1
|
Lazari A, Lipp I. Can MRI measure myelin? Systematic review, qualitative assessment, and meta-analysis of studies validating microstructural imaging with myelin histology. Neuroimage 2021; 230:117744. [PMID: 33524576 PMCID: PMC8063174 DOI: 10.1016/j.neuroimage.2021.117744] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/05/2021] [Accepted: 01/09/2021] [Indexed: 12/16/2022] Open
Abstract
Recent years have seen an increased understanding of the importance of myelination in healthy brain function and neuropsychiatric diseases. Non-invasive microstructural magnetic resonance imaging (MRI) holds the potential to expand and translate these insights to basic and clinical human research, but the sensitivity and specificity of different MR markers to myelination is a subject of debate. To consolidate current knowledge on the topic, we perform a systematic review and meta-analysis of studies that validate microstructural imaging by combining it with myelin histology. We find meta-analytic evidence for correlations between various myelin histology metrics and markers from different MRI modalities, including fractional anisotropy, radial diffusivity, macromolecular pool, magnetization transfer ratio, susceptibility and longitudinal relaxation rate, but not mean diffusivity. Meta-analytic correlation effect sizes range widely, between R2 = 0.26 and R2 = 0.82. However, formal comparisons between MRI-based myelin markers are limited by methodological variability, inconsistent reporting and potential for publication bias, thus preventing the establishment of a single most sensitive strategy to measure myelin with MRI. To facilitate further progress, we provide a detailed characterisation of the evaluated studies as an online resource. We also share a set of 12 recommendations for future studies validating putative MR-based myelin markers and deploying them in vivo in humans.
Collapse
|
Meta-Analysis |
4 |
92 |
2
|
Casella C, Lipp I, Rosser A, Jones DK, Metzler‐Baddeley C. A Critical Review of White Matter Changes in Huntington's Disease. Mov Disord 2020; 35:1302-1311. [PMID: 32537844 PMCID: PMC9393936 DOI: 10.1002/mds.28109] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/07/2020] [Accepted: 04/30/2020] [Indexed: 12/20/2022] Open
Abstract
Huntington's disease is a genetic neurodegenerative disorder. White matter alterations have recently been identified as a relevant pathophysiological feature of Huntington's disease, but their etiology and role in disease pathogenesis and progression remain unclear. Increasing evidence suggests that white matter changes in this disorder are attributed to alterations in myelin-associated biological processes. This review first discusses evidence from neurochemical studies lending support to the demyelination hypothesis of Huntington's disease, demonstrating aberrant myelination and changes in oligodendrocytes in the Huntington's brain. Next, evidence from neuroimaging studies is reviewed, the limitations of the described methodologies are discussed, and suggested interpretations of findings from published studies are challenged. Although our understanding of Huntington's associated pathological changes in the brain will increasingly rely on neuroimaging techniques, the shortcomings of these methodologies must not be forgotten. Advances in magnetic resonance imaging techniques and tissue modeling will enable a better in vivo, longitudinal characterization of the biological properties of white matter microstructure. This in turn will facilitate identification of disease-related biomarkers and the specification of outcome measures in clinical trials. © 2020 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.
Collapse
|
Review |
5 |
36 |
3
|
Lipp I, Murphy K, Wise RG, Caseras X. Understanding the contribution of neural and physiological signal variation to the low repeatability of emotion-induced BOLD responses. Neuroimage 2013; 86:335-42. [PMID: 24128735 PMCID: PMC3898985 DOI: 10.1016/j.neuroimage.2013.10.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 08/29/2013] [Accepted: 10/03/2013] [Indexed: 01/28/2023] Open
Abstract
Previous studies have reported low repeatability of BOLD activation measures during emotion processing tasks. It is not clear, however, whether low repeatability is a result of changes in the underlying neural signal over time, or due to insufficient reliability of the acquired BOLD signal caused by noise contamination. The aim of this study was to investigate the influence of “cleaning” the BOLD signal, by correcting for physiological noise and for differences in BOLD responsiveness, on measures of repeatability. Fifteen healthy volunteers were scanned on two different occasions, performing an emotion provocation task with faces (neutral, 50% fearful, 100% fearful) followed by a breath-hold paradigm to provide a marker of BOLD responsiveness. Repeatability of signal distribution (spatial repeatability) and repeatability of signal amplitude within two regions of interest (amygdala and fusiform gyrus) were estimated by calculating the intraclass correlation coefficient (ICC). Significant repeatability of signal amplitude was only found within the right amygdala during the perception of 50% fearful faces, but disappeared when physiological noise correction was performed. Spatial repeatability was higher within the fusiform gyrus than within the amygdala, and better at the group level than at the participant level. Neither physiological noise correction, nor consideration of BOLD responsiveness, assessed through the breath-holding, increased repeatability. The findings lead to the conclusion that low repeatability of BOLD response amplitude to emotional faces is more likely to be explained by the lack of stability in the underlying neural signal than by physiological noise contamination. Furthermore, reported repeatability might be a result of repeatability of task-correlated physiological variation rather than neural activity. This means that the emotion paradigm used in this study might not be useful for studies that require the BOLD response to be a stable measure of emotional processing, for example in the context of biomarkers.
