Moser SC, von Elsner S, Büssing I, Alpi A, Schnabel R, Gartner A. Functional dissection of Caenorhabditis elegans CLK-2/TEL2 cell cycle defects during embryogenesis and germline development.
PLoS Genet 2009;
5:e1000451. [PMID:
19360121 PMCID:
PMC2660272 DOI:
10.1371/journal.pgen.1000451]
[Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Accepted: 03/11/2009] [Indexed: 12/31/2022] Open
Abstract
CLK-2/TEL2 is essential for viability from yeasts to vertebrates, but its essential functions remain ill defined. CLK-2/TEL2 was initially implicated in telomere length regulation in budding yeast, but work in Caenorhabditis elegans has uncovered a function in DNA damage response signalling. Subsequently, DNA damage signalling defects associated with CLK-2/TEL2 have been confirmed in yeast and human cells. The CLK-2/TEL2 interaction with the ATM and ATR DNA damage sensor kinases and its requirement for their stability led to the proposal that CLK-2/TEL2 mutants might phenocopy ATM and/or ATR depletion. We use C. elegans to dissect developmental and cell cycle related roles of CLK-2. Temperature sensitive (ts) clk-2 mutants accumulate genomic instability and show a delay of embryonic cell cycle timing. This delay partially depends on the worm p53 homolog CEP-1 and is rescued by co-depletion of the DNA replication checkpoint proteins ATL-1 (C. elegans ATR) and CHK-1. In addition, clk-2 ts mutants show a spindle orientation defect in the eight cell stages that lead to major cell fate transitions. clk-2 deletion worms progress through embryogenesis and larval development by maternal rescue but become sterile and halt germ cell cycle progression. Unlike ATL-1 depleted germ cells, clk-2–null germ cells do not accumulate DNA double-strand breaks. Rather, clk-2 mutant germ cells arrest with duplicated centrosomes but without mitotic spindles in an early prophase like stage. This germ cell cycle arrest does not depend on cep-1, the DNA replication, or the spindle checkpoint. Our analysis shows that CLK-2 depletion does not phenocopy PIKK kinase depletion. Rather, we implicate CLK-2 in multiple developmental and cell cycle related processes and show that CLK-2 and ATR have antagonising functions during early C. elegans embryonic development.
PI3K-related protein kinases (PIKKs) ATM and ATR are essential upstream components of DNA damage signalling pathways, while TOR-1 acts as a nutrient sensor. CLK-2/TEL2 is a conserved gene initially implicated in budding yeast telomere length regulation and uncovered in the same genetic screen as the yeast TEL1 ATM like kinase. CLK-2/TEL2 was first implicated in DNA damage response signalling by C. elegans genetics, a function confirmed in yeast and human cells. In addition, CLK-2/TEL2 is essential for cellular and organismal survival from yeasts to vertebrates, but the essential phenotypes were not defined. A direct interaction between CLK-2/TEL2 and all PI3K-related protein kinases and the reduction of PIKK protein levels upon CLK-2/TEL2 depletion lead to the widely discussed notion that CLK-2/TEL2 mutants might phenocopy PIKK depletion phenotypes. We take advantage of embryonic lineage analysis and germline cytology to dissect developmental and cell cycle related functions of CLK-2. CLK-2 depletion does not phenocopy PIKK kinase depletion. We rather link CLK-2 to multiple developmental and cell cycle related processes and show that CLK-2 and ATR have antagonising functions during early C. elegans embryonic development. Furthermore, we implicate CLK-2 in a distinct cell lineage decision and show that its depletion leads to a novel germline cell cycle arrest phenotype.
Collapse