1
|
Santamaria M, Fosso B, Licciulli F, Balech B, Larini I, Grillo G, De Caro G, Liuni S, Pesole G. ITSoneDB: a comprehensive collection of eukaryotic ribosomal RNA Internal Transcribed Spacer 1 (ITS1) sequences. Nucleic Acids Res 2019; 46:D127-D132. [PMID: 29036529 PMCID: PMC5753230 DOI: 10.1093/nar/gkx855] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 09/18/2017] [Indexed: 01/21/2023] Open
Abstract
A holistic understanding of environmental communities is the new challenge of metagenomics. Accordingly, the amplicon-based or metabarcoding approach, largely applied to investigate bacterial microbiomes, is moving to the eukaryotic world too. Indeed, the analysis of metabarcoding data may provide a comprehensive assessment of both bacterial and eukaryotic composition in a variety of environments, including human body. In this respect, whereas hypervariable regions of the 16S rRNA are the de facto standard barcode for bacteria, the Internal Transcribed Spacer 1 (ITS1) of ribosomal RNA gene cluster has shown a high potential in discriminating eukaryotes at deep taxonomic levels. As metabarcoding data analysis rely on the availability of a well-curated barcode reference resource, a comprehensive collection of ITS1 sequences supplied with robust taxonomies, is highly needed. To address this issue, we created ITSoneDB (available at http://itsonedb.cloud.ba.infn.it/) which in its current version hosts 985 240 ITS1 sequences spanning over 134 000 eukaryotic species. Each ITS1 is mapped on the NCBI reference taxonomy with its start and end positions precisely annotated. ITSoneDB has been developed in agreement to the FAIR guidelines by enabling the users to query and download its content through a simple web-interface and access relevant metadata by cross-linking to European Nucleotide Archive.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
28 |
2
|
Calgaro M, Pandolfo M, Salvetti E, Marotta A, Larini I, Pane M, Amoruso A, Del Casale A, Vitulo N, Fiorio M, Felis GE. Metabarcoding analysis of gut microbiota of healthy individuals reveals impact of probiotic and maltodextrin consumption. Benef Microbes 2021; 12:121-136. [PMID: 33789555 DOI: 10.3920/bm2020.0137] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In a previously published double-blind, placebo-controlled study, we showed that probiotics intake exerted a positive effect on sleep quality and a general improvement across time in different aspects of the profile of mood state, like sadness, anger, and fatigue in 33 healthy individuals. The present work investigates the impact of the probiotic product, constituted of Limosilactobacillus fermentum LF16, Lacticaseibacillus rhamnosus LR06, Lactiplantibacillus plantarum LP01 (all former members of Lactobacillus genus), and Bifidobacterium longum 04, on the gut microbiota composition of the same cohort through a metabarcoding analysis. Both the placebo and probiotic treatments had a significant impact on the microbiota composition. Statistical analysis showed that the microbiota of the individuals could be clustered into three groups, or bacteriotypes, at the baseline, and, inherently, bacterial compositions were linked to different responses to probiotic and placebo intakes. Interestingly, L. rhamnosus and L. fermentum were retrieved in the probiotic-treated cohort, while a bifidogenic effect of maltodextrin, used as placebo, was observed. The present study shed light on the importance of defining bacteriotypes to assess the impact of interventions on the gut microbiota and allowed to reveal microbial components which could be related to positive effects (i.e. sleep quality improvement) to be verified in further studies.