We investigated repeatability of BOLD responses during a widely used emotion task. Repeatability of signal amplitude was low in the amygdala and in the fusiform gyrus. Spatial repeatability was higher within the fusiform gyrus than within the amygdala. Physiological noise correction did not improve any of the repeatability measures. The BOLD response to this emotion task might not be useful as a biomarker.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
35 |
4
|
Lipp I, Jones DK, Bells S, Sgarlata E, Foster C, Stickland R, Davidson AE, Tallantyre EC, Robertson NP, Wise RG, Tomassini V. Comparing MRI metrics to quantify white matter microstructural damage in multiple sclerosis. Hum Brain Mapp 2019; 40:2917-2932. [PMID: 30891838 PMCID: PMC6563497 DOI: 10.1002/hbm.24568] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/10/2019] [Accepted: 03/01/2019] [Indexed: 12/12/2022] Open
Abstract
Quantifying white matter damage in vivo is becoming increasingly important for investigating the effects of neuroprotective and repair strategies in multiple sclerosis (MS). While various approaches are available, the relationship between MRI‐based metrics of white matter microstructure in the disease, that is, to what extent the metrics provide complementary versus redundant information, remains largely unexplored. We obtained four microstructural metrics from 123 MS patients: fractional anisotropy (FA), radial diffusivity (RD), myelin water fraction (MWF), and magnetisation transfer ratio (MTR). Coregistration of maps of these four indices allowed quantification of microstructural damage through voxel‐wise damage scores relative to healthy tissue, as assessed in a group of 27 controls. We considered three white matter tissue‐states, which were expected to vary in microstructural damage: normal appearing white matter (NAWM), T2‐weighted hyperintense lesional tissue without T1‐weighted hypointensity (T2L), and T1‐weighted hypointense lesional tissue with corresponding T2‐weighted hyperintensity (T1L). All MRI indices suggested significant damage in all three tissue‐states, the greatest damage being in T1L. The correlations between indices ranged from r = 0.18 to r = 0.87. MWF was most sensitive when differentiating T2L from NAWM, while MTR was most sensitive when differentiating T1L from NAWM and from T2L. Combining the four metrics into one, through a principal component analysis, did not yield a measure more sensitive to damage than any single measure. Our findings suggest that the metrics are (at least partially) correlated with each other, but sensitive to the different aspects of pathology. Leveraging these differences could be beneficial in clinical trials testing the effects of therapeutic interventions.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
24 |
5
|
Lipp I, Benedek M, Fink A, Koschutnig K, Reishofer G, Bergner S, Ischebeck A, Ebner F, Neubauer A. Investigating neural efficiency in the visuo-spatial domain: an FMRI study. PLoS One 2012; 7:e51316. [PMID: 23251496 PMCID: PMC3520962 DOI: 10.1371/journal.pone.0051316] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 10/30/2012] [Indexed: 11/24/2022] Open
Abstract
The neural efficiency hypothesis postulates an inverse relationship between intelligence and brain activation. Previous research suggests that gender and task modality represent two important moderators of the neural efficiency phenomenon. Since most of the existing studies on neural efficiency have used ERD in the EEG as a measure of brain activation, the central aim of this study was a more detailed analysis of this phenomenon by means of functional MRI. A sample of 20 males and 20 females, who had been screened for their visuo-spatial intelligence, was confronted with a mental rotation task employing an event-related approach. Results suggest that less intelligent individuals show a stronger deactivation of parts of the default mode network, as compared to more intelligent people. Furthermore, we found evidence of an interaction between task difficulty, intelligence and gender, indicating that more intelligent females show an increase in brain activation with an increase in task difficulty. These findings may contribute to a better understanding of the neural efficiency hypothesis, and possibly also of gender differences in the visuo-spatial domain.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
24 |
6
|
Lipp I, Tomassini V. Neuroplasticity and motor rehabilitation in multiple sclerosis. Front Neurol 2015; 6:59. [PMID: 25852638 PMCID: PMC4364082 DOI: 10.3389/fneur.2015.00059] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 03/04/2015] [Indexed: 01/13/2023] Open
|
Review |
10 |
21 |
7
|
Jandric D, Lipp I, Paling D, Rog D, Castellazzi G, Haroon H, Parkes L, Parker GJM, Tomassini V, Muhlert N. Mechanisms of Network Changes in Cognitive Impairment in Multiple Sclerosis. Neurology 2021; 97:e1886-e1897. [PMID: 34649879 PMCID: PMC8601205 DOI: 10.1212/wnl.0000000000012834] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 09/13/2021] [Indexed: 12/14/2022] Open
Abstract
