1
|
Vikhanskaya F, Toh WH, Dulloo I, Wu Q, Boominathan L, Ng HH, Vousden KH, Sabapathy K. p73 supports cellular growth through c-Jun-dependent AP-1 transactivation. Nat Cell Biol 2007; 9:698-705. [PMID: 17496887 DOI: 10.1038/ncb1598] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Accepted: 04/20/2007] [Indexed: 01/14/2023]
Abstract
The cause or consequence of overexpression of p73 (refs 1, 2), the structural and functional homologue of the tumour-suppressor gene product p53 (refs 3, 4), in human cancers is poorly understood. Here, we report a role for p73 in supporting cellular growth through the upregulation of AP-1 transcriptional activity. p73 suppresses growth when overexpressed alone, but synergises with the proto-oncogene c-Jun to promote cellular survival. Conversely, silencing of p73 expression compromises cellular proliferation. Molecular analysis revealed that expression of the AP-1 target-gene product cyclinD1 (ref. 5) is reduced concomitant with p73, but not p53, silencing. Moreover, cyclinD1 was induced by p73 expression in a c-Jun-dependent manner, and was required for p73-mediated cell survival. Furthermore, c-Jun-dependent AP-1 transcriptional activity was augmented by p73 and, consistently, induction of endogenous AP-1 target genes was compromised in the absence of p73. Chromatin immunoprecipitation and electrophoretic mobility shift analysis indicated that p73 enhanced the binding of phosphorylated c-Jun and Fra-1, another AP-1 family member, to AP-1 consensus DNA sequences, by regulating c-Jun phosphorylation and Fra-1 expression. Collectively, our data demonstrates a novel and unexpected role of p73 in augmenting AP-1 transcriptional activity through which it supports cellular growth.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
58 |
2
|
Dulloo I, Gopalan G, Melino G, Sabapathy K. The antiapoptotic DeltaNp73 is degraded in a c-Jun-dependent manner upon genotoxic stress through the antizyme-mediated pathway. Proc Natl Acad Sci U S A 2010; 107:4902-7. [PMID: 20185758 PMCID: PMC2841924 DOI: 10.1073/pnas.0906782107] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
p73, the structural and functional homologue of p53, exists as two major forms: the transactivation-proficient, proapoptotic TAp73 or the transactivation-deficient, antiapoptotic DNp73. Expectedly, expression of both these major forms has to be coordinated precisely to achieve the desired cellular outcome. Genotoxic insults resulting in cell death lead to the stabilization of TAp73, mainly through posttranslational modifications, and the concomitant degradation of DNp73, through poorly understood mechanisms. We have therefore investigated the possible mechanisms of stress-induced DNp73 degradation and show here that c-Jun, the AP-1 family member activated by stress signals and involved in stabilizing TAp73, promotes DNp73 degradation. Genotoxic stress-mediated DNp73 degradation was found to occur in a c-Jun-dependent manner through a ubiquitin-independent but proteasome-dependent mechanism. Absence or down-regulation of c-Jun expression abrogated the reduction of DNp73 levels upon stress insults, whereas overexpression of c-Jun led to its degradation. c-Jun controlled DNp73 degradation through the nonclassical, polyamine-induced antizyme (Az) pathway by regulating the latter's processing during stress response. Consistently, expression of c-Jun or Az, or addition of polyamines, promoted DNp73 degradation, whereas silencing Az expression or inhibiting Az activity in cells exposed to stress reduced c-Jun-dependent DNp73 degradation. Moreover, Az was able to bind to DNp73. These data together demonstrate the existence of a c-Jun-dependent mechanism regulating the abundance of the antiapoptotic DNp73 in response to genotoxic stress.
Collapse
|
research-article |
15 |
51 |
3
|
Dulloo I, Muliyil S, Freeman M. The molecular, cellular and pathophysiological roles of iRhom pseudoproteases. Open Biol 2020; 9:190003. [PMID: 30890028 PMCID: PMC6451368 DOI: 10.1098/rsob.190003] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
iRhom proteins are catalytically inactive relatives of rhomboid intramembrane proteases. There is a rapidly growing body of evidence that these pseudoenzymes have a central function in regulating inflammatory and growth factor signalling and consequent roles in many diseases. iRhom pseudoproteases have evolved new domains from their proteolytic ancestors, which are integral to their modular regulation and functions. Although we cannot yet conclude the full extent of their molecular and cellular mechanisms, there is a clearly emerging theme that they regulate the stability and trafficking of other membrane proteins. In the best understood case, iRhoms act as regulatory cofactors of the ADAM17 protease, controlling its function of shedding cytokines and growth factors. It seems likely that as the involvement of iRhoms in human diseases is increasingly recognized, they will become the focus of pharmaceutical interest, and here we discuss what is known about their molecular mechanisms and relevance in known pathologies.
