1
|
Leonardi I, Li X, Semon A, Li D, Doron I, Putzel G, Bar A, Prieto D, Rescigno M, McGovern DPB, Pla J, Iliev ID. CX3CR1 + mononuclear phagocytes control immunity to intestinal fungi. Science 2018; 359:232-236. [PMID: 29326275 DOI: 10.1126/science.aao1503] [Citation(s) in RCA: 215] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 11/15/2017] [Accepted: 12/09/2017] [Indexed: 12/23/2022]
Abstract
Intestinal fungi are an important component of the microbiota, and recent studies have unveiled their potential in modulating host immune homeostasis and inflammatory disease. Nonetheless, the mechanisms governing immunity to gut fungal communities (mycobiota) remain unknown. We identified CX3CR1+ mononuclear phagocytes (MNPs) as being essential for the initiation of innate and adaptive immune responses to intestinal fungi. CX3CR1+ MNPs express antifungal receptors and activate antifungal responses in a Syk-dependent manner. Genetic ablation of CX3CR1+ MNPs in mice led to changes in gut fungal communities and to severe colitis that was rescued by antifungal treatment. In Crohn's disease patients, a missense mutation in the gene encoding CX3CR1 was identified and found to be associated with impaired antifungal responses. These results unravel a role of CX3CR1+ MNPs in mediating interactions between intestinal mycobiota and host immunity at steady state and during inflammatory disease.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
215 |
2
|
Li XV, Leonardi I, Putzel GG, Semon A, Fiers WD, Kusakabe T, Lin WY, Gao IH, Doron I, Gutierrez-Guerrero A, DeCelie MB, Carriche GM, Mesko M, Yang C, Naglik JR, Hube B, Scherl EJ, Iliev ID. Immune regulation by fungal strain diversity in inflammatory bowel disease. Nature 2022; 603:672-678. [PMID: 35296857 PMCID: PMC9166917 DOI: 10.1038/s41586-022-04502-w] [Citation(s) in RCA: 164] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 02/02/2022] [Indexed: 12/21/2022]
Abstract
The fungal microbiota (mycobiota) is an integral part of the complex multikingdom microbial community colonizing the mammalian gastrointestinal tract and has an important role in immune regulation1-6. Although aberrant changes in the mycobiota have been linked to several diseases, including inflammatory bowel disease3-9, it is currently unknown whether fungal species captured by deep sequencing represent living organisms and whether specific fungi have functional consequences for disease development in affected individuals. Here we developed a translational platform for the functional analysis of the mycobiome at the fungal-strain- and patient-specific level. Combining high-resolution mycobiota sequencing, fungal culturomics and genomics, a CRISPR-Cas9-based fungal strain editing system, in vitro functional immunoreactivity assays and in vivo models, this platform enables the examination of host-fungal crosstalk in the human gut. We discovered a rich genetic diversity of opportunistic Candida albicans strains that dominate the colonic mucosa of patients with inflammatory bowel disease. Among these human-gut-derived isolates, strains with high immune-cell-damaging capacity (HD strains) reflect the disease features of individual patients with ulcerative colitis and aggravated intestinal inflammation in vivo through IL-1β-dependent mechanisms. Niche-specific inflammatory immunity and interleukin-17A-producing T helper cell (TH17 cell) antifungal responses by HD strains in the gut were dependent on the C. albicans-secreted peptide toxin candidalysin during the transition from a benign commensal to a pathobiont state. These findings reveal the strain-specific nature of host-fungal interactions in the human gut and highlight new diagnostic and therapeutic targets for diseases of inflammatory origin.