Background and Objectives Cognitive impairment in multiple sclerosis (MS) is associated with functional connectivity abnormalities. While there have been calls to use functional connectivity measures as biomarkers, there remains to be a full understanding of why they are affected in MS. In this cross-sectional study, we tested the hypothesis that functional network regions may be susceptible to disease-related “wear and tear” and that this can be observable on co-occurring abnormalities on other magnetic resonance metrics. We tested whether functional connectivity abnormalities in cognitively impaired patients with MS co-occur with (1) overlapping, (2) local, or (3) distal changes in anatomic connectivity and cerebral blood flow abnormalities. Methods Multimodal 3T MRI and assessment with the Brief Repeatable Battery of Neuropsychological tests were performed in 102 patients with relapsing-remitting MS and 27 healthy controls. Patients with MS were classified as cognitively impaired if they scored ≥1.5 SDs below the control mean on ≥2 tests (n = 55) or as cognitively preserved (n = 47). Functional connectivity was assessed with Independent Component Analysis and dual regression of resting-state fMRI images. Cerebral blood flow maps were estimated, and anatomic connectivity was assessed with anatomic connectivity mapping and fractional anisotropy of diffusion-weighted MRI. Changes in cerebral blood flow and anatomic connectivity were assessed within resting-state networks that showed functional connectivity abnormalities in cognitively impaired patients with MS. Results Functional connectivity was significantly decreased in the anterior and posterior default mode networks and significantly increased in the right and left frontoparietal networks in cognitively impaired relative to cognitively preserved patients with MS (threshold-free cluster enhancement corrected at p ≤ 0.05, 2 sided). Networks showing functional abnormalities showed altered cerebral blood flow and anatomic connectivity locally and distally but not in overlapping locations. Discussion We provide the first evidence that functional connectivity abnormalities are accompanied by local cerebral blood flow and structural connectivity abnormalities but also demonstrate that these effects do not occur in exactly the same location. Our findings suggest a possibly shared pathologic mechanism for altered functional connectivity in brain networks in MS.
Collapse
|
|
4 |
18 |
8
|
Lipp I, Evans CJ, Lewis C, Murphy K, Wise RG, Caseras X. The relationship between fearfulness, GABA+, and fear-related BOLD responses in the insula. PLoS One 2015; 10:e0120101. [PMID: 25811453 PMCID: PMC4374765 DOI: 10.1371/journal.pone.0120101] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 01/19/2015] [Indexed: 12/18/2022] Open
Abstract
The inhibitory neurotransmitter GABA plays a crucial role in anxiety and fear, but its relationship to brain activation during fear reactions is not clear. Previous studies suggest that GABA agonists lead to an attenuation of emotion-processing related BOLD signals in the insula. The aim of this study was to investigate the relationship between GABA concentration and fear-related BOLD responses in this region. In 44 female participants with different levels of fearfulness, GABA concentration in the left insula was measured using a GABA+ MRS acquisition during rest; additionally, BOLD signals were obtained during performance of a fear provocation paradigm. Fearfulness was not associated with GABA+ in the left insula, but could predict fear-related BOLD responses in a cluster in the left anterior insula. The BOLD signal change in this cluster did not correlate with GABA+ concentration. However, we found a significant positive correlation between GABA+ concentration and fear-related BOLD responses in a different cluster that included parts of the left insula, amygdala and putamen. Our findings indicate that low insular GABA concentration is not a predisposition for fearfulness, and that several factors influence whether a correlation between GABA and BOLD can be found.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
14 |
9
|
Bourget MH, Kamentsky L, Ghosh SS, Mazzamuto G, Lazari A, Markiewicz CJ, Oostenveld R, Niso G, Halchenko YO, Lipp I, Takerkart S, Toussaint PJ, Khan AR, Nilsonne G, Castelli FM, Cohen-Adad J. Microscopy-BIDS: An Extension to the Brain Imaging Data Structure for Microscopy Data. Front Neurosci 2022; 16:871228. [PMID: 35516811 PMCID: PMC9063519 DOI: 10.3389/fnins.2022.871228] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/01/2022] [Indexed: 11/13/2022] Open
Abstract
The Brain Imaging Data Structure (BIDS) is a specification for organizing, sharing, and archiving neuroimaging data and metadata in a reusable way. First developed for magnetic resonance imaging (MRI) datasets, the community-led specification evolved rapidly to include other modalities such as magnetoencephalography, positron emission tomography, and quantitative MRI (qMRI). In this work, we present an extension to BIDS for microscopy imaging data, along with example datasets. Microscopy-BIDS supports common imaging methods, including 2D/3D, ex/in vivo, micro-CT, and optical and electron microscopy. Microscopy-BIDS also includes comprehensible metadata definitions for hardware, image acquisition, and sample properties. This extension will facilitate future harmonization efforts in the context of multi-modal, multi-scale imaging such as the characterization of tissue microstructure with qMRI.