Collapse
|
Journal Article |
4 |
14 |
3
|
Balzan S, Carraro L, Merlanti R, Lucatello L, Capolongo F, Fontana F, Novelli E, Larini I, Vitulo N, Cardazzo B. Microbial metabarcoding highlights different bacterial and fungal populations in honey samples from local beekeepers and market in north-eastern Italy. Int J Food Microbiol 2020; 334:108806. [PMID: 32805512 DOI: 10.1016/j.ijfoodmicro.2020.108806] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 01/04/2023]
Abstract
Due to its chemical properties, honey does not foster the growth of microorganisms, however it may contain a rich microbial community, including viable, stressed, and not viable microbes. In order to characterize honey microbiota focusing on the difference between products from beekeepers and large retail in the present study a culture-independent approach based on DNA metabarcoding was applied. Honey samples were collected from Local Beekeepers (LB) and Market sales (M) during four years with the aim to investigate the microbiological quality in the honey market. Extraction and amplification of DNA from honey samples showed reduced efficiency with increasing age of honey, with the loss of 50-80% of samples four years old (2014). For this reason, only samples of similar age were compared and the analysis of microbial communities focused on year 2017, for a total of 75 samples. Differences in alpha and beta-diversity were evidenced comparing microbial communities between LB and M samples. In particular, contaminant bacteria dominated the microbiota in M samples while LB samples were enriched in Lactic Acid Bacteria (LAB) that cannot be isolated with culture-dependent approaches.
Collapse
|
Journal Article |
5 |
10 |
4
|
Salvetti E, Campedelli I, Larini I, Conedera G, Torriani S. Exploring Antibiotic Resistance Diversity in Leuconostoc spp. by a Genome-Based Approach: Focus on the lsaA Gene. Microorganisms 2021; 9:microorganisms9030491. [PMID: 33652718 PMCID: PMC7996808 DOI: 10.3390/microorganisms9030491] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 01/29/2023] Open
Abstract
Leuconostoc spp. are environmental microorganisms commonly associated with fermented foods. Absence of antibiotic resistance (AR) in bacteria is a critical issue for global food safety. Herein, we updated the occurrence of AR genes in the Leuconostoc genus through in silico analyses of the genomes of 17 type strains. A total of 131 putative AR traits associated with the main clinically relevant antibiotics were detected. We found, for the first time, the lsaA gene in L. fallax ATCC 700006T and L. pseudomesenteroides NCDO 768T. Their amino acid sequences displayed high similarities (59.07% and 52.21%) with LsaA of Enterococcusfaecalis V583, involved in clindamycin (CLI) and quinupristin-dalfopristin (QUD) resistance. This trait has different distribution patterns in Leuconostoc nontype strains-i.e., L. pseudomesenteroides, L. lactis and L. falkenbergense isolates from fermented vegetables, cheeses, and starters. To better explore the role of lsaA, MIC for CLI and QUD were assessed in ATCC 700006T and NCDO 768T; both strains were resistant towards CLI, potentially linking lsaA to their resistant phenotype. Contrarily, NCDO 768T was sensitive towards QUD; however, expression of lsaA increased in presence of this antibiotic, indicating an active involvement of this trait and thus suggesting a revision of the QUD thresholds for this species.
Collapse
|
Journal Article |
4 |
9 |
5
|
Giovannoni M, Larini I, Scafati V, Scortica A, Compri M, Pontiggia D, Zapparoli G, Vitulo N, Benedetti M, Mattei B. A novel Penicillium sumatraense isolate reveals an arsenal of degrading enzymes exploitable in algal bio-refinery processes. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:180. [PMID: 34517884 PMCID: PMC8438893 DOI: 10.1186/s13068-021-02030-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 08/30/2021] [Indexed: 05/16/2023]
Abstract
BACKGROUND Microalgae are coming to the spotlight due to their potential applications in a wide number of fields ranging from the biofuel to the pharmaceutical sector. However, several factors such as low productivity, expensive harvesting procedures and difficult metabolite extractability limit their full utilization at industrial scale. Similarly to the successful employment of enzymatic arsenals from lignocellulolytic fungi to convert lignocellulose into fermentable sugars for bioethanol production, specific algalytic formulations could be used to improve the extractability of lipids from microalgae to produce biodiesel. Currently, the research areas related to algivorous organisms, algal saprophytes and the enzymes responsible for the hydrolysis of algal cell wall are still little explored. RESULTS Here, an algal trap method for capturing actively growing microorganisms was successfully used to isolate a filamentous fungus, that was identified by whole-genome sequencing, assembly and annotation as a novel Penicillium sumatraense isolate. The fungus, classified as P. sumatraense AQ67100, was able to assimilate heat-killed Chlorella vulgaris cells by an enzymatic arsenal composed of proteases such as dipeptidyl- and amino-peptidases, β-1,3-glucanases and glycosidases including α- and β-glucosidases, β-glucuronidase, α-mannosidases and β-galactosidases. The treatment of C. vulgaris with the filtrate from P. sumatraense AQ67100 increased the release of chlorophylls and lipids from the algal cells by 42.6 and 48.9%, respectively. CONCLUSIONS The improved lipid extractability from C. vulgaris biomass treated with the fungal filtrate highlighted the potential of algal saprophytes in the bioprocessing of microalgae, posing the basis for the sustainable transformation of algal metabolites into biofuel-related compounds.