Collapse
|
research-article |
3 |
164 |
3
|
Doron I, Leonardi I, Li XV, Fiers WD, Semon A, Bialt-DeCelie M, Migaud M, Gao IH, Lin WY, Kusakabe T, Puel A, Iliev ID. Human gut mycobiota tune immunity via CARD9-dependent induction of anti-fungal IgG antibodies. Cell 2021; 184:1017-1031.e14. [PMID: 33548172 PMCID: PMC7936855 DOI: 10.1016/j.cell.2021.01.016] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 12/04/2020] [Accepted: 01/12/2021] [Indexed: 12/11/2022]
Abstract
Antibodies mediate natural and vaccine-induced immunity against viral and bacterial pathogens, whereas fungi represent a widespread kingdom of pathogenic species for which neither vaccine nor neutralizing antibody therapies are clinically available. Here, using a multi-kingdom antibody profiling (multiKAP) approach, we explore the human antibody repertoires against gut commensal fungi (mycobiota). We identify species preferentially targeted by systemic antibodies in humans, with Candida albicans being the major inducer of antifungal immunoglobulin G (IgG). Fungal colonization of the gut induces germinal center (GC)-dependent B cell expansion in extraintestinal lymphoid tissues and generates systemic antibodies that confer protection against disseminated C. albicans or C. auris infection. Antifungal IgG production depends on the innate immunity regulator CARD9 and CARD9+CX3CR1+ macrophages. In individuals with invasive candidiasis, loss-of-function mutations in CARD9 are associated with impaired antifungal IgG responses. These results reveal an important role of gut commensal fungi in shaping the human antibody repertoire through CARD9-dependent induction of host-protective antifungal IgG.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
131 |
4
|
Leonardi I, Paramsothy S, Doron I, Semon A, Kaakoush NO, Clemente JC, Faith JJ, Borody TJ, Mitchell HM, Colombel JF, Kamm MA, Iliev ID. Fungal Trans-kingdom Dynamics Linked to Responsiveness to Fecal Microbiota Transplantation (FMT) Therapy in Ulcerative Colitis. Cell Host Microbe 2020; 27:823-829.e3. [PMID: 32298656 DOI: 10.1016/j.chom.2020.03.006] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/10/2020] [Accepted: 03/11/2020] [Indexed: 02/06/2023]
Abstract
Fecal microbiota transplantation (FMT) targeting gut microbiota has recently been successfully applied to ulcerative colitis. However, only a subset of patients responds to FMT, and there is a pressing need for biomarkers of responsiveness. Fungi (the mycobiota) represent a highly immunologically reactive component of the gut microbiota. We analyzed samples from a large randomized controlled trial of FMT for ulcerative colitis (UC). High Candida abundance pre-FMT was associated with a clinical response, whereas decreased Candida abundance post-FMT was indicative of ameliorated disease severity. High pre-FMT Candida was associated with increased bacterial diversity post-FMT, and the presence of genera was linked to FMT responsiveness. Although we detected elevated anti-Candida antibodies in placebo recipients, this increase was abrogated in FMT recipients. Our data suggest that FMT might reduce Candida to contain pro-inflammatory immunity during intestinal disease and highlight the utility of mycobiota-focused approaches to identify FMT responders prior to therapy initiation.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
117 |
5
|
Shahak Y, Gussakovsky E, Cohen Y, Lurie S, Stern R, Kfir S, Naor A, Atzmon I, Doron I, Greenblat-Avron Y. COLORNETS: A NEW APPROACH FOR LIGHT MANIPULATION IN FRUIT TREES. ACTA ACUST UNITED AC 2004. [DOI: 10.17660/actahortic.2004.636.76] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
|
21 |
71 |
6
|
Uzzan M, Tokuyama M, Rosenstein AK, Tomescu C, SahBandar IN, Ko HM, Leyre L, Chokola A, Kaplan-Lewis E, Rodriguez G, Seki A, Corley MJ, Aberg J, La Porte A, Park EY, Ueno H, Oikonomou I, Doron I, Iliev ID, Chen BK, Lui J, Schacker TW, Furtado GC, Lira SA, Colombel JF, Horowitz A, Lim JK, Chomont N, Rahman AH, Montaner LJ, Ndhlovu LC, Mehandru S. Anti-α4β7 therapy targets lymphoid aggregates in the gastrointestinal tract of HIV-1-infected individuals. Sci Transl Med 2019; 10:10/461/eaau4711. [PMID: 30282696 DOI: 10.1126/scitranslmed.aau4711] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 09/11/2018] [Indexed: 12/12/2022]
Abstract
Gut homing CD4+ T cells expressing the integrin α4β7 are early viral targets and contribute to HIV-1 pathogenesis, likely by seeding the gastrointestinal (GI) tract with HIV. Although simianized anti-α4β7 monoclonal antibodies have shown promise in preventing or attenuating the disease course of simian immunodeficiency virus in nonhuman primate studies, the mechanisms of drug action remain elusive. We present a cohort of individuals with mild inflammatory bowel disease and concomitant HIV-1 infection receiving anti-α4β7 treatment. By sampling the immune inductive and effector sites of the GI tract, we have discovered that anti-α4β7 therapy led to a significant and unexpected attenuation of lymphoid aggregates, most notably in the terminal ileum. Given that lymphoid aggregates serve as important sanctuary sites for maintaining viral reservoirs, their attrition by anti-α4β7 therapy has important implications for HIV-1 therapeutics and eradication efforts and defines a rational basis for the use of anti-α4β7 therapy in HIV-1 infection.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