Collapse
|
brief-report |
3 |
13 |
10
|
Lipp I, Foster C, Stickland R, Sgarlata E, Tallantyre EC, Davidson AE, Robertson NP, Jones DK, Wise RG, Tomassini V. Predictors of training-related improvement in visuomotor performance in patients with multiple sclerosis: A behavioural and MRI study. Mult Scler 2021; 27:1088-1101. [PMID: 32749927 PMCID: PMC8151554 DOI: 10.1177/1352458520943788] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 11/17/2022]
Abstract
BACKGROUND The development of tailored recovery-oriented strategies in multiple sclerosis requires early identification of an individual's potential for functional recovery. OBJECTIVE To identify predictors of visuomotor performance improvements, a proxy of functional recovery, using a predictive statistical model that combines demographic, clinical and magnetic resonance imaging (MRI) data. METHODS Right-handed multiple sclerosis patients underwent baseline disability assessment and MRI of the brain structure, function and vascular health. They subsequently undertook 4 weeks of right upper limb visuomotor practice. Changes in performance with practice were our outcome measure. We identified predictors of improvement in a training set of patients using lasso regression; we calculated the best performing model in a validation set and applied this model to a test set. RESULTS Patients improved their visuomotor performance with practice. Younger age, better visuomotor abilities, less severe disease burden and concurrent use of preventive treatments predicted improvements. Neuroimaging localised outcome-relevant sensory motor regions, the microstructure and activity of which correlated with performance improvements. CONCLUSION Initial characteristics, including age, disease duration, visuo-spatial abilities, hand dexterity, self-evaluated disease impact and the presence of disease-modifying treatments, can predict functional recovery in individual patients, potentially improving their clinical management and stratification in clinical trials. MRI is a correlate of outcome, potentially supporting individual prognosis.
Collapse
|
research-article |
4 |
6 |
11
|
Lipp I, Kirilina E, Edwards LJ, Pine KJ, Jäger C, Gräßle T, Weiskopf N, Helms G. B 1 + $$ {B}_1^{+} $$ -correction of magnetization transfer saturation maps optimized for 7T postmortem MRI of the brain. Magn Reson Med 2023; 89:1385-1400. [PMID: 36373175 DOI: 10.1002/mrm.29524] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/06/2022] [Accepted: 10/25/2022] [Indexed: 11/15/2022]
Abstract
PURPOSE Magnetization transfer saturation ( MTsat $$ \mathrm{MTsat} $$ ) is a useful marker to probe tissue macromolecular content and myelination in the brain. The increased B 1 + $$ {B}_1^{+} $$ -inhomogeneity at ≥ 7 $$ \ge 7 $$ T and significantly larger saturation pulse flip angles which are often used for postmortem studies exceed the limits where previous MTsat $$ \mathrm{MTsat} $$ B 1 + $$ {B}_1^{+} $$ correction methods are applicable. Here, we develop a calibration-based correction model and procedure, and validate and evaluate it in postmortem 7T data of whole chimpanzee brains. THEORY The B 1 + $$ {B}_1^{+} $$ dependence of MTsat $$ \mathrm{MTsat} $$ was investigated by varying the off-resonance saturation pulse flip angle. For the range of saturation pulse flip angles applied in typical experiments on postmortem tissue, the dependence was close to linear. A linear model with a single calibration constant C $$ C $$ is proposed to correct bias in MTsat $$ \mathrm{MTsat} $$ by mapping it to the reference value of the saturation pulse flip angle. METHODS C $$ C $$ was estimated voxel-wise in five postmortem chimpanzee brains. "Individual-based global parameters" were obtained by calculating the mean C $$ C $$ within individual specimen brains and "group-based global parameters" by calculating the means of the individual-based global parameters across the five brains. RESULTS The linear calibration model described the data well, though C $$ C $$ was not entirely independent of the underlying tissue and B 1 + $$ {B}_1^{+} $$ . Individual-based correction parameters and a group-based global correction parameter ( C = 1 . 2 $$ C=1.2 $$ ) led to visible, quantifiable reductions of B 1 + $$ {B}_1^{+} $$ -biases in high-resolution MTsat $$ \mathrm{MTsat} $$ maps. CONCLUSION The presented model and calibration approach effectively corrects for B 1 + $$ {B}_1^{+} $$ inhomogeneities in postmortem 7T data.
Collapse
|
|
2 |
2 |
12
|
Friederici AD, Wittig RM, Anwander A, Eichner C, Gräßle T, Jäger C, Kirilina E, Lipp I, Düx A, Edwards LJ, Girard-Buttoz C, Jauch A, Kopp KS, Paquette M, Pine KJ, Unwin S, Haun DBM, Leendertz FH, McElreath R, Morawski M, Gunz P, Weiskopf N, Crockford C. Brain structure and function: a multidisciplinary pipeline to study hominoid brain evolution. Front Integr Neurosci 2024; 17:1299087. [PMID: 38260006 PMCID: PMC10800984 DOI: 10.3389/fnint.2023.1299087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/07/2023] [Indexed: 01/24/2024] Open
Abstract
To decipher the evolution of the hominoid brain and its functions, it is essential to conduct comparative studies in primates, including our closest living relatives. However, strong ethical concerns preclude in vivo neuroimaging of great apes. We propose a responsible and multidisciplinary alternative approach that links behavior to brain anatomy in non-human primates from diverse ecological backgrounds. The brains of primates observed in the wild or in captivity are extracted and fixed shortly after natural death, and then studied using advanced MRI neuroimaging and histology to reveal macro- and microstructures. By linking detailed neuroanatomy with observed behavior within and across primate species, our approach provides new perspectives on brain evolution. Combined with endocranial brain imprints extracted from computed tomographic scans of the skulls these data provide a framework for decoding evolutionary changes in hominin fossils. This approach is poised to become a key resource for investigating the evolution and functional differentiation of hominoid brains.