Collapse
|
research-article |
4 |
4 |
6
|
De Jesus Inacio L, Merlanti R, Lucatello L, Bisutti V, Carraro L, Larini I, Vitulo N, Cardazzo B, Capolongo F. Natural contaminants in bee pollen: DNA metabarcoding as a tool to identify floral sources of pyrrolizidine alkaloids and fungal diversity. Food Res Int 2021; 146:110438. [PMID: 34119245 DOI: 10.1016/j.foodres.2021.110438] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 05/03/2021] [Accepted: 05/21/2021] [Indexed: 01/04/2023]
Abstract
The use of bee pollen as a food supplement has increased in recent years as it contains several nutrients and phytochemicals. However, depending on floral composition, bee pollen can be contaminated by pyrrolizidine alkaloids (PAs), PA N-oxides (PANOs) and toxigenic fungi found in plants, which may pose a potential health risk for consumers. Thus, a DNA metabarcoding approach based on internal transcribed spacer 2 (ITS2) region was used to identify the plant sources of 17 PAs/PANOs detected by a validated method in liquid chromatography coupled to mass spectrometry (LC-MS/MS), as well as floral and fungal diversity in 61 bee pollen samples. According to LC-MS/MS analysis, 67% of the samples contained PAs/PANOs with mean concentration of 339 µg/kg. The contamination pattern was characterised by lycopsamine- and senecionine-type PAs/PANOs. PA/PANO-producing plants were identified in 54% of the PA/PANO-contaminated samples analysed by DNA metabarcoding, which also allowed identifying the overall floral and fungal composition of 56 samples. To evaluate the performance of the molecular approach, a subset of 25 samples was analysed by classical palynology. Palynological analysis partially confirmed the results of DNA metabarcoding, which had a better performance in distinguishing pollens of different genera from Asteraceae (76%) and Brassicaceae (88%). However, the molecular analysis did not identify pollens from Castanea, Eucalyptus, Hedera and Salix, which were abundant in 11 samples according to palynology. On the other hand, the molecular analysis allowed identifying several fungal genera in 33 samples, including the toxigenic fungi Alternaria and Aspergillus, which were positively correlated to the plant genus Hypericum. Despite limitations in identifying some pollen types, these preliminary results suggest that the DNA metabarcoding could be applied in a multidisciplinary approach to give a picture of floral and fungal diversity, which can be sources of natural contaminants in bee pollen and would help to control its safety.