58 |
7
|
Kusakabe T, Lin WY, Cheong JG, Singh G, Ravishankar A, Yeung ST, Mesko M, DeCelie MB, Carriche G, Zhao Z, Rand S, Doron I, Putzel GG, Worgall S, Cushing M, Westblade L, Inghirami G, Parkhurst CN, Guo CJ, Schotsaert M, García-Sastre A, Josefowicz SZ, Salvatore M, Iliev ID. Fungal microbiota sustains lasting immune activation of neutrophils and their progenitors in severe COVID-19. Nat Immunol 2023; 24:1879-1889. [PMID: 37872315 PMCID: PMC10805066 DOI: 10.1038/s41590-023-01637-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/06/2023] [Indexed: 10/25/2023]
Abstract
Gastrointestinal fungal dysbiosis is a hallmark of several diseases marked by systemic immune activation. Whether persistent pathobiont colonization during immune alterations and impaired gut barrier function has a durable impact on host immunity is unknown. We found that elevated levels of Candida albicans immunoglobulin G (IgG) antibodies marked patients with severe COVID-19 (sCOVID-19) who had intestinal Candida overgrowth, mycobiota dysbiosis and systemic neutrophilia. Analysis of hematopoietic stem cell progenitors in sCOVID-19 revealed transcriptional changes in antifungal immunity pathways and reprogramming of granulocyte myeloid progenitors (GMPs) for up to a year. Mice colonized with C. albicans patient isolates experienced increased lung neutrophilia and pulmonary NETosis during severe acute respiratory syndrome coronavirus-2 infection, which were partially resolved with antifungal treatment or by interleukin-6 receptor blockade. sCOVID-19 patients treated with tocilizumab experienced sustained reductions in C. albicans IgG antibodies titers and GMP transcriptional changes. These findings suggest that gut fungal pathobionts may contribute to immune activation during inflammatory diseases, offering potential mycobiota-immune therapeutic strategies for sCOVID-19 with prolonged symptoms.
Collapse
|
research-article |
2 |
31 |
8
|
Naor A, Klein I, Doron I, Gal Y, Ben-David Z, Bravdo B. The effect of irrigation and crop load on stem water potential and apple fruit size. ACTA ACUST UNITED AC 2015. [DOI: 10.1080/14620316.1997.11515569] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
|
10 |
16 |
9
|
Ben-Jacob E, Doron I, Gazit T, Rephaeli E, Sagher O, Towle VL. Mapping and assessment of epileptogenic foci using frequency-entropy templates. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2007; 76:051903. [PMID: 18233683 DOI: 10.1103/physreve.76.051903] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2007] [Revised: 08/01/2007] [Indexed: 05/25/2023]
Abstract
Much effort has been devoted to developing analysis methods of subdural electroencephalogram and depth electrode recordings of epileptic patients being evaluated for surgical resection. The general approach is to investigate the brain activity at different locations as recorded by the different electrodes in an attempt to localize the epileptogenic focus or foci. Currently, most of the methods are based on the notion that epileptogenic brain activity is associated with changes in synchronization and in complexity. Here we present a method that is based on the temporal dynamics combined with the spectral distribution of energy in terms of frequency-entropy (FE) templates. The FE templates are based upon maximum information partitioning into a set of frequency bands. The FE template is calculated by wavelet packet decomposition followed by an application of the best basis algorithm minimizing the entropy cost function. A comparison between two FE templates is performed by a special quantitative similarity measure according to the overlap in the partitioning into frequency bands and weighted by the bands' entropy. For localization of the epileptogenic foci, the templates of each electrode during the interictal period are compared with a representative template evaluated from the ensemble of all electrodes during the ictal period. We suggest associating the locations that reveal high template similarity to the ictal template with the epileptogenic foci. To test the method and the underlying assumptions, we perform retrospective analysis of the recorded brain activity, from both grid and depth electrodes, from 11 patients suffering from medically intractable epilepsy. Application of the ictal-interictal FE template similarity analysis revealed regions in the epileptic brain in which the interictal characteristics are highly similar to those of the ictal period. To asses the foci we compared the interictal templates of the different electrodes to each other, forming interelectrode similarity matrices. Investigation of these similarity matrices revealed the existence of a single distinct subcluster of electrodes with high interelectrode similarity in the brain activity of seven patients (type-I activity), and the existence of multiple high interelectrode similarity subclusters in the activity of four patients (type-II activity). Comparisons of the analysis results to the medical presurgical evaluations and the outcomes of the surgical resections suggest that the method may be helpful in the chronic evaluation of the epileptogenic zone before operation, and in some cases (type-I activity) without the need to wait for seizures to occur.