Collapse
|
methods-article |
1 |
|
13
|
Caporale AS, Chiarelli AM, Biondetti E, Villani A, Lipp I, Di Censo D, Tomassini V, Wise RG. Changes of brain parenchyma free water fraction reflect tissue damage and impaired processing speed in multiple sclerosis. Hum Brain Mapp 2024; 45:e26761. [PMID: 38895882 PMCID: PMC11187860 DOI: 10.1002/hbm.26761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 05/13/2024] [Accepted: 06/02/2024] [Indexed: 06/21/2024] Open
Abstract
Free water fraction (FWF) represents the amount of water per unit volume of brain parenchyma, which is not bound to macromolecules. Its excess in multiple sclerosis (MS) is related to increased tissue loss. The use of mcDESPOT (multicomponent driven single pulse observation of T1 and T2), a 3D imaging method which exploits both the T1 and T2 contrasts, allows FWF to be derived in clinically feasible times. However, this method has not been used to quantify changes of FWF and their potential clinical impact in MS. The aim of this study is to investigate the changes in FWF in MS patients and their relationship with tissue damage and cognition, under the hypothesis that FWF is a proxy of clinically meaningful tissue loss. To this aim, we tested the relationship between FWF, MS lesion burden and information processing speed, evaluated via the Symbol Digit Modalities Test (SDMT). In addition to standard sequences, used for T1- and T2-weighted lesion delineation, the mcDESPOT sequence with 1.7 mm isotropic resolution and a diffusion weighted imaging protocol (b = 0, 1200 s/mm2, 40 diffusion directions) were employed at 3 T. The fractional anisotropy map derived from diffusion data was used to define a subject-specific white matter (WM) atlas. Brain parenchyma segmentation returned masks of gray matter (GM) and WM, and normal-appearing WM (NAWM), in addition to the T1 and T2 lesion masks (T1L and T2L, respectively). Ninety-nine relapsing-remitting MS patients (age = 43.3 ± 9.9 years, disease duration 12.3 ± 7.7 years) were studied, together with twenty-five healthy controls (HC, age = 38.8 ± 11.0 years). FWF was higher in GM and NAWM of MS patients, compared to GM and WM of HC (both p < .001). In MS patients, FWF was the highest in the T1L and GM, followed by T2L and NAWM, respectively. FWF increased significantly with T1L and T2L volume (ρ ranging from 0.40 to 0.58, p < .001). FWF in T2L was strongly related to both T1L volume and the volume ratio T1L/T2L (ρ = 0.73, p < .001). MS patients performed worse than HC in the processing speed test (mean ± SD: 54.1 ± 10.3 for MS, 63.8 ± 10.8 for HC). FWF in GM, T2L, perilesional tissue and NAWM increased with SDMT score reduction (ρ = -0.30, -0.29, -0.33 respectively and r = -.30 for T2L, all with p < .005). A regional analysis, conducted to determine which NAWM regions were of particular importance to explain the relationship between FWF and cognitive impairment, revealed that FWF spatial variance was negatively related to SDMT score in the corpus callosum and the superior longitudinal fasciculus, WM structures known to be associated with cognitive impairment, in addition to the left corticospinal tract, the sagittal stratum, the right anterior limb of internal capsule. In conclusion, we found excess free water in brain parenchyma of MS patients, an alteration that involved not only MS lesions, but also the GM and NAWM, impinging on brain function and negatively associated with cognitive processing speed. We suggest that the FWF metric, derived from noninvasive, rapid MRI acquisitions and bearing good biological interpretability, may prove valuable as an MRI biomarker of tissue damage and associated cognitive impairment in MS.
