: 23465620 DOI: 10.1016/j.marpolbul.2013.02.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 02/07/2013] [Accepted: 02/09/2013] [Indexed: 06/01/2023]
Abstract
The concurrence of man-made pressures on cetaceans in the Mediterranean Sea is potentially affecting population stability and marine biodiversity. This needs to be proven for the only pelagic marine protected area in the Mediterranean Sea: the Pelagos Sanctuary for Mediterranean Marine Mammals. Here we applied a multidisciplinary tool, using diagnostic markers elaborated in a statistical model to rank toxicological stress in Mediterranean cetaceans. As a case study we analyzed persistent, bioaccumulative and toxic chemicals combined with a wide range of diagnostic markers of exposure to anthropogenic contaminants and genetic variation as marker of genetic erosion in striped dolphin (Stenella coeruleoalba) skin biopsies. Finally, a statistical model was applied to obtain a complete toxicological profile of the striped dolphin in the Pelagos Sanctuary and other Mediterranean areas (Ionian Sea and Strait of Gibraltar). Here we provide the first complete evidence of the toxicological stress in cetaceans living in Pelagos Sanctuary.
Collapse
|
|
12 |
11 |
14
|
Caricato R, Giordano ME, Schettino T, Maisano M, Mauceri A, Giannetto A, Cappello T, Parrino V, Ancora S, Caliani I, Bianchi N, Leonzio C, Mancini G, Cappello S, Fasulo S, Lionetto MG. Carbonic anhydrase integrated into a multimarker approach for the detection of the stress status induced by pollution exposure in Mytilus galloprovincialis: A field case study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 690:140-150. [PMID: 31284188 DOI: 10.1016/j.scitotenv.2019.06.446] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/10/2019] [Accepted: 06/26/2019] [Indexed: 06/09/2023]
Abstract
The work was addressed to study the sensitivity of the enzyme carbonic anhydrase (CA) to chemical pollution in the hepatopancreas of the bioindicator organism Mytilus galloprovincialis in the context of a multimarker approach in view of ecotoxicological biomonitoring and assessment application. The study was carried out by means of a transplanting experiment in the field, using caged organisms from an initial population exposed in the field in two areas of interest: Augusta-Melilli-Priolo, an heavy polluted industrial site (eastern Sicily, Italy), and Brucoli (eastern Sicily, Italy) an area not affected by any contamination and selected as a reference site. Mussels in Augusta presented a significant increase in the digestive gland CA activity and gene expression compared to the animals caged in the control site of Brucoli. The CA response in animals from the polluted site was paralleled by proliferation/increase in the size of lysosomes, as assessed by Lysosensor green charged cells, induction of metallothionein, up-regulation of hif-α (hypoxia-inducible factor), metabolic changes associated with protein metabolism, and changes in the condition factor. Biological responses data were integrated with information about sediment chemical analysis and metal residue concentration in animal soft tissues. In conclusion, obtained results highlighted the induction of CAs in the hepatopancreas of Mytilus galloprovincialis following to pollution exposure, and demonstrated its suitability to be integrated into a multimarker approach for the detection and characterization of the stress status induced by pollution exposure in this bioindicator organism.
Collapse
|
|
6 |
10 |
15
|
Iannucci A, Cannicci S, Caliani I, Baratti M, Pretti C, Fratini S. Investigation of mechanisms underlying chaotic genetic patchiness in the intertidal marbled crab Pachygrapsus marmoratus (Brachyura: Grapsidae) across the Ligurian Sea. BMC Evol Biol 2020; 20:108. [PMID: 32831022 PMCID: PMC7444255 DOI: 10.1186/s12862-020-01672-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 08/11/2020] [Indexed: 12/25/2022] Open
Abstract
Background Studies on marine community dynamics and population structures are limited by the lack of exhaustive knowledge on the larval dispersal component of connectivity. Genetic data represents a powerful tool in understanding such processes in the marine realm. When dealing with dispersion and connectivity in marine ecosystems, many evidences show patterns of genetic structure that cannot be explained by any clear geographic trend and may show temporal instability. This scenario is usually referred to as chaotic genetic patchiness, whose driving mechanisms are recognized to be selection, temporal shifts in local population dynamics, sweepstakes reproductive success and collective dispersal. In this study we focused on the marbled crab Pachygrapsus marmoratus that inhabits the rocky shores of the Mediterranean Sea, Black Sea and East Atlantic Ocean, and disperses through planktonic larvae for about 1 month. P. marmoratus exhibits unexpectedly low connectivity levels at local scale, although well-defined phylogeographic patterns across the species’ distribution range were described. This has been explained as an effect of subtle geographic barriers or due to sweepstake reproductive success. In order to verify a chaotic genetic patchiness scenario, and to explore mechanisms underlying it, we planned our investigation within the Ligurian Sea, an isolated basin of the western Mediterranean Sea, and we genotyped 321 individuals at 11 microsatellite loci. Results We recorded genetic heterogeneity