Collapse
|
Evaluation Study |
18 |
13 |
10
|
Gazit T, Doron I, Sagher O, Kohrman MH, Towle VL, Teicher M, Ben-Jacob E. Time-frequency characterization of electrocorticographic recordings of epileptic patients using frequency-entropy similarity: a comparison to other bi-variate measures. J Neurosci Methods 2010; 194:358-73. [PMID: 20969891 DOI: 10.1016/j.jneumeth.2010.10.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 09/05/2010] [Accepted: 10/13/2010] [Indexed: 11/28/2022]
Abstract
Expert evaluation of electrocorticographic (ECoG) recordings forms the linchpin of seizure onset zone localization in the evaluation of epileptic patients for surgical resection. Numerous methods have been developed to analyze these complex recordings, including uni-variate (characterizing single channels), bi-variate (comparing channel pairs) and multivariate measures. Developing reliable algorithms may be helpful in clinical tasks such as localization of epileptogenic zones and seizure anticipation, as well as enabling better understanding of neuronal function and dynamics. Recently we have developed the frequency-entropy (F-E) similarity measure, and have tested its capability in mapping the epileptogenic zones. The F-E similarity measure compares time-frequency characterizations of two recordings. In this study, we examine the method's principles and utility and compare it to previously described bi-variate correspondence measures such as correlation, coherence, mean phase coherence and spectral comparison methods. Specially designed synthetic signals were used for illuminating theoretical differences between the measures. Intracranial recordings of four epileptic patients were then used for the measures' comparative analysis by creating a mean inter-electrode matrix for each of the correspondence measures and comparing the structure of these matrices during the inter-ictal and ictal periods. We found that the F-E similarity measure is able to discover spectral and temporal features in data which are hidden for the other measures and are important for foci localization.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
6 |
11
|
Abstract
The dynamic and complex community of microbes that colonizes the intestines is composed of bacteria, fungi, and viruses. At the mucosal surfaces, immunoglobulins play a key role in protection against bacterial and fungal pathogens, and their toxins. Secretory immunoglobulin A (sIgA) is the most abundantly produced antibody at the mucosal surfaces, while Immunoglobulin G (IgG) isotypes play a critical role in systemic protection. IgA and IgG antibodies with reactivity to commensal fungi play an important role in shaping the mycobiota and host antifungal immunity. In this article, we review the latest evidence that establishes a connection between commensal fungi and B cell-mediated antifungal immunity as an additional layer of protection against fungal infections and inflammation.
Collapse
|
Review |
2 |
6 |
12
|
Doron I, Hulata E, Baruchi I, Towle VL, Ben-Jacob E. Time-invariant person-specific frequency templates in human brain activity. PHYSICAL REVIEW LETTERS 2006; 96:258101. [PMID: 16907347 DOI: 10.1103/physrevlett.96.258101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2006] [Indexed: 05/11/2023]
Abstract
The various human brain tasks are performed at different locations and time scales. Yet, we discovered the existence of time-invariant (above an essential time scale) partitioning of the brain activity into personal state-specific frequency bands. For that, we perform temporal and ensemble averaging of best wavelet packet bases from multielectrode electroencephalogram recordings. These personal frequency bands provide new templates for quantitative analyses of brain function, e.g., normal versus epileptic activity.