Collapse
|
research-article |
1 |
|
14
|
Digiovanni A, Mascali D, Chiarelli A, Lipp I, Grasso E, Pozzilli V, Rispoli MG, Villani A, D'Apolito M, Tomassini V, Wise RG. Physiological basis for sex differences in MS damage: MRI evidence. J Neurol Sci 2021. [DOI: 10.1016/j.jns.2021.118160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
|
4 |
|
15
|
Jandric D, Parker GJM, Haroon H, Tomassini V, Muhlert N, Lipp I. A tractometry principal component analysis of white matter tract network structure and relationships with cognitive function in relapsing-remitting multiple sclerosis. Neuroimage Clin 2022; 34:102995. [PMID: 35349892 PMCID: PMC8958271 DOI: 10.1016/j.nicl.2022.102995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/04/2022] [Accepted: 03/23/2022] [Indexed: 10/25/2022]
Abstract
Understanding the brain changes underlying cognitive dysfunction is a key priority in multiple sclerosis (MS) to improve monitoring and treatment of this debilitating symptom. Functional connectivity network changes are associated with cognitive dysfunction, but it is less well understood how changes in normal appearing white matter relate to cognitive symptoms. If white matter tracts have network structure it would be expected that tracts within a network share susceptibility to MS pathology. In the present study, we used a tractometry approach to explore patterns of variance in white matter metrics across white matter (WM) tracts, and assessed how such patterns relate to neuropsychological test performance across cognitive domains. A sample of 102 relapsing-remitting MS patients and 27 healthy controls underwent MRI and neuropsychological testing. Tractography was performed on diffusion MRI data to extract 40 WM tracts and microstructural measures were extracted from each tract. Principal component analysis (PCA) was used to decompose metrics from all tracts to assess the presence of any co-variance structure among the tracts. Similarly, PCA was applied to cognitive test scores to identify the main cognitive domains. Finally, we assessed the ability of tract co-variance patterns to predict test performance across cognitive domains. We found that a single co-variance pattern which captured microstructure across all tracts explained the most variance (65% variance explained) and that there was little evidence for separate, smaller network patterns of pathology. Variance in this pattern was explained by effects related to lesions, but one main co-variance pattern persisted after this effect was regressed out. This main WM tract co-variance pattern contributed to explaining a modest degree of variance in one of our four cognitive domains in MS. These findings highlight the need to investigate the relationship between the normal appearing white matter and cognitive impairment further and on a more granular level, to improve the understanding of the network structure of the brain in MS.
Collapse
|
|
3 |
|
16
|
Lipp I, Jacobshagen B. [The upper hearing limit. A study of its dependence on age and sex with consideration of endogenous and exogenous factors]. ANTHROPOLOGISCHER ANZEIGER; BERICHT UBER DIE BIOLOGISCH-ANTHROPOLOGISCHE LITERATUR 1993; 51:77-90. [PMID: 8476277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In order to determine the upper limit of the audible frequency range as well as its age-dependency we have examined 198 persons whose ages varied from 3 to 90 years of which 111 were women. To correct for potential errors that might occur due to other factors which may differ from the age only, an additional 28 variables have been recorded besides the measurement of high-tone perception. The hearing experiment was based on the monaural exposition of a monofrequent test signal. Its frequency was continuously varied whereas the sound pressure level was kept as constant as possible. The results show a strong dependency of upper frequency limit at a given sound level with the age and some sex-differences. All the rest of possibly interfering variables (i.e. noise-exposition or ototoxic drugs) remained below the threshold of statistical significance. The approximately linear relationship between the age and the ability of high frequency perception shows a more pronounced and earlier loss of sensitivity (to high frequencies) in males than in females.
Collapse
|
English Abstract |
32 |
|
17
|
Patitucci E, Lipp I, Stickland RC, Wise RG, Tomassini V. Changes in brain perfusion with training-related visuomotor improvement in MS. Front Mol Neurosci 2023; 16:1270393. [PMID: 38025268 PMCID: PMC10665528 DOI: 10.3389/fnmol.2023.1270393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system. A better understanding of the mechanisms supporting brain plasticity in MS would help to develop targeted interventions to promote recovery. A total of 29 MS patients and 19 healthy volunteers underwent clinical assessment and multi-modal MRI acquisition [fMRI during serial reaction time task (SRT), DWI, T1w structural scans and ASL of resting perfusion] at baseline and after 4-weeks of SRT training. Reduction of functional hyperactivation was observed in MS patients following the training, shown by the stronger reduction of the BOLD response during task execution compared to healthy volunteers. The functional reorganization was accompanied by a positive correlation between improvements in task accuracy and the change in resting perfusion after 4 weeks' training in right angular and supramarginal gyri in MS patients. No longitudinal changes in WM and GM measures and no correlation between task performance improvements and brain structure were observed in MS patients. Our results highlight a potential role for CBF as an early marker of plasticity, in terms of functional (cortical reorganization) and behavioral (performance improvement) changes in MS patients that may help to guide future interventions that exploit preserved plasticity mechanisms.