among our Ligurian Sea samples with the occurrence of genetic clusters not matching the original populations and a slight inter-population divergence, with the geographically most distant populations being the genetically most similar ones. Moreover, individuals from each site were assigned to all the genetic clusters. We also recorded evidences of self-recruitment and a higher than expected within-site kinship. Conclusions Overall, our results suggest that the chaotic genetic patchiness we found in P. marmoratus Ligurian Sea populations is the result of a combination of differences in reproductive success, en masse larval dispersion and local larval retention. This study defines P. marmoratus as an example of marine spawner whose genetic pool is not homogenous at population level, but rather split in a chaotic mosaic of slightly differentiated genetic patches derived from complex and dynamic ecological processes.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
7 |
16
|
Galli M, Baini M, Panti C, Giani D, Caliani I, Campani T, Rosso M, Tepsich P, Levati V, Laface F, Romeo T, Scotti G, Galgani F, Fossi MC. Oceanographic and anthropogenic variables driving marine litter distribution in Mediterranean protected areas: Extensive field data supported by forecasting modelling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166266. [PMID: 37579802 DOI: 10.1016/j.scitotenv.2023.166266] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/27/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
Marine litter concentration in the Mediterranean Sea is strongly influenced both by anthropogenic pressures and hydrodynamic factors that locally characterise the basin. Within the Plastic Busters MPAs (Marine Protected Areas) Interreg Mediterranean Project, a comprehensive assessment of floating macro- and microlitter in the Pelagos Sanctuary and the Tuscan Archipelago National Park was performed. An innovative multilevel experimental design has been planned ad-hoc according to a litter provisional distribution model, harmonising and implementing the current sampling methodologies. The simultaneous presence of floating macro- and microlitter items and the potential influences of environmental and anthropogenic factors affecting litter distribution have been evaluated to identify hotspot accumulation areas representing a major hazard for marine species. A total of 273 monitoring transects of floating macrolitter and 141 manta trawl samples were collected in the study areas to evaluate the abundance and composition of marine litter. High mean concentrations of floating macrolitter (399 items/km2) and microplastics (259,490 items/km2) have been found in the facing waters of the Gulf of La Spezia and Tuscan Archipelago National Park as well in the Genova canyon and Janua seamount area. Accordingly, strong litter inputs were identified to originate from the mainland and accumulate in coastal waters within 10-15 nautical miles. Harbours and riverine outfalls contribute significantly to plastic pollution representing the main sources of contamination as well as areas with warmer waters and weak oceanographic features that could facilitate its accumulation. The results achieved may indicate a potentially threatening trend of litter accumulation that may pose a serious risk to the Pelagos Sanctuary biodiversity and provide further indications for dealing with plastic pollution in protected areas, facilitating future management recommendations and mitigation actions in these fragile marines and coastal environments.
Collapse
|
|
2 |
7 |
17
|
Limonta G, Mancia A, Abelli L, Fossi MC, Caliani I, Panti C. Effects of microplastics on head kidney gene expression and enzymatic biomarkers in adult zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 2021; 245:109037. [PMID: 33753304 DOI: 10.1016/j.cbpc.2021.109037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/01/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022]
Abstract
Due to massive production, improper use, and disposal of plastics, microplastics have become global environmental pollutants affecting both freshwater and marine ecosystems. Several studies have documented the uptake of microplastics in wild species and the correlated biological effects, such as epithelial damage, inflammation, metabolic alterations, and neurotoxicity. However, the effects of microplastics are not fully understood yet. In this study, adult zebrafish have been exposed for twenty days to two concentrations of a mix of polystyrene and high-density polyethylene microplastics. The biological effects were investigated through the expression levels of a set of selected genes in head kidney samples and two enzymatic biomarkers, acetylcholinesterase and lactate dehydrogenase, in head and body homogenates respectively. The lowest microplastic concentration up-regulated genes involved in xenobiotics catabolic processes (cyp2p8), and adaptive immunity (tcra). Acetylcholinesterase activity was inhibited by the highest microplastics exposure, while a weaker and no significant inhibition was induced by the lowest concentration. No significant effects on lactate dehydrogenase activity were observed. The results presented in this study support the hypothesis that MPs exposure could induce the activation of an immune response and the xenobiotic metabolism, suggesting also that the cytochrome P450 enzyme cyp2p8 and acetylcholinesterase may be sensitive to MPs contamination.