Collapse
|
Review |
5 |
50 |
4
|
Lin KW, Nam SY, Toh WH, Dulloo I, Sabapathy K. Multiple stress signals induce p73beta accumulation. Neoplasia 2005; 6:546-57. [PMID: 15548364 PMCID: PMC1531659 DOI: 10.1593/neo.04205] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although p73 is a structural and functional homologue of the tumor-suppressor gene p53, it is not mutated in many human cancers as p53. Besides, p73 was shown to be activated by only a subset of signals that activate p53, such as gamma-irradiation and cisplatin, but not by other common genotoxic stress-inducing agents such as ultraviolet (UV) irradiation, although many of these signals are also capable of inducing p53-independent cell death. Using a p73-specific antibody, we confirmed that c-Abl is required for cisplatin-induced p73 upregulation, and further demonstrate that the p73 protein is upregulated by UV irradiation and other stress stimuli including sorbitol, hydrogen peroxide, nocodazol, and taxol. These stress signals upregulate both p73 mRNA and increases the stability of p73, indicating that p73 is regulated transcriptionally and posttranslationally. Cells stably expressing the dominant-negative p73 inhibitor protein (p73DD) and p73(-/-) fibroblasts are more resistant than control cells to apoptosis induced by these stress signals, suggesting that p73 contributes to apoptosis induction. Together, the data demonstrate that several stress signals can signal to p73 in vivo, which raises the possibility of eradicating cancers with an unmutated p73 gene by activating them with stress-inducing agents or their mimetics.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
39 |
5
|
Bunjobpol W, Dulloo I, Igarashi K, Concin N, Matsuo K, Sabapathy K. Suppression of acetylpolyamine oxidase by selected AP-1 members regulates DNp73 abundance: mechanistic insights for overcoming DNp73-mediated resistance to chemotherapeutic drugs. Cell Death Differ 2014; 21:1240-9. [PMID: 24722210 PMCID: PMC4085530 DOI: 10.1038/cdd.2014.41] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 02/17/2014] [Accepted: 02/28/2014] [Indexed: 12/18/2022] Open
Abstract
Enhanced resistance to chemotherapy has been correlated with high levels of Delta-Np73 (DNp73), an anti-apoptotic protein of the p53 tumor-suppressor family which inhibits the pro-apoptotic members such as p53 and TAp73. Although genotoxic drugs have been shown to induce DNp73 degradation, lack of mechanistic understanding of this process precludes strategies to enhance the targeting of DNp73 and improve treatment outcomes. Antizyme (Az) is a mediator of ubiquitin-independent protein degradation regulated by the polyamine biosynthesis pathway. We show here that acetylpolyamine oxidase (PAOX), a catabolic enzyme of this pathway, upregulates DNp73 levels by suppressing its degradation via the Az pathway. Conversely, downregulation of PAOX activity by siRNA-mediated knockdown or chemical inhibition leads to DNp73 degradation in an Az-dependent manner. PAOX expression is suppressed by several genotoxic drugs, via selected members of the activator protein-1 (AP-1) transcription factors, namely c-Jun, JunB and FosB, which are required for stress-mediated DNp73 degradation. Finally, chemical- and siRNA-mediated inhibition of PAOX significantly reversed the resistant phenotype of DNp73-overexpressing cancer cells to genotoxic drugs. Together, these data define a critical mechanism for the regulation of DNp73 abundance, and reveal that inhibition of PAOX could widen the therapeutic index of cytotoxic drugs and overcome DNp73-mediated chemoresistance in tumors.
Collapse
|
research-article |
11 |
31 |
6
|
Dulloo I, Hooi PB, Sabapathy K. Hypoxia-induced DNp73 stabilization regulates Vegf-A expression and tumor angiogenesis similar to TAp73. Cell Cycle 2016; 14:3533-9. [PMID: 26267146 PMCID: PMC4825702 DOI: 10.1080/15384101.2015.1078038] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
P73, the homolog of p53, exists in 2 major forms: either as a pro-apoptotic TAp73 or an amino-terminally truncated DNp73, the latter lacking the first transactivation domain. While TAp73s tumor suppressive functions have been established, DNp73 is an anti-apoptotic protein conferring chemoresistance and is associated with poor survival. However, both forms are variably overexpressed in many human cancers. In this context, we have recently demonstrated that TAp73 is stabilized by hypoxia, a tumor-relevant condition that is associated with cell survival, via HIF-1α-mediated suppression of Siah1 E3 ligase that degrades TAp73. Consequently, hypoxic signals lead to TAp73-mediated activation of several angiogenic genes and blood vessel formation, thereby supporting tumorigenesis. We show here that, similar to TAp73, DNp73 is stabilized by hypoxia in a HIF-1α-dependent manner, which otherwise is degraded by Siah1. Moreover, DNp73 is capable of inducing the expression of Vegf-A, the prototypic angiogenic gene, and loss of DNp73 expression results in reduction in tumor vasculature and size. These data therefore indicate a common mode of regulation for both p73 forms by hypoxia, resulting in the promotion of angiogenesis and tumor growth, highlighting common functionality of these antagonistic proteins under specific physiological contexts.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