Collapse
|
research-article |
2 |
|
18
|
Orzac ES, Lipp I, Kramer L. A vertigo diagnosis center in a community hospital. EAR, NOSE & THROAT JOURNAL 1977; 56:460-4. [PMID: 923475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
|
48 |
|
19
|
Eichner C, Paquette M, Müller-Axt C, Bock C, Budinger E, Gräßle T, Jäger C, Kirilina E, Lipp I, Morawski M, Rusch H, Wenk P, Weiskopf N, Wittig RM, Crockford C, Friederici AD, Anwander A. Detailed mapping of the complex fiber structure and white matter pathways of the chimpanzee brain. Nat Methods 2024; 21:1122-1130. [PMID: 38831210 PMCID: PMC11166572 DOI: 10.1038/s41592-024-02270-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 03/29/2024] [Indexed: 06/05/2024]
Abstract
Long-standing questions about human brain evolution may only be resolved through comparisons with close living evolutionary relatives, such as chimpanzees. This applies in particular to structural white matter (WM) connectivity, which continuously expanded throughout evolution. However, due to legal restrictions on chimpanzee research, neuroscience research currently relies largely on data with limited detail or on comparisons with evolutionarily distant monkeys. Here, we present a detailed magnetic resonance imaging resource to study structural WM connectivity in the chimpanzee. This open-access resource contains (1) WM reconstructions of a postmortem chimpanzee brain, using the highest-quality diffusion magnetic resonance imaging data yet acquired from great apes; (2) an optimized and validated method for high-quality fiber orientation reconstructions; and (3) major fiber tract segmentations for cross-species morphological comparisons. This dataset enabled us to identify phylogenetically relevant details of the chimpanzee connectome, and we anticipate that it will substantially contribute to understanding human brain evolution.
Collapse
|
research-article |
1 |
|
20
|
Biondetti E, Chiarelli AM, Germuska M, Lipp I, Villani A, Caporale AS, Patitucci E, Murphy K, Tomassini V, Wise RG. Breath-hold BOLD fMRI without CO 2 sampling enables estimation of venous cerebral blood volume: potential use in normalization of stimulus-evoked BOLD fMRI data. Neuroimage 2024; 285:120492. [PMID: 38070840 DOI: 10.1016/j.neuroimage.2023.120492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 10/30/2023] [Accepted: 12/06/2023] [Indexed: 01/13/2024] Open
Abstract
BOLD fMRI signal has been used in conjunction with vasodilatory stimulation as a marker of cerebrovascular reactivity (CVR): the relative change in cerebral blood flow (CBF) arising from a unit change in the vasodilatory stimulus. Using numerical simulations, we demonstrate that the variability in the relative BOLD signal change induced by vasodilation is strongly influenced by the variability in deoxyhemoglobin-containing cerebral blood volume (CBV), as this source of variability is likely to be more prominent than that of CVR. It may, therefore, be more appropriate to describe the relative BOLD signal change induced by an isometabolic vasodilation as a proxy of deoxygenated CBV (CBVdHb) rather than CVR. With this in mind, a new method was implemented to map a marker of CBVdHb, termed BOLD-CBV, based on the normalization of voxel-wise BOLD signal variation by an estimate of the intravascular venous BOLD signal from voxels filled with venous blood. The intravascular venous BOLD signal variation, recorded during repeated breath-holding, was extracted from the superior sagittal sinus in a cohort of 27 healthy volunteers and used as a regressor across the whole brain, yielding maps of BOLD-CBV. In the same cohort, we demonstrated the potential use of BOLD-CBV for the normalization of stimulus-evoked BOLD fMRI by comparing group-level BOLD fMRI responses to a visuomotor learning task with and without the inclusion of voxel-wise vascular covariates of BOLD-CBV and the BOLD signal change per mmHg variation in end-tidal carbon dioxide (BOLD-CVR). The empirical measure of BOLD-CBV accounted for more between-subject variability in the motor task-induced BOLD responses than BOLD-CVR estimated from end-tidal carbon dioxide recordings. The new method can potentially increase the power of group fMRI studies by including a measure of vascular characteristics and has the strong practical advantage of not requiring experimental measurement of end-tidal carbon dioxide, unlike traditional methods to estimate BOLD-CVR. It also more closely represents a specific physiological characteristic of brain vasculature than BOLD-CVR, namely blood volume.
Collapse
|
|
1 |
|
21
|
Mascali D, Villani A, Chiarelli AM, Biondetti E, Lipp I, Digiovanni A, Pozzilli V, Caporale AS, Rispoli MG, Ajdinaj P, D'Apolito M, Grasso E, Sensi SL, Murphy K, Tomassini V, Wise RG. Pathophysiology of multiple sclerosis damage and repair: Linking cerebral hypoperfusion to the development of irreversible tissue loss in multiple sclerosis using magnetic resonance imaging. Eur J Neurol 2023; 30:2348-2356. [PMID: 37154298 PMCID: PMC7615142 DOI: 10.1111/ene.15827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/10/2023] [Accepted: 05/01/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND AND PURPOSE Reduced cerebral perfusion has been observed in multiple sclerosis (MS) and may contribute to tissue loss both acutely and chronically. Here, we test the hypothesis that hypoperfusion occurs in MS and relates to the presence of irreversible tissue damage. METHODS In 91 patients with relapsing MS and 26 healthy controls (HC), gray matter (GM) cerebral blood flow (CBF) was assessed using pulsed arterial spin labeling. GM volume, T1 hypointense and T2 hyperintense lesion volumes (T1LV and T2LV, respectively), and the proportion of T2-hyperintense lesion volume that appears hypointense on T1-weighted magnetic resonance imaging (T1LV/T2LV) were quantified. GM CBF and GM volume were evaluated globally, as well as regionally, using an atlas-based approach. RESULTS Global GM CBF was lower in patients (56.9 ± 12.3 mL/100 g/min) than in HC (67.7 ± 10.0 mL/100 g/min; p < 0.001), a difference that was widespread across brain regions. Although total GM volume was comparable between groups, significant reductions were observed in a subset of subcortical structures. GM CBF negatively correlated with T1LV (r = -0.43, p = 0.0002) and T1LV/T2LV (r = -0.37, p = 0.0004), but not with T2LV. CONCLUSIONS GM hypoperfusion occurs in MS and is associated with irreversible white matter damage, thus suggesting that cerebral hypoperfusion may actively contribute and possibly precede neurodegeneration by hampering tissue repair abilities in MS.