Collapse
|
|
4 |
7 |
18
|
Caliani I, De Marco G, Cappello T, Giannetto A, Mancini G, Ancora S, Maisano M, Parrino V, Cappello S, Bianchi N, Oliva S, Luciano A, Mauceri A, Leonzio C, Fasulo S. Assessment of the effectiveness of a novel BioFilm-Membrane BioReactor oil-polluted wastewater treatment technology by applying biomarkers in the mussel Mytilus galloprovincialis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 243:106059. [PMID: 34991045 DOI: 10.1016/j.aquatox.2021.106059] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 10/26/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
Petrochemical industries and oil refineries are sources of hazardous chemicals into the aquatic environments, and often a leading cause of reduced oxygen availability, thus resulting in adverse effects in biota. This study is an expansion of our previous work on the assessment of the BioFilm-Membrane Bioreactor (BF-MBR) to mitigate the impact of oil-polluted wastewater on marine environments. Specifically, this study evaluated the reduction of selected chemical constituents (hydrocarbons and trace metals) and toxicity related to hypoxia and DNA damage to mussels Mytilus galloprovincialis, before and after treatment of oil-polluted wastewater with the BF-MBR. The application of a multidisciplinary approach provided evidence of the efficiency of BF-MBR to significantly reducing the pollutants load from oily contaminated seawaters. As result, the health status of mussels was preserved by a hypoxic condition due to oily pollutants, as evidenced by the modulation in the gene expression of HIF-1α and PHD and changes in the level of hypotaurine and taurine. Moreover, ameliorative effects in the energy metabolism were also found in mussel gills showing increased levels of glycogen, glucose and ATP, as well as a mitigated genotoxicity was revealed by the Micronucleus and Comet assays. Overall, findings from this study support the use of the BF-MBR as a promising treatment biotechnology to avoid or limiting the compromise of marine environments from oil pollution.
Collapse
|
|
3 |
6 |
19
|
Caliani I, Campani T, Conti B, Cosci F, Bedini S, D'Agostino A, Giovanetti L, Di Noi A, Casini S. First application of an Integrated Biological Response index to assess the ecotoxicological status of honeybees from rural and urban areas. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:47418-47428. [PMID: 33891238 PMCID: PMC8384815 DOI: 10.1007/s11356-021-14037-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/16/2021] [Indexed: 05/05/2023]
Abstract
Understanding the effects of environmental contaminants on honeybees is essential to minimize their impacts on these important pollinating insects. The aim of this study was to assess the ecotoxicological status of honeybees in environments undergoing different anthropic pressure: a wood (reference site), an orchard, an agricultural area, and an urban site, using a multi-biomarker approach. To synthetically represent the ecotoxicological status of the honeybees, the responses of the single biomarkers were integrated by the Integrated Biological Response (IBRv2) index. Overall, the strongest alteration of the ecotoxicological status (IBRv2 = 7.52) was detected in the bees from the orchard due to the alteration of metabolic and genotoxicity biomarkers indicating the presence of pesticides, metals, and lipophilic compounds. Honeybees from the cultivated area (IBRv2 = 7.18) revealed an alteration especially in neurotoxicity, metabolic, and genotoxicity biomarkers probably related to the presence of pesticides, especially fungicides. Finally, in the urban area (IBRv2 = 6.60), the biomarker results (GST, lysozyme, and hemocytes) indicated immunosuppression in the honeybees and the effects of the presence of lipophilic compounds and metals in the environment.