20 |
7
|
Muliyil S, Levet C, Düsterhöft S, Dulloo I, Cowley SA, Freeman M. ADAM17-triggered TNF signalling protects the ageing Drosophila retina from lipid droplet-mediated degeneration. EMBO J 2020; 39:e104415. [PMID: 32715522 PMCID: PMC7459420 DOI: 10.15252/embj.2020104415] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 12/15/2022] Open
Abstract
Animals have evolved multiple mechanisms to protect themselves from the cumulative effects of age‐related cellular damage. Here, we reveal an unexpected link between the TNF (tumour necrosis factor) inflammatory pathway, triggered by the metalloprotease ADAM17/TACE, and a lipid droplet (LD)‐mediated mechanism of protecting retinal cells from age‐related degeneration. Loss of ADAM17, TNF and the TNF receptor Grindelwald in pigmented glial cells of the Drosophila retina leads to age‐related degeneration of both glia and neurons, preceded by an abnormal accumulation of glial LDs. We show that the glial LDs initially buffer the cells against damage caused by glial and neuronally generated reactive oxygen species (ROS), but that in later life the LDs dissipate, leading to the release of toxic peroxidated lipids. Finally, we demonstrate the existence of a conserved pathway in human iPS‐derived microglia‐like cells, which are central players in neurodegeneration. Overall, we have discovered a pathway mediated by TNF signalling acting not as a trigger of inflammation, but as a cytoprotective factor in the retina.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
17 |
8
|
Dulloo I, Sabapathy K. Transactivation-dependent and -independent regulation of p73 stability. J Biol Chem 2005; 280:28203-14. [PMID: 15919663 DOI: 10.1074/jbc.m501702200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The tumor suppressor p53 regulates its own stability by transcriptionally activating Mdm2, Pirh2, and COP1, which target p53 for degradation. However, whether such a negative feedback mechanism exists to regulate the stability of p73, the structural and functional homologue of p53, is unclear. Unlike p53, p73 is not mutated in cancers, but its expression is significantly elevated. Thus, we have investigated the regulation of p73 turnover. Our data suggest the existence of a negative feedback mechanism for p73 degradation. p73 mutants with compromised transactivation activity are generally more stable than the full-length TAp73 form. TAp73 appears to promote its own turnover as well as that of other p73 forms, including the DeltaNp73 that lacks the amino-terminal transactivation domain, in a transactivation-dependent manner. This degradation-inducing property of TAp73 was inhibited only by p73 mutants that also inhibit the transactivation activity TAp73 but not by mutant p53, highlighting the specificity in the regulation of p73 stability. Moreover, regions in the amino and carboxyl termini of p73 confer both stabilizing and destabilizing effects on the protein, independent of its transactivation ability. Finally, we have identified the regions between amino acids 56 and 248 of p73 as being the region required for p73-mediated and for ubiquitin-mediated degradation. Taken together, the data suggest that p73 turnover is tightly regulated in a transactivation-dependent and -independent manner, resulting in the controlled expression of the various p73 forms.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
17 |
9
|
Dulloo I, Tellier M, Levet C, Chikh A, Zhang B, Blaydon DC, Webb CM, Kelsell DP, Freeman M. Cleavage of the pseudoprotease iRhom2 by the signal peptidase complex reveals an ER-to-nucleus signaling pathway. Mol Cell 2024; 84:277-292.e9. [PMID: 38183983 DOI: 10.1016/j.molcel.2023.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 09/18/2023] [Accepted: 12/08/2023] [Indexed: 01/08/2024]
Abstract
iRhoms are pseudoprotease members of the rhomboid-like superfamily and are cardinal regulators of inflammatory and growth factor signaling; they function primarily by recognizing transmembrane domains of their clients. Here, we report a mechanistically distinct nuclear function of iRhoms, showing that both human and mouse iRhom2 are non-canonical substrates of signal peptidase complex (SPC), the protease that removes signal peptides from secreted proteins. Cleavage of iRhom2 generates an N-terminal fragment that enters the nucleus and modifies the transcriptome, in part by binding C-terminal binding proteins (CtBPs). The biological significance of nuclear iRhom2 is indicated by elevated levels in skin biopsies of patients with psoriasis, tylosis with oesophageal cancer (TOC), and non-epidermolytic palmoplantar keratoderma (NEPPK); increased iRhom2 cleavage in a keratinocyte model of psoriasis; and nuclear iRhom2 promoting proliferation of keratinocytes. Overall, this work identifies an unexpected SPC-dependent ER-to-nucleus signaling pathway and demonstrates that iRhoms can mediate nuclear signaling.
Collapse
|
|
1 |
|
10
|
Li D, Dulloo I, Sabapathy K. Correction to: context-dependent AMPK activation distinctly regulates TAp73 stability and transcriptional activity. Signal Transduct Target Ther 2021; 6:163. [PMID: 33895788 PMCID: PMC8068722 DOI: 10.1038/s41392-021-00504-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
Published Erratum |
4 |
|