Collapse
|
Research Support, Non-U.S. Gov't |
4 |
4 |
7
|
Binati RL, Larini I, Salvetti E, Torriani S. Glutathione production by non-Saccharomyces yeasts and its impact on winemaking: A review. Food Res Int 2022; 156:111333. [DOI: 10.1016/j.foodres.2022.111333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/28/2022] [Accepted: 04/30/2022] [Indexed: 12/22/2022]
|
|
3 |
2 |
8
|
Troiano E, Larini I, Binati RL, Gatto V, Torriani S, Buzzini P, Turchetti B, Salvetti E, Felis GE. Finding a correct species assignment for a Metschnikowia strain: insights from the genome sequencing of strain DBT012. FEMS Yeast Res 2023; 23:7109264. [PMID: 37019825 DOI: 10.1093/femsyr/foad024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/23/2023] [Accepted: 04/04/2023] [Indexed: 04/07/2023] Open
Abstract
Metschnikowia pulcherrima is an important yeast species that is attracting increased interest thanks to its biotechnological potential, especially in agri-food applications. Phylogenetically related species of the so-called 'pulcherrima clade' were first described and then reclassified in one single species, which makes the identification an intriguing issue. Starting from the whole-genome sequencing of the pro-technological strain Metschnikowia sp. DBT012, this study applied comparative genomics to calculate similarity with the M. pulcherrima clade publicly available genomes with the aim to verify if novel single-copy putative phylogenetic markers could be selected, in comparison with the commonly used primary and secondary barcodes. The genome-based bioinformatic analysis allowed the identification of 85 consensus single-copy orthologs, which were reduced to three after split decomposition analysis. However, wet-lab amplification of these three genes in non-sequenced type strains revealed the presence of multiple copies, which made them unsuitable as phylogenetic markers. Finally, Average Nucleotide Identity (ANI) was calculated between strain DBT012 and available genome sequences of the M. pulcherrima clade, although the genome dataset is still rather limited. Presence of multiple copies of phylogenetic markers as well as ANI values were compatible with the recent reclassification of the clade, allowing the identification of strain DBT012 as M. pulcherrima.
Collapse
|
|
2 |
1 |
9
|
Garofalo G, Taspinar T, Larini I, Felis GE, Busetta G, Settanni L, Sardina MT, Erten H, Moschetti G, Salvetti E, Gaglio R. Application of whole genome sequenced selected Pediococcus acidilactici to tailor the making of the spreadable fresh ewe's milk "Quadrello di Ovino" cheese to the production area. Food Res Int 2025; 202:115696. [PMID: 39967154 DOI: 10.1016/j.foodres.2025.115696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/18/2024] [Accepted: 01/04/2025] [Indexed: 02/20/2025]
Abstract
The aim of this study was to utilize Pediococcus acidilactici strains as starter microorganisms in producing the fresh ewe's cheese "Quadrello di Ovino". Whole-genome analysis confirmed the absence of virulence factors (such as hemolysins) and genes conferring resistance to commonly used antibiotics indicated by the European Food Safety Authority. A control trial was conducted with commercial freeze-dried starters (CP), against the novel experimental cheese (EXP) inoculated with pediococci. Cheeses from both the control and experimental production showed high levels of lactic acid bacteria (LAB). Mesophilic LAB were present at 7.09 and 8.50 log CFU/g, respectively, while thermophilic LAB were found at 6.95 and 8.46 log CFU/g, respectively. Both cheeses showed no presence of spoilage or pathogenic microorganisms according to plate counts. While there were no significant differences in fat and protein content between them, the EXP cheese had a slightly higher protein content (16.85 %). Additionally, both cheeses had a complex profile of volatile organic compounds, with higher monounsaturated fatty acids (oleic acid) and polyunsaturated fatty acids (linoleic and linolenic acids) content in the EXP cheese at 26.80 %, 2.61 %, and 0.70 %, respectively. From a sensory perspective, the EXP cheese showed a diminished persistence of the taste typical of ewe's milk and a reduction in the unpleasant animal odour commonly found in cheeses made from small ruminants, while enhancing paste homogeneity and odor intensity. These observations indicate the product's promising potential, considering the increasing demand in local and foreign markets for spreadable cheeses with creamy consistence.
Collapse
|
|
1 |
|