Collapse
|
research-article |
4 |
6 |
20
|
Giovanetti L, Caliani I, Damiani G, Dell'Omo G, Costantini D, Casini S. A blood-based multi-biomarker approach reveals different physiological responses of common kestrels to contrasting environments. ENVIRONMENTAL RESEARCH 2024; 251:118674. [PMID: 38492836 DOI: 10.1016/j.envres.2024.118674] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/06/2024] [Accepted: 03/09/2024] [Indexed: 03/18/2024]
Abstract
The increase of urbanization and agricultural activities is causing a dramatic reduction of natural environments. As a consequence, animals need to physiologically adjust to these novel environments, in order to exploit them for foraging and breeding. The aim of this work was to compare the physiological status among nestling common kestrels (Falco tinnunculus) that were raised in nest-boxes located in more natural, rural, or urban areas in a landscape with a mosaic of land uses around Rome in Central Italy. A blood-based multi-biomarker approach was applied to evaluate physiological responses at multiple levels, including antioxidant concentrations, immunological functions, genotoxicity, and neurotoxicity. We found lower concentrations of glutathione and GSH:GSSG ratio values and higher proportions of monocytes in urban birds compared to the other areas. We also found higher DNA damage in rural compared to urban and natural krestels and inhibition of butyrylcholinesterase activity in urban and natural birds compared to rural area. Finally, we found similar values among study areas for respiratory burst, complement system, bactericidal capacity, and plasma non-enzymatic antioxidant capacity. These results suggest that (i) city life does not necessarily cause physiological alterations in kestrels compared to life in other habitats, and (ii) environmental pressures are likely to differ in typology and intensity across habitats requiring specific responses that a multi-biomarker approach can help to detect. Further studies are needed to assess which factors are responsible for the physiological differences among city, rural, and natural birds, and whether these differences are consistent across time and space.
Collapse
|
|
1 |
5 |
21
|
Hernandez-Milian G, Tsangaris C, Anestis A, Fossi MC, Baini M, Caliani I, Panti C, Bundone L, Panou A. Monk seal faeces as a non-invasive technique to monitor the incidence of ingested microplastics and potential presence of plastic additives. MARINE POLLUTION BULLETIN 2023; 193:115227. [PMID: 37393681 DOI: 10.1016/j.marpolbul.2023.115227] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/04/2023]
Abstract
Anthropogenic debris, including plastics, has recently been identified as a major threat for marine mammals and the Marine Strategy Framework Directive aims to achieve the good environmental status of European waters by addressing among other criteria, the effects of marine litter on biota. This study implemented for the first time a non-invasive technique for collecting monk seal samples to assess microdebris ingestion in combination with identifying plastic additives and porphyrins biomarkers. A total of 12 samples of monk seal faeces were collected from marine caves in Zakynthos Island, Greece. A total of 166 microplastic particles were identified; 75 % of the particles were smaller than 3 mm. Nine phthalates and three porphyrins were detected. A strong correlation was found between the number of microplastics and the concentration of phthalates. The values of both phthalates and porphyrins were found lower than in other marine mammal tissues, suggesting that seals might not be impacted by them yet.
Collapse
|
|
2 |
5 |
22
|
Baratti M, Pinosio S, Gori M, Biricolti S, Chini G, Fratini S, Cannicci S, Caliani I, Oliva M, De Marchi L, Pretti C. Differential gene expression and chemical patterns of an intertidal crab inhabiting a polluted port and an adjacent marine protected area. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153463. [PMID: 35101492 DOI: 10.1016/j.scitotenv.2022.153463] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/14/2021] [Accepted: 01/23/2022] [Indexed: 06/14/2023]
Abstract
The acquisition of data to safeguard marine protected areas located close to ports is important in order to develop plans that allow effective protection from pollution as well as sustainable development of the port. The area Secche della Meloria is a Marine Protected Area (MPA-MEL) three miles from Livorno Harbour (LH), which is characterized by a long history of pollution. Here we studied the bioaccumulation and transcriptomic patterns of the marbled crab, Pachygrapsus marmoratus (Fabricius, 1787) (Crustacea; Brachyura, Grapsidae), inhabiting the two selected sites. Results showed that the two crab populations are significantly different in their chemical composition of trace elements and Polyciclic Aromatic Hydrocarbons (PAHs), and gene expression patterns (1280 DEGs). Enrichment analysis indicated that crabs at LH had the highest stress response genes, and they were associated with higher levels of bioaccumulation detected in body tissues. We are confident that the significant differential gene expression profiles observed between crabs, characterized by significant chemical differences, is associated with responses to contaminant exposure.