Collapse
|
research-article |
2 |
|
22
|
Gräßle T, Crockford C, Eichner C, Girard‐Buttoz C, Jäger C, Kirilina E, Lipp I, Düx A, Edwards L, Jauch A, Kopp KS, Paquette M, Pine K, Haun DBM, McElreath R, Anwander A, Gunz P, Morawski M, Friederici AD, Weiskopf N, Leendertz FH, Wittig RM, Albig K, Amarasekaran B, Angedakin S, Anwander A, Aschoff D, Asiimwe C, Bailanda L, Beehner JC, Belais R, Bergman TJ, Blazey B, Bernhard A, Bock C, Carlier P, Chantrey J, Crockford C, Deschner T, Düx A, Edwards L, Eichner C, Escoubas G, Ettaj M, Fedurek P, Flores K, Francke R, Friederici AD, Girard‐Buttoz C, Fortun JG, GoneBi ZB, Gräßle T, Gruber‐Dujardin E, Gunz P, Hartel J, Haun DBM, Henshall M, Hobaiter C, Hofman N, Jaffe JE, Jäger C, Jauch A, Kahemere S, Kirilina E, Klopfleisch R, Knauf‐Witzens T, Kopp KS, Kouima GLM, Lange B, Langergraber K, Lawrenz A, Leendertz FH, Lipp I, Liptovszky M, Theron TL, Lumbu CP, Nzassi PM, Mätz‐Rensing K, McElreath R, McLennan M, Mezö Z, Moittie S, Møller T, Morawski M, Morgan D, Mugabe T, Muller M, Müller M, Njumboket I, Olofsson‐Sannö K, Ondzie A, Otali E, Paquette M, Pika S, Pine K, Pizarro A, Pléh K, Rendel J, Reichler‐Danielowski S, Robbins MM, Forero AR, Ruske K, Samuni L, Sanz C, Schüle A, Schwabe I, Schwalm K, Speede S, Southern L, Steiner J, Stidworthy M, Surbeck M, Szentiks C, Tanga T, Ulrich R, Unwin S, van de Waal E, Walker S, Weiskopf N, Wibbelt G, Wittig RM, Wood K, Zuberbühler K. Sourcing high tissue quality brains from deceased wild primates with known socio‐ecology. Methods Ecol Evol 2023. [DOI: 10.1111/2041-210x.14039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
|
2 |
|
23
|
Lipp I, Mole JP, Subramanian L, Linden DEJ, Metzler-Baddeley C. Investigating the Anatomy and Microstructure of the Dentato-rubro-thalamic and Subthalamo-ponto-cerebellar Tracts in Parkinson's Disease. Front Neurol 2022; 13:793693. [PMID: 35401393 PMCID: PMC8987292 DOI: 10.3389/fneur.2022.793693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 02/07/2022] [Indexed: 11/17/2022] Open
Abstract
Cerebellar-thalamic connections play a central role in deep brain stimulation-based treatment of tremor syndromes. Here, we used diffusion Magnetic Resonance Imaging (MRI) tractography to delineate the main cerebellar peduncles as well as two main white matter tracts that connect the cerebellum with the thalamus, the dentato-rubro-thalamic tract (DRTT) and the subthalamo-ponto-cerebellar tract (SPCT). We first developed a reconstruction protocol in young healthy adults with high-resolution diffusion imaging data and then demonstrate feasibility of transferring this protocol to clinical studies using standard diffusion MRI data from a cohort of patients with Parkinson's disease (PD) and their matched healthy controls. The tracts obtained closely corresponded to the previously described anatomical pathways and features of the DRTT and the SPCT. Second, we investigated the microstructure of these tracts with fractional anisotropy (FA), radial diffusivity (RD), and hindrance modulated orientational anisotropy (HMOA) in patients with PD and healthy controls. By reducing dimensionality of both the microstructural metrics and the investigated cerebellar and cerebellar-thalamic tracts using principal component analyses, we found global differences between patients with PD and controls, suggestive of higher fractional anisotropy, lower radial diffusivity, and higher hindrance modulated orientational anisotropy in patients. However, separate analyses for each of the tracts did not yield any significant differences. Our findings contribute to the characterization of the distinct anatomical connections between the cerebellum and the diencephalon. Microstructural differences between patients and controls in the cerebellar pathways suggest involvement of these structures in PD, complementing previous functional and diffusion imaging studies.
Collapse
|
research-article |
3 |
|