Collapse
|
|
19 |
2 |
13
|
Cooper DM, Doron I, Mansell AL, Bryan AC, Levison H. The relative sensitivity of closing volume in children with asthma and cystic fibrosis. THE AMERICAN REVIEW OF RESPIRATORY DISEASE 1974; 109:519-24. [PMID: 4823407 DOI: 10.1164/arrd.1974.109.5.519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
|
51 |
1 |
14
|
Li XV, Leonardi I, Putzel GG, Semon A, Fiers WD, Kusakabe T, Lin WY, Gao IH, Doron I, Gutierrez-Guerrero A, DeCelie MB, Carriche GM, Mesko M, Yang C, Naglik JR, Hube B, Scherl EJ, Iliev ID. Author Correction: Immune regulation by fungal strain diversity in inflammatory bowel disease. Nature 2022; 608:E21. [PMID: 35859182 DOI: 10.1038/s41586-022-05102-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
Published Erratum |
3 |
|
15
|
Paz A, Doron I, Tur-Sinai A. HEALTH AND SELF-PERCEPTION OF HEALTH—DO WELFARE REGIME AND SOCIOECONOMIC STATUS HAVE GENDER EFFECT? Innov Aging 2017. [DOI: 10.1093/geroni/igx004.879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
|
8 |
|
16
|
Doron I, Cox C, Spanier B, Giannaraki E. NATIONAL AND INTERNATIONAL HUMAN RIGHTS OF OLDER PERSONS INDEX (IOPHRI). Innov Aging 2018. [DOI: 10.1093/geroni/igy023.1945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
|
7 |
|
17
|
Li X, Leonardi I, Semon A, Doron I, Gao IH, Putzel GG, Kim Y, Kabata H, Artis D, Fiers WD, Ramer-Tait AE, ILIEV ILIYAN. Sensing Fungal Dysbiosis by Gut-Resident CX3CR1+ Mononuclear Phagocytes Aggravates Allergic Airway Disease. THE JOURNAL OF IMMUNOLOGY 2019. [DOI: 10.4049/jimmunol.202.supp.191.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Sensing of the gut microbiota, including fungi, regulates mucosal immunity. Whether fungal sensing in the gut can influence immunity at other body sites is unknown. Here we show that fluconazole-induced gut fungal dysbiosis has persistent effects on allergic airway disease in a house dust mite challenge model. Mice with a defined community of bacteria, but lacking intestinal fungi were not susceptible to fluconazole-induced dysbiosis, while colonization with a fungal mixture recapitulated the detrimental effects. Gut-resident mononuclear phagocytes (MNPs) expressing the fractalkine receptor CX3CR1 were essential for the effect of gut fungal dysbiosis on peripheral immunity. However, how mycobiota influence immunity in gut distal sites is not well understood. We developed protocols for gut-targeted depletion of phagocytes to investigate the influence of fungi on gut-lung crosstalk. Depletion of CX3CR1+ MNPs or selective inhibition of Syk signaling downstream of fungal sensing in these cells ameliorated lung allergy. These results indicate that disruption of intestinal fungal communities can mediate gut-lung-directed immune crosstalk and aggravate disease severity through fungal sensing by gut-resident CX3CR1+ MNPs.
Highlights
Gut fungal dysbiosis persistently aggravates allergic airway disease (AAD) in mice.
Gut colonization by commensal fungi is both required and sufficient to aggravate AAD in a mycobiome-free mouse model.
Intestinal CX3CR1+ mononuclear phagocytes (MNPs) are essential for the systemic effects of gut fungal dysbiosis on AAD.
Inhibition of Syk-mediated fungal sensing in intestinal CX3CR1+ MNPs ameliorates AAD.
Collapse
|
|
6 |
|
18
|
Band-Winterstein T, Doron I, Naim S. PRACTICE WISDOM: PROFESSIONAL RESPONSES TO SELF-NEGLECT IN ISRAEL. Innov Aging 2017. [DOI: 10.1093/geroni/igx004.2372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
|
8 |
|
19
|
Kohn N, Doron I, Brown M. BUILDING CONNECTIONS BETWEEN ELDER LAW AND GERONTOLOGY. Innov Aging 2017. [DOI: 10.1093/geroni/igx004.3024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
|
8 |
|