Collapse
|
|
3 |
5 |
23
|
Oliva M, De Marchi L, Cuccaro A, Casu V, Tardelli F, Monni G, Freitas R, Caliani I, Fossi MC, Fratini S, Baratti M, Pretti C. Effects of copper on larvae of the marbled crab Pachygrapsus marmoratus (Decapoda, Grapsidae): Toxicity test and biochemical marker responses. Comp Biochem Physiol C Toxicol Pharmacol 2019; 223:71-77. [PMID: 31129174 DOI: 10.1016/j.cbpc.2019.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/10/2019] [Accepted: 05/10/2019] [Indexed: 10/26/2022]
Abstract
The importance of trace elements in ecotoxicological investigations is a well-known issue when monitoring polluted areas such as commercial harbors. Copper represents one of the most common metal contaminants, often detected in these areas as it is widely employed in various fields and has many sources of inflow in the marine environment. Pachygrapsus marmoratus is a widespread intertidal crab species that has been extensively studied in ecology, ethology and population genetics. Ecotoxicological studies have also been performed, exclusively on the adult stage. In the present study we investigated the mortality and biochemical (oxidative stress and neurotoxicity) responses of P. marmoratus larvae exposure to environmental relevant concentration of copper. Results showed dose-dependent responses in terms of larval mortality, with a calculated LC50 value of 0.5 mg/L of Cu2+. The LC50 concentration was used as the starting point for subsequent biochemical response evaluation. Results also demonstrated dose-dependent activation of antioxidant systems assuming a compensatory antioxidant activity to prevent higher cellular damage when larvae were exposed to the highest concentrations of copper. Moreover, a significant enhancement of neurotransmitter activities was observed, assuming a possible direct interaction of copper with the enzymes or an increase of free copper ion aliquot into the cells.
Collapse
|
|
6 |
4 |
24
|
Bianchi L, Casini S, Vantaggiato L, Di Noi A, Carleo A, Shaba E, Armini A, Bellucci F, Furii G, Bini L, Caliani I. A Novel Ex Vivo Approach Based on Proteomics and Biomarkers to Evaluate the Effects of Chrysene, MEHP, and PBDE-47 on Loggerhead Sea Turtles ( Caretta caretta). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19074369. [PMID: 35410049 PMCID: PMC8998652 DOI: 10.3390/ijerph19074369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/18/2022] [Accepted: 04/02/2022] [Indexed: 02/04/2023]
Abstract
The principal aim of the present study was to develop and apply novel ex vivo tests as an alternative to cell cultures able to evaluate the possible effects of emerging and legacy contaminants in Caretta caretta. To this end, we performed ex vivo experiments on non-invasively collected whole-blood and skin-biopsy slices treated with chrysene, MEHP, or PBDE-47. Blood samples were tested by oxidative stress (TAS), immune system (respiratory burst, lysozyme, and complement system), and genotoxicity (ENA assay) biomarkers, and genotoxic and immune system effects were observed. Skin slices were analyzed by applying a 2D-PAGE/MS proteomic approach, and specific contaminant signatures were delineated on the skin proteomic profile. These reflect biochemical effects induced by each treatment and allowed to identify glutathione S-transferase P, peptidyl-prolyl cis-trans isomerase A, mimecan, and protein S100-A6 as potential biomarkers of the health-threatening impact the texted toxicants have on C. caretta. Obtained results confirm the suitability of the ex vivo system and indicate the potential risk the loggerhead sea turtle is undergoing in the natural environment. In conclusion, this work proved the relevance that the applied ex vivo models may have in testing the toxicity of other compounds and mixtures and in biomarker discovery.
Collapse
|
|
3 |
2 |
25
|
Campani T, Casini S, Maccantelli A, Tosoni F, D'Agostino A, Caliani I. Oxidative stress and DNA alteration on the earthworm Eisenia fetida exposed to four commercial pesticides. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:35969-35978. [PMID: 38743332 PMCID: PMC11136830 DOI: 10.1007/s11356-024-33511-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 04/26/2024] [Indexed: 05/16/2024]
Abstract
Modern agriculture is mainly based on the use of pesticides to protect crops but their efficiency is very low, in fact, most of them reach water or soil ecosystems causing pollution and health hazards to non-target organisms. Fungicide triazoles and strobilurins based are the most widely used and require a specific effort to investigate toxicological effects on non-target species. This study evaluates the toxic effects of four commercial fungicides Prosaro® (tebuconazole and prothioconazole), Amistar®Xtra (azoxystrobin and cyproconazole), Mirador® (azoxystrobin) and Icarus® (Tebuconazole) on Eisenia fetida using several biomarkers: lipid peroxidation (LPO), catalase activity (CAT), glutathione S-transferase (GST), total glutathione (GSHt), DNA fragmentation (comet assay) and lysozyme activity tested for the first time in E. fetida. The exposure to Mirador® and AmistarXtra® caused an imbalance of ROS species, leading to the inhibition of the immune system. AmistarXtra® and Prosaro®, composed of two active ingredients, induced significant DNA alteration, indicating genotoxic effects. This study broadened our knowledge of the effects of pesticide product formulations on earthworms and showed the need for improvement in the evaluation of toxicological risk deriving from the changing of physicochemical and toxicological properties that occur when a commercial formulation contains more than one active ingredient and several unknown co-formulants.
Collapse
|
research-article |
1 |
2 |