Zenklusen I, Hsin CH, Schilling U, Kankam M, Krause A, Ufer M, Dingemanse J. Transition from Syringe to Autoinjector Based on Bridging Pharmacokinetics and Pharmacodynamics of the P2Y
12 Receptor Antagonist Selatogrel in Healthy Subjects.
Clin Pharmacokinet 2021;
61:687-695. [PMID:
34961905 DOI:
10.1007/s40262-021-01097-9]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND AND OBJECTIVES
Selatogrel is a potent, reversible, and selective antagonist of the platelet P2Y12 receptor currently developed for the treatment of acute myocardial infarction (AMI). In the completed Phase I/II studies, selatogrel was subcutaneously (s.c.) administered as a lyophilizate-based formulation by syringe by a healthcare professional. In the Phase III study, selatogrel will be self-administered s.c. as a liquid formulation with an autoinjector at the onset of AMI symptoms to shorten treatment delay. This clinical bridging study compared the pharmacokinetics (PK) of selatogrel between the different formulations.
METHODS
This was a single-center, randomized, open-label, three-period, cross-over Phase I study in 24 healthy subjects. In each period, a single subcutaneous dose of 16 mg selatogrel was administered as (1) a Phase III liquid formulation by autoinjector (Treatment A), (2) a Phase III liquid formulation by prefilled syringe (Treatment B), or (3) a Phase I/II reconstituted lyophilizate-based formulation by syringe (Treatment C). PK parameters including area under the plasma concentration-time curve from zero to infinity (AUC0-∞), maximum plasma concentration (Cmax), time to reach Cmax(tmax), and terminal half-life (t1/2) were determined using noncompartmental analysis. Pharmacodynamic (PD) parameters were estimated using PK/PD modeling, including the time of first occurrence of inhibition of platelet aggregation (IPA) ≥ 80% (tonset), duration of IPA above 80% (tduration), and responder rate defined as the percentage of subjects with tonset ≤ 30 min and tduration ≥ 3 h. Safety and tolerability were also assessed.
RESULTS
Comparing Treatment A to Treatment C, the exposure (AUC0-∞) was bioequivalent with a geometric mean ratio (GMR) (90% confidence interval) of 0.95 (0.92-0.97) within the bioequivalence range (0.80-1.25). Absorption following Treatment A was slightly slower with a tmax occurring approximately 30 min later and a 20% lower Cmax. The autoinjector itself had no impact on the PK of selatogrel, as similar values of Cmax and AUC0-∞ were determined after administration as a Phase III liquid formulation by autoinjector or by prefilled syringe (i.e., GMR [90% confidence interval] of 1.06 [0.97-1.15] and 0.99 [0.96-1.03] for Cmax and AUC0-∞, respectively). PK/PD modeling predicted that the median tonset will occur slightly later for Treatment A (7.2 min) compared to Treatment C (4.2 min), while no relevant differences in tduration and responder rate were estimated between the two treatments. Selatogrel was safe and well tolerated following all three treatments.
CONCLUSIONS
PK and simulated PD effects of selatogrel were similar across treatments.
CLINICAL TRIAL REGISTRATION
NCT04557280.
Collapse